Properties

Label 180.9.c.b.91.12
Level $180$
Weight $9$
Character 180.91
Analytic conductor $73.328$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [180,9,Mod(91,180)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(180, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("180.91"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 180.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.3281498110\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.12
Character \(\chi\) \(=\) 180.91
Dual form 180.9.c.b.91.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-8.96713 + 13.2511i) q^{2} +(-95.1813 - 237.648i) q^{4} -279.508 q^{5} -3400.42i q^{7} +(4002.59 + 869.766i) q^{8} +(2506.39 - 3703.78i) q^{10} -3247.97i q^{11} +10010.8 q^{13} +(45059.1 + 30492.0i) q^{14} +(-47417.1 + 45239.3i) q^{16} +112504. q^{17} -62167.3i q^{19} +(26604.0 + 66424.6i) q^{20} +(43039.1 + 29125.0i) q^{22} +250249. i q^{23} +78125.0 q^{25} +(-89768.3 + 132654. i) q^{26} +(-808102. + 323656. i) q^{28} +420649. q^{29} +161412. i q^{31} +(-174273. - 1.03399e6i) q^{32} +(-1.00884e6 + 1.49079e6i) q^{34} +950445. i q^{35} +1.31491e6 q^{37} +(823782. + 557462. i) q^{38} +(-1.11876e6 - 243107. i) q^{40} -667494. q^{41} -2.96065e6i q^{43} +(-771874. + 309146. i) q^{44} +(-3.31607e6 - 2.24402e6i) q^{46} -3.08304e6i q^{47} -5.79803e6 q^{49} +(-700557. + 1.03524e6i) q^{50} +(-952843. - 2.37905e6i) q^{52} +5.63544e6 q^{53} +907836. i q^{55} +(2.95757e6 - 1.36105e7i) q^{56} +(-3.77201e6 + 5.57405e6i) q^{58} +3.54850e6i q^{59} -2.55655e7 q^{61} +(-2.13888e6 - 1.44740e6i) q^{62} +(1.52642e7 + 6.96263e6i) q^{64} -2.79811e6 q^{65} +3.28205e7i q^{67} +(-1.07083e7 - 2.67363e7i) q^{68} +(-1.25944e7 - 8.52276e6i) q^{70} -2.69401e7i q^{71} -1.96776e7 q^{73} +(-1.17909e7 + 1.74239e7i) q^{74} +(-1.47739e7 + 5.91716e6i) q^{76} -1.10445e7 q^{77} -1.49155e7i q^{79} +(1.32535e7 - 1.26448e7i) q^{80} +(5.98551e6 - 8.84501e6i) q^{82} -7.32854e7i q^{83} -3.14458e7 q^{85} +(3.92318e7 + 2.65485e7i) q^{86} +(2.82498e6 - 1.30003e7i) q^{88} +4.30098e7 q^{89} -3.40410e7i q^{91} +(5.94712e7 - 2.38190e7i) q^{92} +(4.08535e7 + 2.76460e7i) q^{94} +1.73763e7i q^{95} +1.35970e8 q^{97} +(5.19917e7 - 7.68301e7i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 610 q^{4} - 8750 q^{10} - 51392 q^{13} + 11986 q^{16} - 758068 q^{22} + 2500000 q^{25} + 976324 q^{28} - 6117428 q^{34} + 5152064 q^{37} - 96250 q^{40} - 10391752 q^{46} - 11002976 q^{49} + 13976584 q^{52}+ \cdots + 80579520 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.96713 + 13.2511i −0.560445 + 0.828191i
\(3\) 0 0
\(4\) −95.1813 237.648i −0.371802 0.928312i
\(5\) −279.508 −0.447214
\(6\) 0 0
\(7\) 3400.42i 1.41625i −0.706087 0.708125i \(-0.749541\pi\)
0.706087 0.708125i \(-0.250459\pi\)
\(8\) 4002.59 + 869.766i 0.977195 + 0.212345i
\(9\) 0 0
\(10\) 2506.39 3703.78i 0.250639 0.370378i
\(11\) 3247.97i 0.221841i −0.993829 0.110920i \(-0.964620\pi\)
0.993829 0.110920i \(-0.0353799\pi\)
\(12\) 0 0
\(13\) 10010.8 0.350507 0.175253 0.984523i \(-0.443926\pi\)
0.175253 + 0.984523i \(0.443926\pi\)
\(14\) 45059.1 + 30492.0i 1.17293 + 0.793731i
\(15\) 0 0
\(16\) −47417.1 + 45239.3i −0.723527 + 0.690296i
\(17\) 112504. 1.34701 0.673506 0.739182i \(-0.264788\pi\)
0.673506 + 0.739182i \(0.264788\pi\)
\(18\) 0 0
\(19\) 62167.3i 0.477032i −0.971139 0.238516i \(-0.923339\pi\)
0.971139 0.238516i \(-0.0766609\pi\)
\(20\) 26604.0 + 66424.6i 0.166275 + 0.415154i
\(21\) 0 0
\(22\) 43039.1 + 29125.0i 0.183727 + 0.124330i
\(23\) 250249.i 0.894255i 0.894470 + 0.447128i \(0.147553\pi\)
−0.894470 + 0.447128i \(0.852447\pi\)
\(24\) 0 0
\(25\) 78125.0 0.200000
\(26\) −89768.3 + 132654.i −0.196440 + 0.290287i
\(27\) 0 0
\(28\) −808102. + 323656.i −1.31472 + 0.526564i
\(29\) 420649. 0.594741 0.297371 0.954762i \(-0.403890\pi\)
0.297371 + 0.954762i \(0.403890\pi\)
\(30\) 0 0
\(31\) 161412.i 0.174779i 0.996174 + 0.0873894i \(0.0278524\pi\)
−0.996174 + 0.0873894i \(0.972148\pi\)
\(32\) −174273. 1.03399e6i −0.166200 0.986092i
\(33\) 0 0
\(34\) −1.00884e6 + 1.49079e6i −0.754927 + 1.11558i
\(35\) 950445.i 0.633366i
\(36\) 0 0
\(37\) 1.31491e6 0.701597 0.350798 0.936451i \(-0.385910\pi\)
0.350798 + 0.936451i \(0.385910\pi\)
\(38\) 823782. + 557462.i 0.395074 + 0.267350i
\(39\) 0 0
\(40\) −1.11876e6 243107.i −0.437015 0.0949637i
\(41\) −667494. −0.236218 −0.118109 0.993001i \(-0.537683\pi\)
−0.118109 + 0.993001i \(0.537683\pi\)
\(42\) 0 0
\(43\) 2.96065e6i 0.865991i −0.901396 0.432995i \(-0.857457\pi\)
0.901396 0.432995i \(-0.142543\pi\)
\(44\) −771874. + 309146.i −0.205938 + 0.0824808i
\(45\) 0 0
\(46\) −3.31607e6 2.24402e6i −0.740614 0.501181i
\(47\) 3.08304e6i 0.631811i −0.948791 0.315906i \(-0.897692\pi\)
0.948791 0.315906i \(-0.102308\pi\)
\(48\) 0 0
\(49\) −5.79803e6 −1.00576
\(50\) −700557. + 1.03524e6i −0.112089 + 0.165638i
\(51\) 0 0
\(52\) −952843. 2.37905e6i −0.130319 0.325380i
\(53\) 5.63544e6 0.714208 0.357104 0.934065i \(-0.383764\pi\)
0.357104 + 0.934065i \(0.383764\pi\)
\(54\) 0 0
\(55\) 907836.i 0.0992103i
\(56\) 2.95757e6 1.36105e7i 0.300734 1.38395i
\(57\) 0 0
\(58\) −3.77201e6 + 5.57405e6i −0.333320 + 0.492559i
\(59\) 3.54850e6i 0.292845i 0.989222 + 0.146422i \(0.0467758\pi\)
−0.989222 + 0.146422i \(0.953224\pi\)
\(60\) 0 0
\(61\) −2.55655e7 −1.84644 −0.923220 0.384271i \(-0.874453\pi\)
−0.923220 + 0.384271i \(0.874453\pi\)
\(62\) −2.13888e6 1.44740e6i −0.144750 0.0979540i
\(63\) 0 0
\(64\) 1.52642e7 + 6.96263e6i 0.909819 + 0.415005i
\(65\) −2.79811e6 −0.156751
\(66\) 0 0
\(67\) 3.28205e7i 1.62872i 0.580362 + 0.814358i \(0.302911\pi\)
−0.580362 + 0.814358i \(0.697089\pi\)
\(68\) −1.07083e7 2.67363e7i −0.500822 1.25045i
\(69\) 0 0
\(70\) −1.25944e7 8.52276e6i −0.524549 0.354967i
\(71\) 2.69401e7i 1.06015i −0.847952 0.530073i \(-0.822164\pi\)
0.847952 0.530073i \(-0.177836\pi\)
\(72\) 0 0
\(73\) −1.96776e7 −0.692918 −0.346459 0.938065i \(-0.612616\pi\)
−0.346459 + 0.938065i \(0.612616\pi\)
\(74\) −1.17909e7 + 1.74239e7i −0.393207 + 0.581056i
\(75\) 0 0
\(76\) −1.47739e7 + 5.91716e6i −0.442835 + 0.177361i
\(77\) −1.10445e7 −0.314182
\(78\) 0 0
\(79\) 1.49155e7i 0.382940i −0.981498 0.191470i \(-0.938675\pi\)
0.981498 0.191470i \(-0.0613255\pi\)
\(80\) 1.32535e7 1.26448e7i 0.323571 0.308710i
\(81\) 0 0
\(82\) 5.98551e6 8.84501e6i 0.132387 0.195633i
\(83\) 7.32854e7i 1.54420i −0.635498 0.772102i \(-0.719205\pi\)
0.635498 0.772102i \(-0.280795\pi\)
\(84\) 0 0
\(85\) −3.14458e7 −0.602402
\(86\) 3.92318e7 + 2.65485e7i 0.717206 + 0.485341i
\(87\) 0 0
\(88\) 2.82498e6 1.30003e7i 0.0471068 0.216782i
\(89\) 4.30098e7 0.685501 0.342750 0.939427i \(-0.388642\pi\)
0.342750 + 0.939427i \(0.388642\pi\)
\(90\) 0 0
\(91\) 3.40410e7i 0.496405i
\(92\) 5.94712e7 2.38190e7i 0.830148 0.332486i
\(93\) 0 0
\(94\) 4.08535e7 + 2.76460e7i 0.523261 + 0.354096i
\(95\) 1.73763e7i 0.213335i
\(96\) 0 0
\(97\) 1.35970e8 1.53587 0.767937 0.640525i \(-0.221283\pi\)
0.767937 + 0.640525i \(0.221283\pi\)
\(98\) 5.19917e7 7.68301e7i 0.563676 0.832966i
\(99\) 0 0
\(100\) −7.43604e6 1.85662e7i −0.0743604 0.185662i
\(101\) 5.95062e7 0.571843 0.285922 0.958253i \(-0.407700\pi\)
0.285922 + 0.958253i \(0.407700\pi\)
\(102\) 0 0
\(103\) 1.08021e8i 0.959755i −0.877335 0.479878i \(-0.840681\pi\)
0.877335 0.479878i \(-0.159319\pi\)
\(104\) 4.00692e7 + 8.70708e6i 0.342513 + 0.0744284i
\(105\) 0 0
\(106\) −5.05337e7 + 7.46756e7i −0.400275 + 0.591501i
\(107\) 3.81332e7i 0.290917i −0.989364 0.145458i \(-0.953534\pi\)
0.989364 0.145458i \(-0.0464657\pi\)
\(108\) 0 0
\(109\) 5.90318e7 0.418196 0.209098 0.977895i \(-0.432947\pi\)
0.209098 + 0.977895i \(0.432947\pi\)
\(110\) −1.20298e7 8.14068e6i −0.0821651 0.0556019i
\(111\) 0 0
\(112\) 1.53832e8 + 1.61238e8i 0.977632 + 1.02469i
\(113\) 1.37301e8 0.842094 0.421047 0.907039i \(-0.361663\pi\)
0.421047 + 0.907039i \(0.361663\pi\)
\(114\) 0 0
\(115\) 6.99468e7i 0.399923i
\(116\) −4.00379e7 9.99664e7i −0.221126 0.552105i
\(117\) 0 0
\(118\) −4.70214e7 3.18199e7i −0.242531 0.164123i
\(119\) 3.82560e8i 1.90771i
\(120\) 0 0
\(121\) 2.03810e8 0.950787
\(122\) 2.29249e8 3.38770e8i 1.03483 1.52921i
\(123\) 0 0
\(124\) 3.83592e7 1.53634e7i 0.162249 0.0649831i
\(125\) −2.18366e7 −0.0894427
\(126\) 0 0
\(127\) 2.56554e8i 0.986197i −0.869974 0.493098i \(-0.835864\pi\)
0.869974 0.493098i \(-0.164136\pi\)
\(128\) −2.29139e8 + 1.39832e8i −0.853608 + 0.520916i
\(129\) 0 0
\(130\) 2.50910e7 3.70779e7i 0.0878506 0.129820i
\(131\) 3.65845e8i 1.24226i −0.783708 0.621129i \(-0.786674\pi\)
0.783708 0.621129i \(-0.213326\pi\)
\(132\) 0 0
\(133\) −2.11395e8 −0.675597
\(134\) −4.34906e8 2.94305e8i −1.34889 0.912807i
\(135\) 0 0
\(136\) 4.50306e8 + 9.78520e7i 1.31629 + 0.286032i
\(137\) −6.25242e8 −1.77487 −0.887433 0.460936i \(-0.847514\pi\)
−0.887433 + 0.460936i \(0.847514\pi\)
\(138\) 0 0
\(139\) 6.77999e7i 0.181623i 0.995868 + 0.0908113i \(0.0289460\pi\)
−0.995868 + 0.0908113i \(0.971054\pi\)
\(140\) 2.25871e8 9.04646e7i 0.587962 0.235487i
\(141\) 0 0
\(142\) 3.56985e8 + 2.41575e8i 0.878004 + 0.594154i
\(143\) 3.25149e7i 0.0777567i
\(144\) 0 0
\(145\) −1.17575e8 −0.265976
\(146\) 1.76452e8 2.60750e8i 0.388343 0.573868i
\(147\) 0 0
\(148\) −1.25154e8 3.12485e8i −0.260855 0.651301i
\(149\) 7.15051e8 1.45075 0.725374 0.688355i \(-0.241667\pi\)
0.725374 + 0.688355i \(0.241667\pi\)
\(150\) 0 0
\(151\) 3.45928e8i 0.665392i 0.943034 + 0.332696i \(0.107958\pi\)
−0.943034 + 0.332696i \(0.892042\pi\)
\(152\) 5.40710e7 2.48830e8i 0.101295 0.466153i
\(153\) 0 0
\(154\) 9.90371e7 1.46351e8i 0.176082 0.260203i
\(155\) 4.51160e7i 0.0781635i
\(156\) 0 0
\(157\) −1.15504e9 −1.90107 −0.950535 0.310618i \(-0.899464\pi\)
−0.950535 + 0.310618i \(0.899464\pi\)
\(158\) 1.97647e8 + 1.33750e8i 0.317148 + 0.214617i
\(159\) 0 0
\(160\) 4.87109e7 + 2.89010e8i 0.0743270 + 0.440994i
\(161\) 8.50952e8 1.26649
\(162\) 0 0
\(163\) 1.13292e9i 1.60490i −0.596719 0.802451i \(-0.703529\pi\)
0.596719 0.802451i \(-0.296471\pi\)
\(164\) 6.35330e7 + 1.58629e8i 0.0878261 + 0.219284i
\(165\) 0 0
\(166\) 9.71109e8 + 6.57159e8i 1.27890 + 0.865443i
\(167\) 1.06381e9i 1.36772i 0.729613 + 0.683860i \(0.239700\pi\)
−0.729613 + 0.683860i \(0.760300\pi\)
\(168\) 0 0
\(169\) −7.15514e8 −0.877145
\(170\) 2.81978e8 4.16690e8i 0.337613 0.498904i
\(171\) 0 0
\(172\) −7.03592e8 + 2.81798e8i −0.803910 + 0.321977i
\(173\) 2.72699e8 0.304438 0.152219 0.988347i \(-0.451358\pi\)
0.152219 + 0.988347i \(0.451358\pi\)
\(174\) 0 0
\(175\) 2.65658e8i 0.283250i
\(176\) 1.46936e8 + 1.54009e8i 0.153136 + 0.160508i
\(177\) 0 0
\(178\) −3.85675e8 + 5.69926e8i −0.384186 + 0.567726i
\(179\) 7.70098e8i 0.750125i −0.927000 0.375063i \(-0.877621\pi\)
0.927000 0.375063i \(-0.122379\pi\)
\(180\) 0 0
\(181\) 2.38505e8 0.222220 0.111110 0.993808i \(-0.464559\pi\)
0.111110 + 0.993808i \(0.464559\pi\)
\(182\) 4.51079e8 + 3.05250e8i 0.411119 + 0.278208i
\(183\) 0 0
\(184\) −2.17658e8 + 1.00164e9i −0.189891 + 0.873861i
\(185\) −3.67527e8 −0.313764
\(186\) 0 0
\(187\) 3.65409e8i 0.298822i
\(188\) −7.32678e8 + 2.93448e8i −0.586518 + 0.234909i
\(189\) 0 0
\(190\) −2.30254e8 1.55815e8i −0.176682 0.119563i
\(191\) 1.23415e9i 0.927333i 0.886010 + 0.463667i \(0.153466\pi\)
−0.886010 + 0.463667i \(0.846534\pi\)
\(192\) 0 0
\(193\) −2.27280e9 −1.63806 −0.819032 0.573747i \(-0.805489\pi\)
−0.819032 + 0.573747i \(0.805489\pi\)
\(194\) −1.21926e9 + 1.80174e9i −0.860774 + 1.27200i
\(195\) 0 0
\(196\) 5.51864e8 + 1.37789e9i 0.373945 + 0.933664i
\(197\) −2.68424e9 −1.78220 −0.891102 0.453804i \(-0.850067\pi\)
−0.891102 + 0.453804i \(0.850067\pi\)
\(198\) 0 0
\(199\) 2.82249e9i 1.79978i −0.436117 0.899890i \(-0.643647\pi\)
0.436117 0.899890i \(-0.356353\pi\)
\(200\) 3.12702e8 + 6.79505e7i 0.195439 + 0.0424690i
\(201\) 0 0
\(202\) −5.33600e8 + 7.88521e8i −0.320487 + 0.473596i
\(203\) 1.43038e9i 0.842302i
\(204\) 0 0
\(205\) 1.86570e8 0.105640
\(206\) 1.43140e9 + 9.68641e8i 0.794861 + 0.537890i
\(207\) 0 0
\(208\) −4.74684e8 + 4.52882e8i −0.253601 + 0.241954i
\(209\) −2.01918e8 −0.105825
\(210\) 0 0
\(211\) 2.17654e9i 1.09809i −0.835794 0.549043i \(-0.814992\pi\)
0.835794 0.549043i \(-0.185008\pi\)
\(212\) −5.36389e8 1.33925e9i −0.265544 0.663008i
\(213\) 0 0
\(214\) 5.05306e8 + 3.41946e8i 0.240935 + 0.163043i
\(215\) 8.27527e8i 0.387283i
\(216\) 0 0
\(217\) 5.48868e8 0.247531
\(218\) −5.29346e8 + 7.82234e8i −0.234376 + 0.346346i
\(219\) 0 0
\(220\) 2.15745e8 8.64090e7i 0.0920981 0.0368866i
\(221\) 1.12626e9 0.472137
\(222\) 0 0
\(223\) 1.82816e9i 0.739256i −0.929180 0.369628i \(-0.879485\pi\)
0.929180 0.369628i \(-0.120515\pi\)
\(224\) −3.51601e9 + 5.92602e8i −1.39655 + 0.235381i
\(225\) 0 0
\(226\) −1.23120e9 + 1.81939e9i −0.471948 + 0.697415i
\(227\) 1.90754e9i 0.718406i 0.933259 + 0.359203i \(0.116951\pi\)
−0.933259 + 0.359203i \(0.883049\pi\)
\(228\) 0 0
\(229\) −1.75323e9 −0.637526 −0.318763 0.947834i \(-0.603267\pi\)
−0.318763 + 0.947834i \(0.603267\pi\)
\(230\) 9.26869e8 + 6.27222e8i 0.331213 + 0.224135i
\(231\) 0 0
\(232\) 1.68369e9 + 3.65866e8i 0.581178 + 0.126290i
\(233\) −1.21612e9 −0.412621 −0.206310 0.978487i \(-0.566146\pi\)
−0.206310 + 0.978487i \(0.566146\pi\)
\(234\) 0 0
\(235\) 8.61735e8i 0.282555i
\(236\) 8.43295e8 3.37751e8i 0.271851 0.108880i
\(237\) 0 0
\(238\) 5.06932e9 + 3.43046e9i 1.57995 + 1.06917i
\(239\) 4.76046e9i 1.45901i 0.683977 + 0.729504i \(0.260249\pi\)
−0.683977 + 0.729504i \(0.739751\pi\)
\(240\) 0 0
\(241\) −4.34950e9 −1.28935 −0.644676 0.764456i \(-0.723008\pi\)
−0.644676 + 0.764456i \(0.723008\pi\)
\(242\) −1.82759e9 + 2.70069e9i −0.532864 + 0.787433i
\(243\) 0 0
\(244\) 2.43336e9 + 6.07559e9i 0.686510 + 1.71407i
\(245\) 1.62060e9 0.449792
\(246\) 0 0
\(247\) 6.22346e8i 0.167203i
\(248\) −1.40391e8 + 6.46066e8i −0.0371135 + 0.170793i
\(249\) 0 0
\(250\) 1.95812e8 2.89358e8i 0.0501278 0.0740757i
\(251\) 3.57234e9i 0.900032i −0.893020 0.450016i \(-0.851418\pi\)
0.893020 0.450016i \(-0.148582\pi\)
\(252\) 0 0
\(253\) 8.12803e8 0.198382
\(254\) 3.39961e9 + 2.30055e9i 0.816759 + 0.552709i
\(255\) 0 0
\(256\) 2.01786e8 4.29022e9i 0.0469820 0.998896i
\(257\) −5.45646e9 −1.25077 −0.625387 0.780315i \(-0.715059\pi\)
−0.625387 + 0.780315i \(0.715059\pi\)
\(258\) 0 0
\(259\) 4.47123e9i 0.993637i
\(260\) 2.66328e8 + 6.64965e8i 0.0582805 + 0.145514i
\(261\) 0 0
\(262\) 4.84784e9 + 3.28058e9i 1.02883 + 0.696218i
\(263\) 7.23083e9i 1.51135i 0.654946 + 0.755675i \(0.272691\pi\)
−0.654946 + 0.755675i \(0.727309\pi\)
\(264\) 0 0
\(265\) −1.57515e9 −0.319404
\(266\) 1.89560e9 2.80120e9i 0.378635 0.559523i
\(267\) 0 0
\(268\) 7.79972e9 3.12389e9i 1.51196 0.605560i
\(269\) −5.99517e9 −1.14496 −0.572482 0.819917i \(-0.694019\pi\)
−0.572482 + 0.819917i \(0.694019\pi\)
\(270\) 0 0
\(271\) 8.02363e9i 1.48763i −0.668387 0.743813i \(-0.733015\pi\)
0.668387 0.743813i \(-0.266985\pi\)
\(272\) −5.33460e9 + 5.08959e9i −0.974599 + 0.929837i
\(273\) 0 0
\(274\) 5.60662e9 8.28512e9i 0.994716 1.46993i
\(275\) 2.53748e8i 0.0443682i
\(276\) 0 0
\(277\) −2.75538e9 −0.468018 −0.234009 0.972234i \(-0.575185\pi\)
−0.234009 + 0.972234i \(0.575185\pi\)
\(278\) −8.98420e8 6.07970e8i −0.150418 0.101790i
\(279\) 0 0
\(280\) −8.26665e8 + 3.80424e9i −0.134492 + 0.618922i
\(281\) 1.12388e10 1.80258 0.901291 0.433215i \(-0.142621\pi\)
0.901291 + 0.433215i \(0.142621\pi\)
\(282\) 0 0
\(283\) 1.19605e9i 0.186467i −0.995644 0.0932337i \(-0.970280\pi\)
0.995644 0.0932337i \(-0.0297204\pi\)
\(284\) −6.40226e9 + 2.56419e9i −0.984147 + 0.394164i
\(285\) 0 0
\(286\) 4.30857e8 + 2.91565e8i 0.0643975 + 0.0435784i
\(287\) 2.26976e9i 0.334543i
\(288\) 0 0
\(289\) 5.68134e9 0.814441
\(290\) 1.05431e9 1.55799e9i 0.149065 0.220279i
\(291\) 0 0
\(292\) 1.87294e9 + 4.67635e9i 0.257628 + 0.643244i
\(293\) −8.81945e8 −0.119666 −0.0598330 0.998208i \(-0.519057\pi\)
−0.0598330 + 0.998208i \(0.519057\pi\)
\(294\) 0 0
\(295\) 9.91837e8i 0.130964i
\(296\) 5.26303e9 + 1.14366e9i 0.685597 + 0.148981i
\(297\) 0 0
\(298\) −6.41195e9 + 9.47518e9i −0.813065 + 1.20150i
\(299\) 2.50520e9i 0.313442i
\(300\) 0 0
\(301\) −1.00674e10 −1.22646
\(302\) −4.58391e9 3.10198e9i −0.551072 0.372916i
\(303\) 0 0
\(304\) 2.81240e9 + 2.94779e9i 0.329293 + 0.345145i
\(305\) 7.14578e9 0.825754
\(306\) 0 0
\(307\) 4.49843e9i 0.506416i −0.967412 0.253208i \(-0.918514\pi\)
0.967412 0.253208i \(-0.0814857\pi\)
\(308\) 1.05123e9 + 2.62469e9i 0.116814 + 0.291659i
\(309\) 0 0
\(310\) 5.97835e8 + 4.04561e8i 0.0647343 + 0.0438064i
\(311\) 5.01658e9i 0.536249i 0.963384 + 0.268125i \(0.0864039\pi\)
−0.963384 + 0.268125i \(0.913596\pi\)
\(312\) 0 0
\(313\) 1.33944e10 1.39555 0.697776 0.716316i \(-0.254173\pi\)
0.697776 + 0.716316i \(0.254173\pi\)
\(314\) 1.03574e10 1.53055e10i 1.06545 1.57445i
\(315\) 0 0
\(316\) −3.54465e9 + 1.41968e9i −0.355488 + 0.142378i
\(317\) 5.15443e9 0.510439 0.255219 0.966883i \(-0.417852\pi\)
0.255219 + 0.966883i \(0.417852\pi\)
\(318\) 0 0
\(319\) 1.36626e9i 0.131938i
\(320\) −4.26648e9 1.94612e9i −0.406883 0.185596i
\(321\) 0 0
\(322\) −7.63059e9 + 1.12760e10i −0.709798 + 1.04890i
\(323\) 6.99405e9i 0.642568i
\(324\) 0 0
\(325\) 7.82096e8 0.0701014
\(326\) 1.50124e10 + 1.01590e10i 1.32917 + 0.899459i
\(327\) 0 0
\(328\) −2.67171e9 5.80564e8i −0.230831 0.0501597i
\(329\) −1.04836e10 −0.894803
\(330\) 0 0
\(331\) 5.31095e9i 0.442446i −0.975223 0.221223i \(-0.928995\pi\)
0.975223 0.221223i \(-0.0710048\pi\)
\(332\) −1.74161e10 + 6.97540e9i −1.43350 + 0.574138i
\(333\) 0 0
\(334\) −1.40966e10 9.53929e9i −1.13273 0.766532i
\(335\) 9.17360e9i 0.728384i
\(336\) 0 0
\(337\) −1.60185e10 −1.24195 −0.620973 0.783832i \(-0.713262\pi\)
−0.620973 + 0.783832i \(0.713262\pi\)
\(338\) 6.41611e9 9.48132e9i 0.491592 0.726444i
\(339\) 0 0
\(340\) 2.99305e9 + 7.47302e9i 0.223974 + 0.559217i
\(341\) 5.24262e8 0.0387731
\(342\) 0 0
\(343\) 1.13005e8i 0.00816433i
\(344\) 2.57507e9 1.18503e10i 0.183889 0.846242i
\(345\) 0 0
\(346\) −2.44533e9 + 3.61355e9i −0.170621 + 0.252133i
\(347\) 2.52648e10i 1.74260i −0.490751 0.871300i \(-0.663278\pi\)
0.490751 0.871300i \(-0.336722\pi\)
\(348\) 0 0
\(349\) −1.17048e10 −0.788970 −0.394485 0.918902i \(-0.629077\pi\)
−0.394485 + 0.918902i \(0.629077\pi\)
\(350\) 3.52024e9 + 2.38219e9i 0.234585 + 0.158746i
\(351\) 0 0
\(352\) −3.35838e9 + 5.66035e8i −0.218756 + 0.0368700i
\(353\) −1.38652e10 −0.892947 −0.446474 0.894797i \(-0.647320\pi\)
−0.446474 + 0.894797i \(0.647320\pi\)
\(354\) 0 0
\(355\) 7.52999e9i 0.474112i
\(356\) −4.09373e9 1.02212e10i −0.254870 0.636358i
\(357\) 0 0
\(358\) 1.02046e10 + 6.90556e9i 0.621247 + 0.420404i
\(359\) 1.15769e10i 0.696970i −0.937314 0.348485i \(-0.886696\pi\)
0.937314 0.348485i \(-0.113304\pi\)
\(360\) 0 0
\(361\) 1.31188e10 0.772441
\(362\) −2.13870e9 + 3.16044e9i −0.124542 + 0.184040i
\(363\) 0 0
\(364\) −8.08977e9 + 3.24006e9i −0.460819 + 0.184564i
\(365\) 5.50007e9 0.309882
\(366\) 0 0
\(367\) 1.61343e10i 0.889374i 0.895686 + 0.444687i \(0.146685\pi\)
−0.895686 + 0.444687i \(0.853315\pi\)
\(368\) −1.13211e10 1.18661e10i −0.617301 0.647017i
\(369\) 0 0
\(370\) 3.29566e9 4.87013e9i 0.175847 0.259856i
\(371\) 1.91629e10i 1.01150i
\(372\) 0 0
\(373\) −2.16378e10 −1.11783 −0.558917 0.829223i \(-0.688783\pi\)
−0.558917 + 0.829223i \(0.688783\pi\)
\(374\) 4.84206e9 + 3.27667e9i 0.247482 + 0.167474i
\(375\) 0 0
\(376\) 2.68152e9 1.23401e10i 0.134162 0.617403i
\(377\) 4.21104e9 0.208461
\(378\) 0 0
\(379\) 1.87414e10i 0.908333i −0.890917 0.454167i \(-0.849937\pi\)
0.890917 0.454167i \(-0.150063\pi\)
\(380\) 4.12944e9 1.65390e9i 0.198042 0.0793184i
\(381\) 0 0
\(382\) −1.63539e10 1.10668e10i −0.768010 0.519720i
\(383\) 1.99044e9i 0.0925028i 0.998930 + 0.0462514i \(0.0147275\pi\)
−0.998930 + 0.0462514i \(0.985272\pi\)
\(384\) 0 0
\(385\) 3.08702e9 0.140507
\(386\) 2.03804e10 3.01170e10i 0.918046 1.35663i
\(387\) 0 0
\(388\) −1.29418e10 3.23129e10i −0.571041 1.42577i
\(389\) −3.00115e9 −0.131066 −0.0655329 0.997850i \(-0.520875\pi\)
−0.0655329 + 0.997850i \(0.520875\pi\)
\(390\) 0 0
\(391\) 2.81540e10i 1.20457i
\(392\) −2.32071e10 5.04293e9i −0.982828 0.213569i
\(393\) 0 0
\(394\) 2.40700e10 3.55691e10i 0.998828 1.47601i
\(395\) 4.16902e9i 0.171256i
\(396\) 0 0
\(397\) −1.03885e10 −0.418205 −0.209102 0.977894i \(-0.567054\pi\)
−0.209102 + 0.977894i \(0.567054\pi\)
\(398\) 3.74009e10 + 2.53096e10i 1.49056 + 1.00868i
\(399\) 0 0
\(400\) −3.70446e9 + 3.53432e9i −0.144705 + 0.138059i
\(401\) 3.29629e10 1.27482 0.637408 0.770526i \(-0.280007\pi\)
0.637408 + 0.770526i \(0.280007\pi\)
\(402\) 0 0
\(403\) 1.61587e9i 0.0612612i
\(404\) −5.66388e9 1.41415e10i −0.212612 0.530849i
\(405\) 0 0
\(406\) 1.89541e10 + 1.28264e10i 0.697587 + 0.472064i
\(407\) 4.27078e9i 0.155643i
\(408\) 0 0
\(409\) 7.57826e9 0.270817 0.135409 0.990790i \(-0.456765\pi\)
0.135409 + 0.990790i \(0.456765\pi\)
\(410\) −1.67300e9 + 2.47226e9i −0.0592053 + 0.0874899i
\(411\) 0 0
\(412\) −2.56710e10 + 1.02816e10i −0.890952 + 0.356839i
\(413\) 1.20664e10 0.414741
\(414\) 0 0
\(415\) 2.04839e10i 0.690589i
\(416\) −1.74462e9 1.03511e10i −0.0582543 0.345632i
\(417\) 0 0
\(418\) 1.81062e9 2.67562e9i 0.0593092 0.0876435i
\(419\) 3.55051e10i 1.15195i 0.817466 + 0.575976i \(0.195378\pi\)
−0.817466 + 0.575976i \(0.804622\pi\)
\(420\) 0 0
\(421\) 4.49522e10 1.43095 0.715473 0.698641i \(-0.246211\pi\)
0.715473 + 0.698641i \(0.246211\pi\)
\(422\) 2.88415e10 + 1.95173e10i 0.909426 + 0.615418i
\(423\) 0 0
\(424\) 2.25564e10 + 4.90152e9i 0.697920 + 0.151659i
\(425\) 8.78936e9 0.269402
\(426\) 0 0
\(427\) 8.69335e10i 2.61502i
\(428\) −9.06228e9 + 3.62957e9i −0.270061 + 0.108163i
\(429\) 0 0
\(430\) −1.09656e10 7.42054e9i −0.320744 0.217051i
\(431\) 1.83961e10i 0.533109i −0.963820 0.266554i \(-0.914115\pi\)
0.963820 0.266554i \(-0.0858852\pi\)
\(432\) 0 0
\(433\) 2.23500e10 0.635809 0.317904 0.948123i \(-0.397021\pi\)
0.317904 + 0.948123i \(0.397021\pi\)
\(434\) −4.92177e9 + 7.27308e9i −0.138727 + 0.205003i
\(435\) 0 0
\(436\) −5.61872e9 1.40288e10i −0.155486 0.388217i
\(437\) 1.55573e10 0.426588
\(438\) 0 0
\(439\) 2.10747e10i 0.567417i −0.958911 0.283709i \(-0.908435\pi\)
0.958911 0.283709i \(-0.0915648\pi\)
\(440\) −7.89605e8 + 3.63369e9i −0.0210668 + 0.0969477i
\(441\) 0 0
\(442\) −1.00993e10 + 1.49241e10i −0.264607 + 0.391020i
\(443\) 4.03550e10i 1.04781i −0.851776 0.523905i \(-0.824475\pi\)
0.851776 0.523905i \(-0.175525\pi\)
\(444\) 0 0
\(445\) −1.20216e10 −0.306565
\(446\) 2.42251e10 + 1.63933e10i 0.612245 + 0.414312i
\(447\) 0 0
\(448\) 2.36759e10 5.19047e10i 0.587751 1.28853i
\(449\) 3.54510e9 0.0872255 0.0436127 0.999049i \(-0.486113\pi\)
0.0436127 + 0.999049i \(0.486113\pi\)
\(450\) 0 0
\(451\) 2.16800e9i 0.0524027i
\(452\) −1.30685e10 3.26293e10i −0.313092 0.781726i
\(453\) 0 0
\(454\) −2.52769e10 1.71051e10i −0.594977 0.402627i
\(455\) 9.51474e9i 0.221999i
\(456\) 0 0
\(457\) 6.52065e10 1.49495 0.747474 0.664291i \(-0.231266\pi\)
0.747474 + 0.664291i \(0.231266\pi\)
\(458\) 1.57215e10 2.32322e10i 0.357299 0.527994i
\(459\) 0 0
\(460\) −1.66227e10 + 6.65762e9i −0.371253 + 0.148692i
\(461\) −5.21597e10 −1.15487 −0.577433 0.816438i \(-0.695945\pi\)
−0.577433 + 0.816438i \(0.695945\pi\)
\(462\) 0 0
\(463\) 5.93407e10i 1.29130i −0.763632 0.645652i \(-0.776586\pi\)
0.763632 0.645652i \(-0.223414\pi\)
\(464\) −1.99459e10 + 1.90299e10i −0.430311 + 0.410548i
\(465\) 0 0
\(466\) 1.09051e10 1.61148e10i 0.231251 0.341729i
\(467\) 4.59693e10i 0.966497i 0.875483 + 0.483248i \(0.160543\pi\)
−0.875483 + 0.483248i \(0.839457\pi\)
\(468\) 0 0
\(469\) 1.11603e11 2.30667
\(470\) −1.14189e10 7.72729e9i −0.234009 0.158356i
\(471\) 0 0
\(472\) −3.08637e9 + 1.42032e10i −0.0621842 + 0.286166i
\(473\) −9.61611e9 −0.192112
\(474\) 0 0
\(475\) 4.85682e9i 0.0954064i
\(476\) −9.09145e10 + 3.64125e10i −1.77095 + 0.709289i
\(477\) 0 0
\(478\) −6.30812e10 4.26877e10i −1.20834 0.817694i
\(479\) 6.32809e8i 0.0120207i −0.999982 0.00601036i \(-0.998087\pi\)
0.999982 0.00601036i \(-0.00191317\pi\)
\(480\) 0 0
\(481\) 1.31633e10 0.245914
\(482\) 3.90026e10 5.76356e10i 0.722612 1.06783i
\(483\) 0 0
\(484\) −1.93989e10 4.84349e10i −0.353504 0.882627i
\(485\) −3.80047e10 −0.686864
\(486\) 0 0
\(487\) 9.69788e10i 1.72409i 0.506828 + 0.862047i \(0.330818\pi\)
−0.506828 + 0.862047i \(0.669182\pi\)
\(488\) −1.02328e11 2.22360e10i −1.80433 0.392083i
\(489\) 0 0
\(490\) −1.45321e10 + 2.14747e10i −0.252084 + 0.372514i
\(491\) 6.96030e10i 1.19757i 0.800909 + 0.598787i \(0.204350\pi\)
−0.800909 + 0.598787i \(0.795650\pi\)
\(492\) 0 0
\(493\) 4.73246e10 0.801123
\(494\) 8.24674e9 + 5.58065e9i 0.138476 + 0.0937081i
\(495\) 0 0
\(496\) −7.30216e9 7.65368e9i −0.120649 0.126457i
\(497\) −9.16076e10 −1.50143
\(498\) 0 0
\(499\) 3.12582e9i 0.0504153i 0.999682 + 0.0252077i \(0.00802470\pi\)
−0.999682 + 0.0252077i \(0.991975\pi\)
\(500\) 2.07844e9 + 5.18942e9i 0.0332550 + 0.0830308i
\(501\) 0 0
\(502\) 4.73373e10 + 3.20336e10i 0.745399 + 0.504419i
\(503\) 1.46398e10i 0.228699i −0.993441 0.114349i \(-0.963522\pi\)
0.993441 0.114349i \(-0.0364783\pi\)
\(504\) 0 0
\(505\) −1.66325e10 −0.255736
\(506\) −7.28850e9 + 1.07705e10i −0.111182 + 0.164299i
\(507\) 0 0
\(508\) −6.09695e10 + 2.44191e10i −0.915498 + 0.366670i
\(509\) 1.11039e11 1.65427 0.827133 0.562006i \(-0.189970\pi\)
0.827133 + 0.562006i \(0.189970\pi\)
\(510\) 0 0
\(511\) 6.69122e10i 0.981345i
\(512\) 5.50406e10 + 4.11449e10i 0.800946 + 0.598737i
\(513\) 0 0
\(514\) 4.89288e10 7.23039e10i 0.700990 1.03588i
\(515\) 3.01929e10i 0.429216i
\(516\) 0 0
\(517\) −1.00136e10 −0.140162
\(518\) 5.92485e10 + 4.00941e10i 0.822921 + 0.556879i
\(519\) 0 0
\(520\) −1.11997e10 2.43370e9i −0.153177 0.0332854i
\(521\) −1.19216e10 −0.161802 −0.0809011 0.996722i \(-0.525780\pi\)
−0.0809011 + 0.996722i \(0.525780\pi\)
\(522\) 0 0
\(523\) 6.62945e10i 0.886075i 0.896503 + 0.443037i \(0.146099\pi\)
−0.896503 + 0.443037i \(0.853901\pi\)
\(524\) −8.69423e10 + 3.48216e10i −1.15320 + 0.461874i
\(525\) 0 0
\(526\) −9.58162e10 6.48398e10i −1.25169 0.847030i
\(527\) 1.81595e10i 0.235429i
\(528\) 0 0
\(529\) 1.56863e10 0.200308
\(530\) 1.41246e10 2.08725e10i 0.179008 0.264527i
\(531\) 0 0
\(532\) 2.01208e10 + 5.02375e10i 0.251188 + 0.627165i
\(533\) −6.68217e9 −0.0827959
\(534\) 0 0
\(535\) 1.06586e10i 0.130102i
\(536\) −2.85461e10 + 1.31367e11i −0.345850 + 1.59157i
\(537\) 0 0
\(538\) 5.37594e10 7.94423e10i 0.641690 0.948250i
\(539\) 1.88319e10i 0.223120i
\(540\) 0 0
\(541\) −9.57709e10 −1.11801 −0.559003 0.829165i \(-0.688816\pi\)
−0.559003 + 0.829165i \(0.688816\pi\)
\(542\) 1.06322e11 + 7.19490e10i 1.23204 + 0.833734i
\(543\) 0 0
\(544\) −1.96064e10 1.16328e11i −0.223874 1.32828i
\(545\) −1.64999e10 −0.187023
\(546\) 0 0
\(547\) 9.71054e10i 1.08466i 0.840165 + 0.542331i \(0.182458\pi\)
−0.840165 + 0.542331i \(0.817542\pi\)
\(548\) 5.95113e10 + 1.48587e11i 0.659899 + 1.64763i
\(549\) 0 0
\(550\) 3.36243e9 + 2.27539e9i 0.0367453 + 0.0248659i
\(551\) 2.61506e10i 0.283711i
\(552\) 0 0
\(553\) −5.07191e10 −0.542339
\(554\) 2.47079e10 3.65117e10i 0.262299 0.387609i
\(555\) 0 0
\(556\) 1.61125e10 6.45328e9i 0.168602 0.0675276i
\(557\) 3.57282e10 0.371185 0.185592 0.982627i \(-0.440580\pi\)
0.185592 + 0.982627i \(0.440580\pi\)
\(558\) 0 0
\(559\) 2.96386e10i 0.303536i
\(560\) −4.29974e10 4.50673e10i −0.437210 0.458258i
\(561\) 0 0
\(562\) −1.00780e11 + 1.48926e11i −1.01025 + 1.49288i
\(563\) 1.20784e11i 1.20219i 0.799176 + 0.601097i \(0.205270\pi\)
−0.799176 + 0.601097i \(0.794730\pi\)
\(564\) 0 0
\(565\) −3.83769e10 −0.376596
\(566\) 1.58489e10 + 1.07251e10i 0.154431 + 0.104505i
\(567\) 0 0
\(568\) 2.34316e10 1.07830e11i 0.225117 1.03597i
\(569\) 6.84831e10 0.653332 0.326666 0.945140i \(-0.394075\pi\)
0.326666 + 0.945140i \(0.394075\pi\)
\(570\) 0 0
\(571\) 1.76672e10i 0.166197i −0.996541 0.0830987i \(-0.973518\pi\)
0.996541 0.0830987i \(-0.0264817\pi\)
\(572\) −7.72709e9 + 3.09481e9i −0.0721825 + 0.0289101i
\(573\) 0 0
\(574\) −3.00767e10 2.03532e10i −0.277066 0.187493i
\(575\) 1.95507e10i 0.178851i
\(576\) 0 0
\(577\) −1.86231e11 −1.68016 −0.840078 0.542466i \(-0.817491\pi\)
−0.840078 + 0.542466i \(0.817491\pi\)
\(578\) −5.09453e10 + 7.52838e10i −0.456450 + 0.674513i
\(579\) 0 0
\(580\) 1.11909e10 + 2.79415e10i 0.0988905 + 0.246909i
\(581\) −2.49201e11 −2.18698
\(582\) 0 0
\(583\) 1.83038e10i 0.158441i
\(584\) −7.87615e10 1.71149e10i −0.677116 0.147138i
\(585\) 0 0
\(586\) 7.90851e9 1.16867e10i 0.0670663 0.0991064i
\(587\) 1.32669e11i 1.11742i 0.829362 + 0.558711i \(0.188704\pi\)
−0.829362 + 0.558711i \(0.811296\pi\)
\(588\) 0 0
\(589\) 1.00345e10 0.0833751
\(590\) 1.31429e10 + 8.89393e9i 0.108463 + 0.0733982i
\(591\) 0 0
\(592\) −6.23489e10 + 5.94853e10i −0.507624 + 0.484310i
\(593\) 7.14055e10 0.577448 0.288724 0.957412i \(-0.406769\pi\)
0.288724 + 0.957412i \(0.406769\pi\)
\(594\) 0 0
\(595\) 1.06929e11i 0.853152i
\(596\) −6.80594e10 1.69930e11i −0.539390 1.34675i
\(597\) 0 0
\(598\) −3.31966e10 2.24645e10i −0.259590 0.175667i
\(599\) 6.39499e10i 0.496744i −0.968665 0.248372i \(-0.920105\pi\)
0.968665 0.248372i \(-0.0798955\pi\)
\(600\) 0 0
\(601\) 1.55828e11 1.19439 0.597196 0.802095i \(-0.296282\pi\)
0.597196 + 0.802095i \(0.296282\pi\)
\(602\) 9.02761e10 1.33404e11i 0.687364 1.01574i
\(603\) 0 0
\(604\) 8.22090e10 3.29259e10i 0.617692 0.247394i
\(605\) −5.69665e10 −0.425205
\(606\) 0 0
\(607\) 1.36790e11i 1.00762i 0.863813 + 0.503812i \(0.168070\pi\)
−0.863813 + 0.503812i \(0.831930\pi\)
\(608\) −6.42805e10 + 1.08341e10i −0.470397 + 0.0792828i
\(609\) 0 0
\(610\) −6.40771e10 + 9.46892e10i −0.462790 + 0.683882i
\(611\) 3.08638e10i 0.221454i
\(612\) 0 0
\(613\) 6.10843e10 0.432601 0.216301 0.976327i \(-0.430601\pi\)
0.216301 + 0.976327i \(0.430601\pi\)
\(614\) 5.96089e10 + 4.03380e10i 0.419409 + 0.283818i
\(615\) 0 0
\(616\) −4.42064e10 9.60610e9i −0.307017 0.0667151i
\(617\) 4.69649e10 0.324066 0.162033 0.986785i \(-0.448195\pi\)
0.162033 + 0.986785i \(0.448195\pi\)
\(618\) 0 0
\(619\) 2.24452e11i 1.52884i −0.644721 0.764418i \(-0.723026\pi\)
0.644721 0.764418i \(-0.276974\pi\)
\(620\) −1.07217e10 + 4.29420e9i −0.0725601 + 0.0290613i
\(621\) 0 0
\(622\) −6.64751e10 4.49843e10i −0.444117 0.300538i
\(623\) 1.46251e11i 0.970840i
\(624\) 0 0
\(625\) 6.10352e9 0.0400000
\(626\) −1.20109e11 + 1.77490e11i −0.782130 + 1.15578i
\(627\) 0 0
\(628\) 1.09938e11 + 2.74493e11i 0.706821 + 1.76479i
\(629\) 1.47932e11 0.945059
\(630\) 0 0
\(631\) 1.29989e11i 0.819950i −0.912097 0.409975i \(-0.865537\pi\)
0.912097 0.409975i \(-0.134463\pi\)
\(632\) 1.29730e10 5.97008e10i 0.0813155 0.374207i
\(633\) 0 0
\(634\) −4.62204e10 + 6.83017e10i −0.286073 + 0.422741i
\(635\) 7.17090e10i 0.441041i
\(636\) 0 0
\(637\) −5.80431e10 −0.352527
\(638\) 1.81044e10 + 1.22514e10i 0.109270 + 0.0739440i
\(639\) 0 0
\(640\) 6.40462e10 3.90844e10i 0.381745 0.232961i
\(641\) −4.05626e10 −0.240267 −0.120133 0.992758i \(-0.538332\pi\)
−0.120133 + 0.992758i \(0.538332\pi\)
\(642\) 0 0
\(643\) 1.82815e11i 1.06947i −0.845020 0.534734i \(-0.820412\pi\)
0.845020 0.534734i \(-0.179588\pi\)
\(644\) −8.09947e10 2.02227e11i −0.470883 1.17570i
\(645\) 0 0
\(646\) 9.26786e10 + 6.27166e10i 0.532169 + 0.360124i
\(647\) 2.84680e11i 1.62458i −0.583257 0.812288i \(-0.698222\pi\)
0.583257 0.812288i \(-0.301778\pi\)
\(648\) 0 0
\(649\) 1.15254e10 0.0649649
\(650\) −7.01315e9 + 1.03636e10i −0.0392880 + 0.0580573i
\(651\) 0 0
\(652\) −2.69236e11 + 1.07833e11i −1.48985 + 0.596705i
\(653\) −1.87627e11 −1.03191 −0.515956 0.856615i \(-0.672563\pi\)
−0.515956 + 0.856615i \(0.672563\pi\)
\(654\) 0 0
\(655\) 1.02257e11i 0.555555i
\(656\) 3.16506e10 3.01970e10i 0.170910 0.163060i
\(657\) 0 0
\(658\) 9.40079e10 1.38919e11i 0.501488 0.741068i
\(659\) 1.58299e11i 0.839340i 0.907677 + 0.419670i \(0.137854\pi\)
−0.907677 + 0.419670i \(0.862146\pi\)
\(660\) 0 0
\(661\) 2.01282e10 0.105438 0.0527191 0.998609i \(-0.483211\pi\)
0.0527191 + 0.998609i \(0.483211\pi\)
\(662\) 7.03757e10 + 4.76239e10i 0.366430 + 0.247967i
\(663\) 0 0
\(664\) 6.37411e10 2.93331e11i 0.327905 1.50899i
\(665\) 5.90866e10 0.302136
\(666\) 0 0
\(667\) 1.05267e11i 0.531850i
\(668\) 2.52812e11 1.01255e11i 1.26967 0.508521i
\(669\) 0 0
\(670\) 1.21560e11 + 8.22608e10i 0.603242 + 0.408220i
\(671\) 8.30361e10i 0.409616i
\(672\) 0 0
\(673\) 2.47762e11 1.20775 0.603873 0.797081i \(-0.293624\pi\)
0.603873 + 0.797081i \(0.293624\pi\)
\(674\) 1.43640e11 2.12262e11i 0.696043 1.02857i
\(675\) 0 0
\(676\) 6.81035e10 + 1.70040e11i 0.326124 + 0.814264i
\(677\) 3.43092e11 1.63326 0.816631 0.577160i \(-0.195839\pi\)
0.816631 + 0.577160i \(0.195839\pi\)
\(678\) 0 0
\(679\) 4.62354e11i 2.17518i
\(680\) −1.25864e11 2.73505e10i −0.588664 0.127917i
\(681\) 0 0
\(682\) −4.70112e9 + 6.94702e9i −0.0217302 + 0.0321115i
\(683\) 4.32070e11i 1.98551i −0.120173 0.992753i \(-0.538345\pi\)
0.120173 0.992753i \(-0.461655\pi\)
\(684\) 0 0
\(685\) 1.74760e11 0.793744
\(686\) −1.49743e9 1.01333e9i −0.00676163 0.00457566i
\(687\) 0 0
\(688\) 1.33938e11 + 1.40385e11i 0.597790 + 0.626568i
\(689\) 5.64155e10 0.250335
\(690\) 0 0
\(691\) 3.00386e11i 1.31755i −0.752340 0.658775i \(-0.771075\pi\)
0.752340 0.658775i \(-0.228925\pi\)
\(692\) −2.59559e10 6.48064e10i −0.113191 0.282614i
\(693\) 0 0
\(694\) 3.34785e11 + 2.26552e11i 1.44321 + 0.976632i
\(695\) 1.89506e10i 0.0812241i
\(696\) 0 0
\(697\) −7.50957e10 −0.318188
\(698\) 1.04958e11 1.55100e11i 0.442175 0.653418i
\(699\) 0 0
\(700\) −6.31330e10 + 2.52856e10i −0.262944 + 0.105313i
\(701\) −2.08736e10 −0.0864419 −0.0432210 0.999066i \(-0.513762\pi\)
−0.0432210 + 0.999066i \(0.513762\pi\)
\(702\) 0 0
\(703\) 8.17441e10i 0.334684i
\(704\) 2.26144e10 4.95778e10i 0.0920651 0.201835i
\(705\) 0 0
\(706\) 1.24331e11 1.83728e11i 0.500448 0.739531i
\(707\) 2.02346e11i 0.809873i
\(708\) 0 0
\(709\) −1.84965e11 −0.731990 −0.365995 0.930617i \(-0.619271\pi\)
−0.365995 + 0.930617i \(0.619271\pi\)
\(710\) −9.97803e10 6.75224e10i −0.392655 0.265714i
\(711\) 0 0
\(712\) 1.72151e11 + 3.74085e10i 0.669868 + 0.145563i
\(713\) −4.03932e10 −0.156297
\(714\) 0 0
\(715\) 9.08819e9i 0.0347739i
\(716\) −1.83012e11 + 7.32989e10i −0.696350 + 0.278898i
\(717\) 0 0
\(718\) 1.53406e11 + 1.03811e11i 0.577225 + 0.390614i
\(719\) 5.08281e11i 1.90190i 0.309340 + 0.950952i \(0.399892\pi\)
−0.309340 + 0.950952i \(0.600108\pi\)
\(720\) 0 0
\(721\) −3.67317e11 −1.35925
\(722\) −1.17638e11 + 1.73838e11i −0.432911 + 0.639729i
\(723\) 0 0
\(724\) −2.27012e10 5.66801e10i −0.0826217 0.206289i
\(725\) 3.28632e10 0.118948
\(726\) 0 0
\(727\) 2.10234e10i 0.0752603i −0.999292 0.0376302i \(-0.988019\pi\)
0.999292 0.0376302i \(-0.0119809\pi\)
\(728\) 2.96077e10 1.36252e11i 0.105409 0.485085i
\(729\) 0 0
\(730\) −4.93198e10 + 7.28817e10i −0.173672 + 0.256642i
\(731\) 3.33084e11i 1.16650i
\(732\) 0 0
\(733\) −1.59159e11 −0.551333 −0.275667 0.961253i \(-0.588899\pi\)
−0.275667 + 0.961253i \(0.588899\pi\)
\(734\) −2.13796e11 1.44678e11i −0.736572 0.498446i
\(735\) 0 0
\(736\) 2.58756e11 4.36118e10i 0.881818 0.148625i
\(737\) 1.06600e11 0.361316
\(738\) 0 0
\(739\) 6.68063e9i 0.0223996i −0.999937 0.0111998i \(-0.996435\pi\)
0.999937 0.0111998i \(-0.00356508\pi\)
\(740\) 3.49817e10 + 8.73421e10i 0.116658 + 0.291271i
\(741\) 0 0
\(742\) 2.53928e11 + 1.71836e11i 0.837713 + 0.566889i
\(743\) 1.99197e11i 0.653623i −0.945090 0.326811i \(-0.894026\pi\)
0.945090 0.326811i \(-0.105974\pi\)
\(744\) 0 0
\(745\) −1.99863e11 −0.648794
\(746\) 1.94029e11 2.86724e11i 0.626485 0.925781i
\(747\) 0 0
\(748\) −8.68387e10 + 3.47801e10i −0.277400 + 0.111103i
\(749\) −1.29669e11 −0.412011
\(750\) 0 0
\(751\) 1.77629e11i 0.558410i 0.960231 + 0.279205i \(0.0900710\pi\)
−0.960231 + 0.279205i \(0.909929\pi\)
\(752\) 1.39474e11 + 1.46189e11i 0.436137 + 0.457133i
\(753\) 0 0
\(754\) −3.77610e10 + 5.58008e10i −0.116831 + 0.172645i
\(755\) 9.66898e10i 0.297572i
\(756\) 0 0
\(757\) −3.22894e11 −0.983278 −0.491639 0.870799i \(-0.663602\pi\)
−0.491639 + 0.870799i \(0.663602\pi\)
\(758\) 2.48343e11 + 1.68057e11i 0.752274 + 0.509071i
\(759\) 0 0
\(760\) −1.51133e10 + 6.95501e10i −0.0453007 + 0.208470i
\(761\) 1.07849e11 0.321572 0.160786 0.986989i \(-0.448597\pi\)
0.160786 + 0.986989i \(0.448597\pi\)
\(762\) 0 0
\(763\) 2.00733e11i 0.592270i
\(764\) 2.93294e11 1.17468e11i 0.860855 0.344784i
\(765\) 0 0
\(766\) −2.63755e10 1.78486e10i −0.0766100 0.0518427i
\(767\) 3.55235e10i 0.102644i
\(768\) 0 0
\(769\) 9.94734e9 0.0284447 0.0142224 0.999899i \(-0.495473\pi\)
0.0142224 + 0.999899i \(0.495473\pi\)
\(770\) −2.76817e10 + 4.09063e10i −0.0787463 + 0.116366i
\(771\) 0 0
\(772\) 2.16328e11 + 5.40125e11i 0.609036 + 1.52064i
\(773\) −1.84650e11 −0.517169 −0.258585 0.965989i \(-0.583256\pi\)
−0.258585 + 0.965989i \(0.583256\pi\)
\(774\) 0 0
\(775\) 1.26103e10i 0.0349558i
\(776\) 5.44231e11 + 1.18262e11i 1.50085 + 0.326135i
\(777\) 0 0
\(778\) 2.69117e10 3.97684e10i 0.0734552 0.108547i
\(779\) 4.14963e10i 0.112683i
\(780\) 0 0
\(781\) −8.75007e10 −0.235184
\(782\) −3.73070e11 2.52460e11i −0.997616 0.675097i
\(783\) 0 0
\(784\) 2.74926e11 2.62299e11i 0.727698 0.694276i
\(785\) 3.22843e11 0.850184
\(786\) 0 0
\(787\) 1.78058e11i 0.464154i 0.972697 + 0.232077i \(0.0745522\pi\)
−0.972697 + 0.232077i \(0.925448\pi\)
\(788\) 2.55490e11 + 6.37905e11i 0.662626 + 1.65444i
\(789\) 0 0
\(790\) −5.52440e10 3.73841e10i −0.141833 0.0959796i
\(791\) 4.66881e11i 1.19262i
\(792\) 0 0
\(793\) −2.55932e11 −0.647190
\(794\) 9.31546e10 1.37658e11i 0.234381 0.346354i
\(795\) 0 0
\(796\) −6.70758e11 + 2.68648e11i −1.67076 + 0.669161i
\(797\) −1.67735e10 −0.0415711 −0.0207855 0.999784i \(-0.506617\pi\)
−0.0207855 + 0.999784i \(0.506617\pi\)
\(798\) 0 0
\(799\) 3.46853e11i 0.851058i
\(800\) −1.36151e10 8.07807e10i −0.0332400 0.197218i
\(801\) 0 0
\(802\) −2.95582e11 + 4.36793e11i −0.714465 + 1.05579i
\(803\) 6.39124e10i 0.153717i
\(804\) 0 0
\(805\) −2.37848e11 −0.566391
\(806\) −2.14120e10 1.44897e10i −0.0507360 0.0343336i
\(807\) 0 0
\(808\) 2.38179e11 + 5.17565e10i 0.558802 + 0.121428i
\(809\) 1.32788e11 0.310003 0.155002 0.987914i \(-0.450462\pi\)
0.155002 + 0.987914i \(0.450462\pi\)
\(810\) 0 0
\(811\) 5.70355e11i 1.31845i −0.751948 0.659223i \(-0.770885\pi\)
0.751948 0.659223i \(-0.229115\pi\)
\(812\) −3.39927e11 + 1.36146e11i −0.781919 + 0.313170i
\(813\) 0 0
\(814\) 5.65923e10 + 3.82966e10i 0.128902 + 0.0872293i
\(815\) 3.16660e11i 0.717734i
\(816\) 0 0
\(817\) −1.84056e11 −0.413105
\(818\) −6.79552e10 + 1.00420e11i −0.151778 + 0.224288i
\(819\) 0 0
\(820\) −1.77580e10 4.43381e10i −0.0392770 0.0980666i
\(821\) −2.69201e11 −0.592522 −0.296261 0.955107i \(-0.595740\pi\)
−0.296261 + 0.955107i \(0.595740\pi\)
\(822\) 0 0
\(823\) 2.40740e11i 0.524745i −0.964967 0.262372i \(-0.915495\pi\)
0.964967 0.262372i \(-0.0845049\pi\)
\(824\) 9.39533e10 4.32365e11i 0.203799 0.937868i
\(825\) 0 0
\(826\) −1.08201e11 + 1.59893e11i −0.232440 + 0.343485i
\(827\) 6.45140e11i 1.37921i −0.724183 0.689607i \(-0.757783\pi\)
0.724183 0.689607i \(-0.242217\pi\)
\(828\) 0 0
\(829\) 7.67879e11 1.62583 0.812914 0.582383i \(-0.197880\pi\)
0.812914 + 0.582383i \(0.197880\pi\)
\(830\) −2.71433e11 1.83682e11i −0.571940 0.387038i
\(831\) 0 0
\(832\) 1.52808e11 + 6.97017e10i 0.318898 + 0.145462i
\(833\) −6.52301e11 −1.35478
\(834\) 0 0
\(835\) 2.97343e11i 0.611663i
\(836\) 1.92188e10 + 4.79853e10i 0.0393460 + 0.0982388i
\(837\) 0 0
\(838\) −4.70480e11 3.18379e11i −0.954037 0.645606i
\(839\) 8.20188e11i 1.65526i 0.561276 + 0.827629i \(0.310311\pi\)
−0.561276 + 0.827629i \(0.689689\pi\)
\(840\) 0 0
\(841\) −3.23301e11 −0.646283
\(842\) −4.03092e11 + 5.95665e11i −0.801967 + 1.18510i
\(843\) 0 0
\(844\) −5.17250e11 + 2.07166e11i −1.01937 + 0.408271i
\(845\) 1.99992e11 0.392271
\(846\) 0 0
\(847\) 6.93037e11i 1.34655i
\(848\) −2.67216e11 + 2.54943e11i −0.516749 + 0.493015i
\(849\) 0 0
\(850\) −7.88153e10 + 1.16468e11i −0.150985 + 0.223117i
\(851\) 3.29054e11i 0.627407i
\(852\) 0 0
\(853\) −3.26117e11 −0.615995 −0.307998 0.951387i \(-0.599659\pi\)
−0.307998 + 0.951387i \(0.599659\pi\)
\(854\) −1.15196e12 7.79543e11i −2.16574 1.46558i
\(855\) 0 0
\(856\) 3.31670e10 1.52632e11i 0.0617748 0.284282i
\(857\) −1.19858e11 −0.222199 −0.111099 0.993809i \(-0.535437\pi\)
−0.111099 + 0.993809i \(0.535437\pi\)
\(858\) 0 0
\(859\) 1.54336e11i 0.283461i 0.989905 + 0.141731i \(0.0452667\pi\)
−0.989905 + 0.141731i \(0.954733\pi\)
\(860\) 1.96660e11 7.87651e10i 0.359519 0.143992i
\(861\) 0 0
\(862\) 2.43767e11 + 1.64960e11i 0.441516 + 0.298778i
\(863\) 1.10902e10i 0.0199938i −0.999950 0.00999689i \(-0.996818\pi\)
0.999950 0.00999689i \(-0.00318216\pi\)
\(864\) 0 0
\(865\) −7.62218e10 −0.136149
\(866\) −2.00416e11 + 2.96162e11i −0.356336 + 0.526571i
\(867\) 0 0
\(868\) −5.22419e10 1.30437e11i −0.0920323 0.229786i
\(869\) −4.84453e10 −0.0849518
\(870\) 0 0
\(871\) 3.28560e11i 0.570876i
\(872\) 2.36280e11 + 5.13439e10i 0.408659 + 0.0888020i
\(873\) 0 0
\(874\) −1.39504e11 + 2.06151e11i −0.239079 + 0.353297i
\(875\) 7.42535e10i 0.126673i
\(876\) 0 0
\(877\) 5.82209e11 0.984193 0.492097 0.870541i \(-0.336231\pi\)
0.492097 + 0.870541i \(0.336231\pi\)
\(878\) 2.79262e11 + 1.88979e11i 0.469930 + 0.318006i
\(879\) 0 0
\(880\) −4.10698e10 4.30469e10i −0.0684845 0.0717813i
\(881\) 1.83965e11 0.305373 0.152686 0.988275i \(-0.451208\pi\)
0.152686 + 0.988275i \(0.451208\pi\)
\(882\) 0 0
\(883\) 9.18672e9i 0.0151118i −0.999971 0.00755592i \(-0.997595\pi\)
0.999971 0.00755592i \(-0.00240515\pi\)
\(884\) −1.07198e11 2.67652e11i −0.175541 0.438290i
\(885\) 0 0
\(886\) 5.34747e11 + 3.61869e11i 0.867788 + 0.587241i
\(887\) 6.69182e11i 1.08106i 0.841325 + 0.540530i \(0.181776\pi\)
−0.841325 + 0.540530i \(0.818224\pi\)
\(888\) 0 0
\(889\) −8.72390e11 −1.39670
\(890\) 1.07799e11 1.59299e11i 0.171813 0.253895i
\(891\) 0 0
\(892\) −4.34458e11 + 1.74007e11i −0.686260 + 0.274857i
\(893\) −1.91664e11 −0.301394
\(894\) 0 0
\(895\) 2.15249e11i 0.335466i
\(896\) 4.75489e11 + 7.79167e11i 0.737748 + 1.20892i
\(897\) 0 0
\(898\) −3.17894e10 + 4.69764e10i −0.0488851 + 0.0722394i
\(899\) 6.78978e10i 0.103948i
\(900\) 0 0
\(901\) 6.34009e11 0.962047
\(902\) −2.87283e10 1.94408e10i −0.0433995 0.0293689i
\(903\) 0 0
\(904\) 5.49560e11 + 1.19420e11i 0.822890 + 0.178815i
\(905\) −6.66641e10 −0.0993797
\(906\) 0 0
\(907\) 9.42968e11i 1.39337i 0.717375 + 0.696687i \(0.245343\pi\)
−0.717375 + 0.696687i \(0.754657\pi\)
\(908\) 4.53322e11 1.81562e11i 0.666905 0.267105i
\(909\) 0 0
\(910\) −1.26080e11 8.53199e10i −0.183858 0.124418i
\(911\) 5.62696e11i 0.816959i 0.912767 + 0.408480i \(0.133941\pi\)
−0.912767 + 0.408480i \(0.866059\pi\)
\(912\) 0 0
\(913\) −2.38029e11 −0.342568
\(914\) −5.84715e11 + 8.64056e11i −0.837837 + 1.23810i
\(915\) 0 0
\(916\) 1.66875e11 + 4.16653e11i 0.237033 + 0.591824i
\(917\) −1.24403e12 −1.75935
\(918\) 0 0
\(919\) 6.08421e11i 0.852986i 0.904491 + 0.426493i \(0.140251\pi\)
−0.904491 + 0.426493i \(0.859749\pi\)
\(920\) 6.08373e10 2.79968e11i 0.0849217 0.390803i
\(921\) 0 0
\(922\) 4.67723e11 6.91171e11i 0.647239 0.956450i
\(923\) 2.69693e11i 0.371589i
\(924\) 0 0
\(925\) 1.02727e11 0.140319
\(926\) 7.86327e11 + 5.32116e11i 1.06945 + 0.723706i
\(927\) 0 0
\(928\) −7.33080e10 4.34948e11i −0.0988461 0.586470i
\(929\) 1.00111e12 1.34407 0.672033 0.740521i \(-0.265421\pi\)
0.672033 + 0.740521i \(0.265421\pi\)
\(930\) 0 0
\(931\) 3.60448e11i 0.479782i
\(932\) 1.15751e11 + 2.89007e11i 0.153413 + 0.383041i
\(933\) 0 0
\(934\) −6.09142e11 4.12213e11i −0.800444 0.541669i
\(935\) 1.02135e11i 0.133637i
\(936\) 0 0
\(937\) 4.79132e11 0.621579 0.310790 0.950479i \(-0.399407\pi\)
0.310790 + 0.950479i \(0.399407\pi\)
\(938\) −1.00076e12 + 1.47886e12i −1.29276 + 1.91036i
\(939\) 0 0
\(940\) 2.04790e11 8.20211e10i 0.262299 0.105054i
\(941\) 8.64017e11 1.10195 0.550977 0.834520i \(-0.314255\pi\)
0.550977 + 0.834520i \(0.314255\pi\)
\(942\) 0 0
\(943\) 1.67040e11i 0.211239i
\(944\) −1.60532e11 1.68260e11i −0.202150 0.211881i
\(945\) 0 0
\(946\) 8.62289e10 1.27424e11i 0.107668 0.159106i
\(947\) 1.43328e12i 1.78209i 0.453913 + 0.891046i \(0.350028\pi\)
−0.453913 + 0.891046i \(0.649972\pi\)
\(948\) 0 0
\(949\) −1.96989e11 −0.242872
\(950\) 6.43580e10 + 4.35517e10i 0.0790148 + 0.0534701i
\(951\) 0 0
\(952\) 3.32737e11 1.53123e12i 0.405092 1.86420i
\(953\) 2.67647e10 0.0324483 0.0162241 0.999868i \(-0.494835\pi\)
0.0162241 + 0.999868i \(0.494835\pi\)
\(954\) 0 0
\(955\) 3.44957e11i 0.414716i
\(956\) 1.13131e12 4.53107e11i 1.35441 0.542462i
\(957\) 0 0
\(958\) 8.38539e9 + 5.67448e9i 0.00995546 + 0.00673696i
\(959\) 2.12608e12i 2.51365i
\(960\) 0 0
\(961\) 8.26837e11 0.969452
\(962\) −1.18037e11 + 1.74428e11i −0.137822 + 0.203664i
\(963\) 0 0
\(964\) 4.13991e11 + 1.03365e12i 0.479384 + 1.19692i
\(965\) 6.35266e11 0.732565
\(966\) 0 0
\(967\) 2.12221e11i 0.242707i −0.992609 0.121353i \(-0.961277\pi\)
0.992609 0.121353i \(-0.0387234\pi\)
\(968\) 8.15766e11 + 1.77267e11i 0.929104 + 0.201895i
\(969\) 0 0
\(970\) 3.40793e11 5.03603e11i 0.384950 0.568855i
\(971\) 1.21235e12i 1.36380i −0.731447 0.681898i \(-0.761155\pi\)
0.731447 0.681898i \(-0.238845\pi\)
\(972\) 0 0
\(973\) 2.30548e11 0.257223
\(974\) −1.28507e12 8.69621e11i −1.42788 0.966261i
\(975\) 0 0
\(976\) 1.21224e12 1.15657e12i 1.33595 1.27459i
\(977\) −7.92142e11 −0.869410 −0.434705 0.900573i \(-0.643147\pi\)
−0.434705 + 0.900573i \(0.643147\pi\)
\(978\) 0 0
\(979\) 1.39695e11i 0.152072i
\(980\) −1.54251e11 3.85132e11i −0.167233 0.417547i
\(981\) 0 0
\(982\) −9.22314e11 6.24139e11i −0.991820 0.671175i
\(983\) 1.50765e12i 1.61468i −0.590085 0.807341i \(-0.700906\pi\)
0.590085 0.807341i \(-0.299094\pi\)
\(984\) 0 0
\(985\) 7.50269e11 0.797026
\(986\) −4.24366e11 + 6.27101e11i −0.448986 + 0.663484i
\(987\) 0 0
\(988\) −1.47899e11 + 5.92357e10i −0.155217 + 0.0621664i
\(989\) 7.40900e11 0.774417
\(990\) 0 0
\(991\) 1.63098e12i 1.69104i 0.533942 + 0.845521i \(0.320710\pi\)
−0.533942 + 0.845521i \(0.679290\pi\)
\(992\) 1.66899e11 2.81298e10i 0.172348 0.0290483i
\(993\) 0 0
\(994\) 8.21457e11 1.21390e12i 0.841471 1.24347i
\(995\) 7.88909e11i 0.804886i
\(996\) 0 0
\(997\) −4.58651e11 −0.464197 −0.232098 0.972692i \(-0.574559\pi\)
−0.232098 + 0.972692i \(0.574559\pi\)
\(998\) −4.14205e10 2.80297e10i −0.0417535 0.0282550i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.9.c.b.91.12 yes 32
3.2 odd 2 inner 180.9.c.b.91.21 yes 32
4.3 odd 2 inner 180.9.c.b.91.11 32
12.11 even 2 inner 180.9.c.b.91.22 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.9.c.b.91.11 32 4.3 odd 2 inner
180.9.c.b.91.12 yes 32 1.1 even 1 trivial
180.9.c.b.91.21 yes 32 3.2 odd 2 inner
180.9.c.b.91.22 yes 32 12.11 even 2 inner