L(s) = 1 | + (−8.96 + 13.2i)2-s + (−95.1 − 237. i)4-s − 279.·5-s − 3.40e3i·7-s + (4.00e3 + 869. i)8-s + (2.50e3 − 3.70e3i)10-s − 3.24e3i·11-s + 1.00e4·13-s + (4.50e4 + 3.04e4i)14-s + (−4.74e4 + 4.52e4i)16-s + 1.12e5·17-s − 6.21e4i·19-s + (2.66e4 + 6.64e4i)20-s + (4.30e4 + 2.91e4i)22-s + 2.50e5i·23-s + ⋯ |
L(s) = 1 | + (−0.560 + 0.828i)2-s + (−0.371 − 0.928i)4-s − 0.447·5-s − 1.41i·7-s + (0.977 + 0.212i)8-s + (0.250 − 0.370i)10-s − 0.221i·11-s + 0.350·13-s + (1.17 + 0.793i)14-s + (−0.723 + 0.690i)16-s + 1.34·17-s − 0.477i·19-s + (0.166 + 0.415i)20-s + (0.183 + 0.124i)22-s + 0.894i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.371 + 0.928i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.371 + 0.928i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(1.159817251\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.159817251\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (8.96 - 13.2i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + 279.T \) |
good | 7 | \( 1 + 3.40e3iT - 5.76e6T^{2} \) |
| 11 | \( 1 + 3.24e3iT - 2.14e8T^{2} \) |
| 13 | \( 1 - 1.00e4T + 8.15e8T^{2} \) |
| 17 | \( 1 - 1.12e5T + 6.97e9T^{2} \) |
| 19 | \( 1 + 6.21e4iT - 1.69e10T^{2} \) |
| 23 | \( 1 - 2.50e5iT - 7.83e10T^{2} \) |
| 29 | \( 1 - 4.20e5T + 5.00e11T^{2} \) |
| 31 | \( 1 - 1.61e5iT - 8.52e11T^{2} \) |
| 37 | \( 1 - 1.31e6T + 3.51e12T^{2} \) |
| 41 | \( 1 + 6.67e5T + 7.98e12T^{2} \) |
| 43 | \( 1 + 2.96e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 + 3.08e6iT - 2.38e13T^{2} \) |
| 53 | \( 1 - 5.63e6T + 6.22e13T^{2} \) |
| 59 | \( 1 - 3.54e6iT - 1.46e14T^{2} \) |
| 61 | \( 1 + 2.55e7T + 1.91e14T^{2} \) |
| 67 | \( 1 - 3.28e7iT - 4.06e14T^{2} \) |
| 71 | \( 1 + 2.69e7iT - 6.45e14T^{2} \) |
| 73 | \( 1 + 1.96e7T + 8.06e14T^{2} \) |
| 79 | \( 1 + 1.49e7iT - 1.51e15T^{2} \) |
| 83 | \( 1 + 7.32e7iT - 2.25e15T^{2} \) |
| 89 | \( 1 - 4.30e7T + 3.93e15T^{2} \) |
| 97 | \( 1 - 1.35e8T + 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.66028368044289463999898617170, −10.00860151462118851842444010926, −8.792171265552519667451959514231, −7.69756078549083147845807034239, −7.15719626719452969562081918289, −5.90493604151648014731334152868, −4.63488357324205951685322230496, −3.49908281628102224947356178330, −1.29049767452969121204491647342, −0.42691431641188568222585251206,
1.06885960398154795258716222410, 2.38763335666200897333321817997, 3.38459935251068030137484849060, 4.75416537540866400725402329999, 6.11259386137137441875414417992, 7.69613389618786797656315692893, 8.466389918955893321840580766509, 9.380518057832048107277497638658, 10.34939043358293886068515467298, 11.46356260014649789573480515178