L(s) = 1 | + (−9.51 + 12.8i)2-s + (−74.8 − 244. i)4-s + 279.·5-s + 2.23e3i·7-s + (3.86e3 + 1.36e3i)8-s + (−2.66e3 + 3.59e3i)10-s + 1.13e4i·11-s + 4.34e4·13-s + (−2.87e4 − 2.12e4i)14-s + (−5.43e4 + 3.66e4i)16-s + 1.06e5·17-s + 1.69e5i·19-s + (−2.09e4 − 6.84e4i)20-s + (−1.45e5 − 1.07e5i)22-s − 3.01e5i·23-s + ⋯ |
L(s) = 1 | + (−0.594 + 0.803i)2-s + (−0.292 − 0.956i)4-s + 0.447·5-s + 0.931i·7-s + (0.942 + 0.334i)8-s + (−0.266 + 0.359i)10-s + 0.774i·11-s + 1.52·13-s + (−0.748 − 0.554i)14-s + (−0.829 + 0.558i)16-s + 1.27·17-s + 1.29i·19-s + (−0.130 − 0.427i)20-s + (−0.622 − 0.460i)22-s − 1.07i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.292 - 0.956i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.292 - 0.956i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(1.871728415\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.871728415\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (9.51 - 12.8i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 - 279.T \) |
good | 7 | \( 1 - 2.23e3iT - 5.76e6T^{2} \) |
| 11 | \( 1 - 1.13e4iT - 2.14e8T^{2} \) |
| 13 | \( 1 - 4.34e4T + 8.15e8T^{2} \) |
| 17 | \( 1 - 1.06e5T + 6.97e9T^{2} \) |
| 19 | \( 1 - 1.69e5iT - 1.69e10T^{2} \) |
| 23 | \( 1 + 3.01e5iT - 7.83e10T^{2} \) |
| 29 | \( 1 + 1.13e6T + 5.00e11T^{2} \) |
| 31 | \( 1 + 1.49e6iT - 8.52e11T^{2} \) |
| 37 | \( 1 - 3.00e6T + 3.51e12T^{2} \) |
| 41 | \( 1 - 1.45e6T + 7.98e12T^{2} \) |
| 43 | \( 1 + 1.84e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 - 3.23e6iT - 2.38e13T^{2} \) |
| 53 | \( 1 - 2.47e6T + 6.22e13T^{2} \) |
| 59 | \( 1 - 1.98e7iT - 1.46e14T^{2} \) |
| 61 | \( 1 - 2.31e7T + 1.91e14T^{2} \) |
| 67 | \( 1 - 1.38e7iT - 4.06e14T^{2} \) |
| 71 | \( 1 + 3.24e7iT - 6.45e14T^{2} \) |
| 73 | \( 1 + 2.85e7T + 8.06e14T^{2} \) |
| 79 | \( 1 + 5.42e7iT - 1.51e15T^{2} \) |
| 83 | \( 1 - 8.59e7iT - 2.25e15T^{2} \) |
| 89 | \( 1 + 4.60e7T + 3.93e15T^{2} \) |
| 97 | \( 1 + 3.17e7T + 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.26940426596770544441537146947, −10.14227610897972884127623619612, −9.376328579319432593544383893417, −8.409075741101567550445950353481, −7.50721326244645051591965204311, −5.98708707782965020482801798629, −5.73032830386349757224024808693, −4.08142702428272229260845926038, −2.19087945136590191624984495908, −1.05377355916774932371923326529,
0.69089534996386840595768637023, 1.43775044019363709478695459981, 3.10081122809096477543230989943, 3.92366058175319397851554345583, 5.52450375450149624183551980944, 6.95603612309709836933859875273, 8.023632931320462024011030564619, 9.030251333787582140747401558918, 9.938791801318879075802848968573, 10.98419456857290435033463407732