Properties

Label 176.4.m.c.113.2
Level $176$
Weight $4$
Character 176.113
Analytic conductor $10.384$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [176,4,Mod(49,176)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("176.49"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(176, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 176.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3843361610\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.29283765625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 10x^{6} - 19x^{5} + 109x^{4} + 171x^{3} + 810x^{2} + 729x + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 113.2
Root \(-2.05602 + 1.49379i\) of defining polynomial
Character \(\chi\) \(=\) 176.113
Dual form 176.4.m.c.81.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.476313 + 1.46594i) q^{3} +(-7.05908 - 5.12872i) q^{5} +(-0.239524 + 0.737179i) q^{7} +(19.9214 - 14.4737i) q^{9} +(-32.3688 + 16.8303i) q^{11} +(-52.2644 + 37.9723i) q^{13} +(4.15607 - 12.7911i) q^{15} +(-56.7325 - 41.2186i) q^{17} +(-40.0535 - 123.272i) q^{19} -1.19475 q^{21} -103.308 q^{23} +(-15.1003 - 46.4740i) q^{25} +(64.3755 + 46.7715i) q^{27} +(-21.2472 + 65.3921i) q^{29} +(4.63339 - 3.36636i) q^{31} +(-40.0899 - 39.4343i) q^{33} +(5.47160 - 3.97535i) q^{35} +(53.2416 - 163.861i) q^{37} +(-80.5593 - 58.5298i) q^{39} +(-65.3332 - 201.075i) q^{41} -300.793 q^{43} -214.858 q^{45} +(59.0277 + 181.669i) q^{47} +(277.007 + 201.257i) q^{49} +(33.4015 - 102.799i) q^{51} +(-519.068 + 377.125i) q^{53} +(314.812 + 47.2041i) q^{55} +(161.632 - 117.432i) q^{57} +(-16.0697 + 49.4574i) q^{59} +(398.663 + 289.646i) q^{61} +(5.89807 + 18.1524i) q^{63} +563.687 q^{65} +320.988 q^{67} +(-49.2068 - 151.443i) q^{69} +(-147.737 - 107.337i) q^{71} +(-64.2516 + 197.746i) q^{73} +(60.9357 - 44.2724i) q^{75} +(-4.65384 - 27.8929i) q^{77} +(528.180 - 383.745i) q^{79} +(167.549 - 515.663i) q^{81} +(972.740 + 706.737i) q^{83} +(189.080 + 581.930i) q^{85} -105.981 q^{87} +716.942 q^{89} +(-15.4738 - 47.6234i) q^{91} +(7.14183 + 5.18884i) q^{93} +(-349.487 + 1075.61i) q^{95} +(508.361 - 369.346i) q^{97} +(-401.234 + 803.779i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{3} - 7 q^{5} + 35 q^{7} + 31 q^{9} - 67 q^{11} - 65 q^{13} + 121 q^{15} - 31 q^{17} - 148 q^{19} + 334 q^{21} + 12 q^{23} - 201 q^{25} - 72 q^{27} - 199 q^{29} + 361 q^{31} - 232 q^{33} - 237 q^{35}+ \cdots - 2099 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.476313 + 1.46594i 0.0916665 + 0.282120i 0.986371 0.164539i \(-0.0526136\pi\)
−0.894704 + 0.446659i \(0.852614\pi\)
\(4\) 0 0
\(5\) −7.05908 5.12872i −0.631383 0.458727i 0.225496 0.974244i \(-0.427600\pi\)
−0.856879 + 0.515518i \(0.827600\pi\)
\(6\) 0 0
\(7\) −0.239524 + 0.737179i −0.0129331 + 0.0398039i −0.957315 0.289047i \(-0.906661\pi\)
0.944382 + 0.328851i \(0.106661\pi\)
\(8\) 0 0
\(9\) 19.9214 14.4737i 0.737828 0.536063i
\(10\) 0 0
\(11\) −32.3688 + 16.8303i −0.887233 + 0.461321i
\(12\) 0 0
\(13\) −52.2644 + 37.9723i −1.11504 + 0.810124i −0.983450 0.181180i \(-0.942008\pi\)
−0.131590 + 0.991304i \(0.542008\pi\)
\(14\) 0 0
\(15\) 4.15607 12.7911i 0.0715395 0.220176i
\(16\) 0 0
\(17\) −56.7325 41.2186i −0.809391 0.588057i 0.104263 0.994550i \(-0.466752\pi\)
−0.913654 + 0.406493i \(0.866752\pi\)
\(18\) 0 0
\(19\) −40.0535 123.272i −0.483627 1.48845i −0.833960 0.551825i \(-0.813932\pi\)
0.350333 0.936625i \(-0.386068\pi\)
\(20\) 0 0
\(21\) −1.19475 −0.0124150
\(22\) 0 0
\(23\) −103.308 −0.936572 −0.468286 0.883577i \(-0.655128\pi\)
−0.468286 + 0.883577i \(0.655128\pi\)
\(24\) 0 0
\(25\) −15.1003 46.4740i −0.120803 0.371792i
\(26\) 0 0
\(27\) 64.3755 + 46.7715i 0.458854 + 0.333377i
\(28\) 0 0
\(29\) −21.2472 + 65.3921i −0.136052 + 0.418724i −0.995752 0.0920744i \(-0.970650\pi\)
0.859700 + 0.510799i \(0.170650\pi\)
\(30\) 0 0
\(31\) 4.63339 3.36636i 0.0268446 0.0195037i −0.574282 0.818658i \(-0.694719\pi\)
0.601127 + 0.799154i \(0.294719\pi\)
\(32\) 0 0
\(33\) −40.0899 39.4343i −0.211478 0.208019i
\(34\) 0 0
\(35\) 5.47160 3.97535i 0.0264248 0.0191988i
\(36\) 0 0
\(37\) 53.2416 163.861i 0.236564 0.728069i −0.760346 0.649518i \(-0.774971\pi\)
0.996910 0.0785508i \(-0.0250293\pi\)
\(38\) 0 0
\(39\) −80.5593 58.5298i −0.330764 0.240314i
\(40\) 0 0
\(41\) −65.3332 201.075i −0.248862 0.765917i −0.994977 0.100101i \(-0.968083\pi\)
0.746116 0.665816i \(-0.231917\pi\)
\(42\) 0 0
\(43\) −300.793 −1.06676 −0.533378 0.845877i \(-0.679078\pi\)
−0.533378 + 0.845877i \(0.679078\pi\)
\(44\) 0 0
\(45\) −214.858 −0.711758
\(46\) 0 0
\(47\) 59.0277 + 181.669i 0.183193 + 0.563811i 0.999913 0.0132245i \(-0.00420961\pi\)
−0.816719 + 0.577035i \(0.804210\pi\)
\(48\) 0 0
\(49\) 277.007 + 201.257i 0.807600 + 0.586756i
\(50\) 0 0
\(51\) 33.4015 102.799i 0.0917089 0.282251i
\(52\) 0 0
\(53\) −519.068 + 377.125i −1.34527 + 0.977398i −0.346040 + 0.938220i \(0.612474\pi\)
−0.999232 + 0.0391779i \(0.987526\pi\)
\(54\) 0 0
\(55\) 314.812 + 47.2041i 0.771804 + 0.115727i
\(56\) 0 0
\(57\) 161.632 117.432i 0.375590 0.272882i
\(58\) 0 0
\(59\) −16.0697 + 49.4574i −0.0354592 + 0.109132i −0.967219 0.253942i \(-0.918273\pi\)
0.931760 + 0.363074i \(0.118273\pi\)
\(60\) 0 0
\(61\) 398.663 + 289.646i 0.836780 + 0.607956i 0.921469 0.388451i \(-0.126990\pi\)
−0.0846894 + 0.996407i \(0.526990\pi\)
\(62\) 0 0
\(63\) 5.89807 + 18.1524i 0.0117950 + 0.0363014i
\(64\) 0 0
\(65\) 563.687 1.07564
\(66\) 0 0
\(67\) 320.988 0.585298 0.292649 0.956220i \(-0.405463\pi\)
0.292649 + 0.956220i \(0.405463\pi\)
\(68\) 0 0
\(69\) −49.2068 151.443i −0.0858523 0.264226i
\(70\) 0 0
\(71\) −147.737 107.337i −0.246945 0.179416i 0.457427 0.889247i \(-0.348771\pi\)
−0.704372 + 0.709831i \(0.748771\pi\)
\(72\) 0 0
\(73\) −64.2516 + 197.746i −0.103015 + 0.317047i −0.989259 0.146171i \(-0.953305\pi\)
0.886245 + 0.463218i \(0.153305\pi\)
\(74\) 0 0
\(75\) 60.9357 44.2724i 0.0938167 0.0681618i
\(76\) 0 0
\(77\) −4.65384 27.8929i −0.00688772 0.0412817i
\(78\) 0 0
\(79\) 528.180 383.745i 0.752214 0.546516i −0.144298 0.989534i \(-0.546092\pi\)
0.896512 + 0.443019i \(0.146092\pi\)
\(80\) 0 0
\(81\) 167.549 515.663i 0.229834 0.707357i
\(82\) 0 0
\(83\) 972.740 + 706.737i 1.28641 + 0.934632i 0.999726 0.0233931i \(-0.00744694\pi\)
0.286684 + 0.958025i \(0.407447\pi\)
\(84\) 0 0
\(85\) 189.080 + 581.930i 0.241278 + 0.742578i
\(86\) 0 0
\(87\) −105.981 −0.130602
\(88\) 0 0
\(89\) 716.942 0.853885 0.426942 0.904279i \(-0.359591\pi\)
0.426942 + 0.904279i \(0.359591\pi\)
\(90\) 0 0
\(91\) −15.4738 47.6234i −0.0178252 0.0548603i
\(92\) 0 0
\(93\) 7.14183 + 5.18884i 0.00796315 + 0.00578557i
\(94\) 0 0
\(95\) −349.487 + 1075.61i −0.377438 + 1.16163i
\(96\) 0 0
\(97\) 508.361 369.346i 0.532126 0.386612i −0.289026 0.957321i \(-0.593332\pi\)
0.821152 + 0.570709i \(0.193332\pi\)
\(98\) 0 0
\(99\) −401.234 + 803.779i −0.407328 + 0.815989i
\(100\) 0 0
\(101\) −411.960 + 299.307i −0.405857 + 0.294872i −0.771922 0.635717i \(-0.780705\pi\)
0.366065 + 0.930589i \(0.380705\pi\)
\(102\) 0 0
\(103\) 54.0555 166.366i 0.0517111 0.159150i −0.921866 0.387509i \(-0.873336\pi\)
0.973577 + 0.228358i \(0.0733357\pi\)
\(104\) 0 0
\(105\) 8.43382 + 6.12753i 0.00783863 + 0.00569510i
\(106\) 0 0
\(107\) −546.753 1682.73i −0.493987 1.52034i −0.818530 0.574464i \(-0.805210\pi\)
0.324543 0.945871i \(-0.394790\pi\)
\(108\) 0 0
\(109\) −823.593 −0.723724 −0.361862 0.932232i \(-0.617859\pi\)
−0.361862 + 0.932232i \(0.617859\pi\)
\(110\) 0 0
\(111\) 265.570 0.227088
\(112\) 0 0
\(113\) −336.492 1035.62i −0.280128 0.862146i −0.987817 0.155621i \(-0.950262\pi\)
0.707689 0.706525i \(-0.249738\pi\)
\(114\) 0 0
\(115\) 729.257 + 529.837i 0.591336 + 0.429631i
\(116\) 0 0
\(117\) −491.577 + 1512.92i −0.388430 + 1.19546i
\(118\) 0 0
\(119\) 43.9742 31.9491i 0.0338749 0.0246115i
\(120\) 0 0
\(121\) 764.481 1089.55i 0.574366 0.818599i
\(122\) 0 0
\(123\) 263.645 191.549i 0.193269 0.140418i
\(124\) 0 0
\(125\) −468.799 + 1442.81i −0.335445 + 1.03239i
\(126\) 0 0
\(127\) −1015.52 737.819i −0.709551 0.515519i 0.173478 0.984838i \(-0.444499\pi\)
−0.883029 + 0.469319i \(0.844499\pi\)
\(128\) 0 0
\(129\) −143.272 440.945i −0.0977858 0.300954i
\(130\) 0 0
\(131\) −1401.18 −0.934519 −0.467259 0.884120i \(-0.654759\pi\)
−0.467259 + 0.884120i \(0.654759\pi\)
\(132\) 0 0
\(133\) 100.467 0.0655009
\(134\) 0 0
\(135\) −214.553 660.328i −0.136784 0.420977i
\(136\) 0 0
\(137\) 331.158 + 240.600i 0.206516 + 0.150043i 0.686236 0.727379i \(-0.259262\pi\)
−0.479720 + 0.877422i \(0.659262\pi\)
\(138\) 0 0
\(139\) −183.982 + 566.240i −0.112268 + 0.345524i −0.991367 0.131114i \(-0.958145\pi\)
0.879100 + 0.476638i \(0.158145\pi\)
\(140\) 0 0
\(141\) −238.200 + 173.062i −0.142270 + 0.103365i
\(142\) 0 0
\(143\) 1052.65 2108.74i 0.615574 1.23316i
\(144\) 0 0
\(145\) 485.363 352.637i 0.277981 0.201965i
\(146\) 0 0
\(147\) −163.089 + 501.937i −0.0915059 + 0.281626i
\(148\) 0 0
\(149\) −1755.64 1275.54i −0.965283 0.701319i −0.0109117 0.999940i \(-0.503473\pi\)
−0.954372 + 0.298621i \(0.903473\pi\)
\(150\) 0 0
\(151\) 555.847 + 1710.72i 0.299564 + 0.921963i 0.981650 + 0.190691i \(0.0610729\pi\)
−0.682086 + 0.731272i \(0.738927\pi\)
\(152\) 0 0
\(153\) −1726.77 −0.912427
\(154\) 0 0
\(155\) −49.9726 −0.0258961
\(156\) 0 0
\(157\) −24.2312 74.5758i −0.0123176 0.0379095i 0.944709 0.327910i \(-0.106344\pi\)
−0.957026 + 0.290001i \(0.906344\pi\)
\(158\) 0 0
\(159\) −800.081 581.293i −0.399060 0.289934i
\(160\) 0 0
\(161\) 24.7447 76.1563i 0.0121128 0.0372792i
\(162\) 0 0
\(163\) 266.032 193.283i 0.127836 0.0928780i −0.522030 0.852927i \(-0.674825\pi\)
0.649866 + 0.760049i \(0.274825\pi\)
\(164\) 0 0
\(165\) 80.7505 + 483.980i 0.0380995 + 0.228350i
\(166\) 0 0
\(167\) −2850.77 + 2071.21i −1.32095 + 0.959729i −0.321034 + 0.947068i \(0.604030\pi\)
−0.999920 + 0.0126616i \(0.995970\pi\)
\(168\) 0 0
\(169\) 610.758 1879.72i 0.277997 0.855585i
\(170\) 0 0
\(171\) −2582.12 1876.02i −1.15474 0.838965i
\(172\) 0 0
\(173\) −836.578 2574.72i −0.367652 1.13152i −0.948304 0.317365i \(-0.897202\pi\)
0.580651 0.814152i \(-0.302798\pi\)
\(174\) 0 0
\(175\) 37.8766 0.0163611
\(176\) 0 0
\(177\) −80.1558 −0.0340389
\(178\) 0 0
\(179\) −455.234 1401.07i −0.190088 0.585032i 0.809910 0.586554i \(-0.199516\pi\)
−0.999999 + 0.00152166i \(0.999516\pi\)
\(180\) 0 0
\(181\) 398.134 + 289.261i 0.163498 + 0.118788i 0.666526 0.745482i \(-0.267781\pi\)
−0.503028 + 0.864270i \(0.667781\pi\)
\(182\) 0 0
\(183\) −234.715 + 722.378i −0.0948122 + 0.291802i
\(184\) 0 0
\(185\) −1216.23 + 883.644i −0.483347 + 0.351172i
\(186\) 0 0
\(187\) 2530.08 + 379.371i 0.989402 + 0.148355i
\(188\) 0 0
\(189\) −49.8984 + 36.2533i −0.0192041 + 0.0139526i
\(190\) 0 0
\(191\) 399.844 1230.59i 0.151475 0.466192i −0.846312 0.532688i \(-0.821182\pi\)
0.997787 + 0.0664961i \(0.0211820\pi\)
\(192\) 0 0
\(193\) 424.037 + 308.081i 0.158149 + 0.114902i 0.664046 0.747692i \(-0.268838\pi\)
−0.505896 + 0.862594i \(0.668838\pi\)
\(194\) 0 0
\(195\) 268.491 + 826.332i 0.0986004 + 0.303461i
\(196\) 0 0
\(197\) −1177.35 −0.425801 −0.212900 0.977074i \(-0.568291\pi\)
−0.212900 + 0.977074i \(0.568291\pi\)
\(198\) 0 0
\(199\) 3054.83 1.08820 0.544098 0.839022i \(-0.316872\pi\)
0.544098 + 0.839022i \(0.316872\pi\)
\(200\) 0 0
\(201\) 152.891 + 470.550i 0.0536522 + 0.165125i
\(202\) 0 0
\(203\) −43.1164 31.3259i −0.0149073 0.0108308i
\(204\) 0 0
\(205\) −570.064 + 1754.48i −0.194220 + 0.597747i
\(206\) 0 0
\(207\) −2058.03 + 1495.25i −0.691029 + 0.502062i
\(208\) 0 0
\(209\) 3371.19 + 3316.06i 1.11574 + 1.09750i
\(210\) 0 0
\(211\) 1379.08 1001.96i 0.449953 0.326910i −0.339624 0.940561i \(-0.610300\pi\)
0.789577 + 0.613651i \(0.210300\pi\)
\(212\) 0 0
\(213\) 86.9808 267.699i 0.0279804 0.0861148i
\(214\) 0 0
\(215\) 2123.32 + 1542.68i 0.673532 + 0.489349i
\(216\) 0 0
\(217\) 1.37180 + 4.22196i 0.000429142 + 0.00132076i
\(218\) 0 0
\(219\) −320.488 −0.0988884
\(220\) 0 0
\(221\) 4530.25 1.37890
\(222\) 0 0
\(223\) −1422.26 4377.26i −0.427092 1.31445i −0.900977 0.433866i \(-0.857149\pi\)
0.473886 0.880586i \(-0.342851\pi\)
\(224\) 0 0
\(225\) −973.471 707.268i −0.288436 0.209561i
\(226\) 0 0
\(227\) −1015.88 + 3126.56i −0.297032 + 0.914171i 0.685499 + 0.728073i \(0.259584\pi\)
−0.982531 + 0.186097i \(0.940416\pi\)
\(228\) 0 0
\(229\) 2387.40 1734.55i 0.688925 0.500533i −0.187382 0.982287i \(-0.560000\pi\)
0.876307 + 0.481754i \(0.160000\pi\)
\(230\) 0 0
\(231\) 38.6726 20.1080i 0.0110150 0.00572731i
\(232\) 0 0
\(233\) −2283.62 + 1659.14i −0.642080 + 0.466498i −0.860564 0.509342i \(-0.829889\pi\)
0.218484 + 0.975840i \(0.429889\pi\)
\(234\) 0 0
\(235\) 515.046 1585.15i 0.142970 0.440016i
\(236\) 0 0
\(237\) 814.127 + 591.498i 0.223136 + 0.162118i
\(238\) 0 0
\(239\) −636.935 1960.28i −0.172385 0.530545i 0.827120 0.562026i \(-0.189978\pi\)
−0.999504 + 0.0314806i \(0.989978\pi\)
\(240\) 0 0
\(241\) −3089.45 −0.825763 −0.412881 0.910785i \(-0.635478\pi\)
−0.412881 + 0.910785i \(0.635478\pi\)
\(242\) 0 0
\(243\) 2984.19 0.787803
\(244\) 0 0
\(245\) −923.220 2841.38i −0.240744 0.740935i
\(246\) 0 0
\(247\) 6774.29 + 4921.81i 1.74509 + 1.26788i
\(248\) 0 0
\(249\) −572.706 + 1762.61i −0.145758 + 0.448597i
\(250\) 0 0
\(251\) −3259.66 + 2368.28i −0.819712 + 0.595555i −0.916630 0.399737i \(-0.869101\pi\)
0.0969183 + 0.995292i \(0.469101\pi\)
\(252\) 0 0
\(253\) 3343.95 1738.70i 0.830958 0.432060i
\(254\) 0 0
\(255\) −763.013 + 554.362i −0.187379 + 0.136139i
\(256\) 0 0
\(257\) −1358.89 + 4182.25i −0.329827 + 1.01510i 0.639388 + 0.768884i \(0.279188\pi\)
−0.969215 + 0.246218i \(0.920812\pi\)
\(258\) 0 0
\(259\) 108.042 + 78.4971i 0.0259205 + 0.0188323i
\(260\) 0 0
\(261\) 523.194 + 1610.22i 0.124080 + 0.381879i
\(262\) 0 0
\(263\) 914.661 0.214450 0.107225 0.994235i \(-0.465803\pi\)
0.107225 + 0.994235i \(0.465803\pi\)
\(264\) 0 0
\(265\) 5598.31 1.29774
\(266\) 0 0
\(267\) 341.489 + 1051.00i 0.0782726 + 0.240898i
\(268\) 0 0
\(269\) 1430.97 + 1039.66i 0.324341 + 0.235648i 0.738026 0.674773i \(-0.235758\pi\)
−0.413685 + 0.910420i \(0.635758\pi\)
\(270\) 0 0
\(271\) −1241.80 + 3821.86i −0.278353 + 0.856684i 0.709959 + 0.704243i \(0.248713\pi\)
−0.988313 + 0.152441i \(0.951287\pi\)
\(272\) 0 0
\(273\) 62.4428 45.3673i 0.0138433 0.0100577i
\(274\) 0 0
\(275\) 1270.95 + 1250.17i 0.278696 + 0.274138i
\(276\) 0 0
\(277\) 5376.57 3906.30i 1.16623 0.847318i 0.175680 0.984447i \(-0.443788\pi\)
0.990553 + 0.137129i \(0.0437876\pi\)
\(278\) 0 0
\(279\) 43.5798 134.125i 0.00935145 0.0287808i
\(280\) 0 0
\(281\) −3545.96 2576.29i −0.752792 0.546935i 0.143899 0.989592i \(-0.454036\pi\)
−0.896691 + 0.442657i \(0.854036\pi\)
\(282\) 0 0
\(283\) −1154.14 3552.07i −0.242425 0.746108i −0.996049 0.0888023i \(-0.971696\pi\)
0.753624 0.657306i \(-0.228304\pi\)
\(284\) 0 0
\(285\) −1743.25 −0.362319
\(286\) 0 0
\(287\) 163.877 0.0337050
\(288\) 0 0
\(289\) 1.40440 + 4.32230i 0.000285854 + 0.000879768i
\(290\) 0 0
\(291\) 783.578 + 569.303i 0.157849 + 0.114684i
\(292\) 0 0
\(293\) −690.705 + 2125.77i −0.137718 + 0.423853i −0.996003 0.0893208i \(-0.971530\pi\)
0.858285 + 0.513174i \(0.171530\pi\)
\(294\) 0 0
\(295\) 367.090 266.707i 0.0724502 0.0526382i
\(296\) 0 0
\(297\) −2870.94 430.480i −0.560905 0.0841043i
\(298\) 0 0
\(299\) 5399.31 3922.83i 1.04432 0.758740i
\(300\) 0 0
\(301\) 72.0471 221.738i 0.0137964 0.0424611i
\(302\) 0 0
\(303\) −634.988 461.345i −0.120393 0.0874706i
\(304\) 0 0
\(305\) −1328.68 4089.26i −0.249443 0.767706i
\(306\) 0 0
\(307\) −1022.51 −0.190090 −0.0950451 0.995473i \(-0.530300\pi\)
−0.0950451 + 0.995473i \(0.530300\pi\)
\(308\) 0 0
\(309\) 269.629 0.0496398
\(310\) 0 0
\(311\) −1643.78 5059.04i −0.299711 0.922417i −0.981598 0.190959i \(-0.938840\pi\)
0.681887 0.731458i \(-0.261160\pi\)
\(312\) 0 0
\(313\) 5657.83 + 4110.65i 1.02172 + 0.742325i 0.966635 0.256156i \(-0.0824561\pi\)
0.0550879 + 0.998482i \(0.482456\pi\)
\(314\) 0 0
\(315\) 51.4636 158.389i 0.00920522 0.0283308i
\(316\) 0 0
\(317\) −3490.64 + 2536.10i −0.618467 + 0.449343i −0.852386 0.522913i \(-0.824845\pi\)
0.233919 + 0.972256i \(0.424845\pi\)
\(318\) 0 0
\(319\) −412.823 2474.26i −0.0724566 0.434270i
\(320\) 0 0
\(321\) 2206.36 1603.01i 0.383636 0.278728i
\(322\) 0 0
\(323\) −2808.76 + 8644.48i −0.483850 + 1.48914i
\(324\) 0 0
\(325\) 2553.93 + 1855.54i 0.435898 + 0.316698i
\(326\) 0 0
\(327\) −392.288 1207.34i −0.0663412 0.204177i
\(328\) 0 0
\(329\) −148.061 −0.0248111
\(330\) 0 0
\(331\) 3886.73 0.645420 0.322710 0.946498i \(-0.395406\pi\)
0.322710 + 0.946498i \(0.395406\pi\)
\(332\) 0 0
\(333\) −1311.03 4034.93i −0.215748 0.664003i
\(334\) 0 0
\(335\) −2265.88 1646.26i −0.369547 0.268492i
\(336\) 0 0
\(337\) −2812.70 + 8656.61i −0.454652 + 1.39928i 0.416891 + 0.908956i \(0.363120\pi\)
−0.871543 + 0.490319i \(0.836880\pi\)
\(338\) 0 0
\(339\) 1357.88 986.554i 0.217551 0.158060i
\(340\) 0 0
\(341\) −93.3207 + 186.947i −0.0148199 + 0.0296883i
\(342\) 0 0
\(343\) −429.801 + 312.269i −0.0676591 + 0.0491572i
\(344\) 0 0
\(345\) −429.354 + 1321.42i −0.0670019 + 0.206211i
\(346\) 0 0
\(347\) −8213.72 5967.62i −1.27071 0.923223i −0.271477 0.962445i \(-0.587512\pi\)
−0.999231 + 0.0392218i \(0.987512\pi\)
\(348\) 0 0
\(349\) −3297.87 10149.8i −0.505820 1.55675i −0.799388 0.600815i \(-0.794843\pi\)
0.293568 0.955938i \(-0.405157\pi\)
\(350\) 0 0
\(351\) −5140.56 −0.781718
\(352\) 0 0
\(353\) −9301.69 −1.40249 −0.701245 0.712920i \(-0.747372\pi\)
−0.701245 + 0.712920i \(0.747372\pi\)
\(354\) 0 0
\(355\) 492.383 + 1515.40i 0.0736141 + 0.226561i
\(356\) 0 0
\(357\) 67.7811 + 49.2458i 0.0100486 + 0.00730074i
\(358\) 0 0
\(359\) −2594.94 + 7986.40i −0.381492 + 1.17411i 0.557501 + 0.830176i \(0.311760\pi\)
−0.938993 + 0.343936i \(0.888240\pi\)
\(360\) 0 0
\(361\) −8042.67 + 5843.34i −1.17257 + 0.851924i
\(362\) 0 0
\(363\) 1961.35 + 601.715i 0.283593 + 0.0870024i
\(364\) 0 0
\(365\) 1467.74 1066.38i 0.210480 0.152922i
\(366\) 0 0
\(367\) 2894.86 8909.46i 0.411745 1.26722i −0.503385 0.864062i \(-0.667912\pi\)
0.915130 0.403158i \(-0.132088\pi\)
\(368\) 0 0
\(369\) −4211.82 3060.07i −0.594197 0.431710i
\(370\) 0 0
\(371\) −153.679 472.976i −0.0215057 0.0661879i
\(372\) 0 0
\(373\) 2639.31 0.366376 0.183188 0.983078i \(-0.441358\pi\)
0.183188 + 0.983078i \(0.441358\pi\)
\(374\) 0 0
\(375\) −2338.38 −0.322008
\(376\) 0 0
\(377\) −1372.62 4224.48i −0.187515 0.577113i
\(378\) 0 0
\(379\) −5959.64 4329.93i −0.807721 0.586843i 0.105448 0.994425i \(-0.466372\pi\)
−0.913169 + 0.407581i \(0.866372\pi\)
\(380\) 0 0
\(381\) 597.893 1840.13i 0.0803963 0.247434i
\(382\) 0 0
\(383\) −2605.34 + 1892.89i −0.347589 + 0.252538i −0.747857 0.663860i \(-0.768917\pi\)
0.400268 + 0.916398i \(0.368917\pi\)
\(384\) 0 0
\(385\) −110.203 + 220.766i −0.0145882 + 0.0292241i
\(386\) 0 0
\(387\) −5992.20 + 4353.59i −0.787082 + 0.571849i
\(388\) 0 0
\(389\) 3778.65 11629.5i 0.492507 1.51578i −0.328300 0.944574i \(-0.606476\pi\)
0.820807 0.571206i \(-0.193524\pi\)
\(390\) 0 0
\(391\) 5860.91 + 4258.20i 0.758053 + 0.550758i
\(392\) 0 0
\(393\) −667.402 2054.05i −0.0856640 0.263647i
\(394\) 0 0
\(395\) −5696.59 −0.725636
\(396\) 0 0
\(397\) 8381.55 1.05959 0.529796 0.848125i \(-0.322269\pi\)
0.529796 + 0.848125i \(0.322269\pi\)
\(398\) 0 0
\(399\) 47.8539 + 147.279i 0.00600424 + 0.0184791i
\(400\) 0 0
\(401\) 3503.32 + 2545.31i 0.436279 + 0.316975i 0.784154 0.620566i \(-0.213097\pi\)
−0.347876 + 0.937541i \(0.613097\pi\)
\(402\) 0 0
\(403\) −114.333 + 351.881i −0.0141323 + 0.0434949i
\(404\) 0 0
\(405\) −3827.43 + 2780.79i −0.469597 + 0.341182i
\(406\) 0 0
\(407\) 1034.46 + 6200.05i 0.125986 + 0.755099i
\(408\) 0 0
\(409\) −9657.95 + 7016.91i −1.16762 + 0.848323i −0.990722 0.135907i \(-0.956605\pi\)
−0.176895 + 0.984230i \(0.556605\pi\)
\(410\) 0 0
\(411\) −194.971 + 600.059i −0.0233995 + 0.0720164i
\(412\) 0 0
\(413\) −32.6099 23.6924i −0.00388529 0.00282283i
\(414\) 0 0
\(415\) −3241.99 9977.82i −0.383477 1.18022i
\(416\) 0 0
\(417\) −917.707 −0.107770
\(418\) 0 0
\(419\) 11888.5 1.38614 0.693070 0.720870i \(-0.256257\pi\)
0.693070 + 0.720870i \(0.256257\pi\)
\(420\) 0 0
\(421\) −2622.15 8070.15i −0.303553 0.934240i −0.980213 0.197944i \(-0.936573\pi\)
0.676660 0.736295i \(-0.263427\pi\)
\(422\) 0 0
\(423\) 3805.33 + 2764.73i 0.437403 + 0.317792i
\(424\) 0 0
\(425\) −1058.91 + 3259.00i −0.120859 + 0.371964i
\(426\) 0 0
\(427\) −309.010 + 224.509i −0.0350212 + 0.0254444i
\(428\) 0 0
\(429\) 3592.68 + 538.701i 0.404327 + 0.0606264i
\(430\) 0 0
\(431\) 9271.93 6736.45i 1.03623 0.752862i 0.0666800 0.997774i \(-0.478759\pi\)
0.969545 + 0.244913i \(0.0787593\pi\)
\(432\) 0 0
\(433\) 1019.16 3136.66i 0.113113 0.348125i −0.878436 0.477860i \(-0.841413\pi\)
0.991549 + 0.129735i \(0.0414126\pi\)
\(434\) 0 0
\(435\) 748.129 + 543.548i 0.0824599 + 0.0599106i
\(436\) 0 0
\(437\) 4137.84 + 12735.0i 0.452951 + 1.39404i
\(438\) 0 0
\(439\) −5549.93 −0.603380 −0.301690 0.953406i \(-0.597551\pi\)
−0.301690 + 0.953406i \(0.597551\pi\)
\(440\) 0 0
\(441\) 8431.29 0.910408
\(442\) 0 0
\(443\) −3362.36 10348.3i −0.360611 1.10985i −0.952684 0.303962i \(-0.901690\pi\)
0.592073 0.805884i \(-0.298310\pi\)
\(444\) 0 0
\(445\) −5060.95 3677.00i −0.539128 0.391700i
\(446\) 0 0
\(447\) 1033.64 3181.21i 0.109372 0.336614i
\(448\) 0 0
\(449\) 6104.61 4435.26i 0.641636 0.466176i −0.218776 0.975775i \(-0.570206\pi\)
0.860412 + 0.509599i \(0.170206\pi\)
\(450\) 0 0
\(451\) 5498.91 + 5408.98i 0.574132 + 0.564742i
\(452\) 0 0
\(453\) −2243.06 + 1629.68i −0.232645 + 0.169026i
\(454\) 0 0
\(455\) −135.017 + 415.538i −0.0139114 + 0.0428148i
\(456\) 0 0
\(457\) 2620.61 + 1903.98i 0.268242 + 0.194890i 0.713773 0.700377i \(-0.246985\pi\)
−0.445530 + 0.895267i \(0.646985\pi\)
\(458\) 0 0
\(459\) −1724.33 5306.93i −0.175348 0.539665i
\(460\) 0 0
\(461\) −4837.43 −0.488724 −0.244362 0.969684i \(-0.578578\pi\)
−0.244362 + 0.969684i \(0.578578\pi\)
\(462\) 0 0
\(463\) −14089.7 −1.41427 −0.707133 0.707081i \(-0.750012\pi\)
−0.707133 + 0.707081i \(0.750012\pi\)
\(464\) 0 0
\(465\) −23.8026 73.2568i −0.00237380 0.00730582i
\(466\) 0 0
\(467\) 11767.4 + 8549.52i 1.16602 + 0.847162i 0.990527 0.137319i \(-0.0438486\pi\)
0.175491 + 0.984481i \(0.443849\pi\)
\(468\) 0 0
\(469\) −76.8844 + 236.626i −0.00756970 + 0.0232971i
\(470\) 0 0
\(471\) 97.7821 71.0429i 0.00956595 0.00695007i
\(472\) 0 0
\(473\) 9736.32 5062.44i 0.946462 0.492117i
\(474\) 0 0
\(475\) −5124.13 + 3722.90i −0.494971 + 0.359617i
\(476\) 0 0
\(477\) −4882.14 + 15025.7i −0.468632 + 1.44230i
\(478\) 0 0
\(479\) 2289.58 + 1663.47i 0.218400 + 0.158677i 0.691606 0.722275i \(-0.256904\pi\)
−0.473206 + 0.880952i \(0.656904\pi\)
\(480\) 0 0
\(481\) 3439.53 + 10585.8i 0.326048 + 1.00347i
\(482\) 0 0
\(483\) 123.427 0.0116276
\(484\) 0 0
\(485\) −5482.83 −0.513325
\(486\) 0 0
\(487\) 5912.90 + 18198.0i 0.550183 + 1.69329i 0.708338 + 0.705874i \(0.249445\pi\)
−0.158155 + 0.987414i \(0.550555\pi\)
\(488\) 0 0
\(489\) 410.056 + 297.923i 0.0379210 + 0.0275512i
\(490\) 0 0
\(491\) 3489.95 10740.9i 0.320772 0.987235i −0.652541 0.757753i \(-0.726297\pi\)
0.973313 0.229481i \(-0.0737030\pi\)
\(492\) 0 0
\(493\) 3900.77 2834.08i 0.356353 0.258906i
\(494\) 0 0
\(495\) 6954.70 3616.13i 0.631496 0.328349i
\(496\) 0 0
\(497\) 114.513 83.1986i 0.0103352 0.00750899i
\(498\) 0 0
\(499\) −267.665 + 823.790i −0.0240127 + 0.0739036i −0.962345 0.271832i \(-0.912371\pi\)
0.938332 + 0.345735i \(0.112371\pi\)
\(500\) 0 0
\(501\) −4394.13 3192.52i −0.391846 0.284693i
\(502\) 0 0
\(503\) 1849.01 + 5690.65i 0.163903 + 0.504441i 0.998954 0.0457317i \(-0.0145619\pi\)
−0.835051 + 0.550173i \(0.814562\pi\)
\(504\) 0 0
\(505\) 4443.12 0.391517
\(506\) 0 0
\(507\) 3046.47 0.266861
\(508\) 0 0
\(509\) 3419.92 + 10525.4i 0.297810 + 0.916566i 0.982263 + 0.187509i \(0.0600412\pi\)
−0.684453 + 0.729057i \(0.739959\pi\)
\(510\) 0 0
\(511\) −130.384 94.7298i −0.0112874 0.00820078i
\(512\) 0 0
\(513\) 3187.16 9809.07i 0.274301 0.844212i
\(514\) 0 0
\(515\) −1234.82 + 897.152i −0.105656 + 0.0767636i
\(516\) 0 0
\(517\) −4968.20 4886.95i −0.422633 0.415721i
\(518\) 0 0
\(519\) 3375.92 2452.75i 0.285523 0.207444i
\(520\) 0 0
\(521\) 4605.23 14173.4i 0.387253 1.19184i −0.547580 0.836753i \(-0.684451\pi\)
0.934833 0.355088i \(-0.115549\pi\)
\(522\) 0 0
\(523\) −1204.98 875.470i −0.100746 0.0731963i 0.536272 0.844045i \(-0.319832\pi\)
−0.637018 + 0.770849i \(0.719832\pi\)
\(524\) 0 0
\(525\) 18.0411 + 55.5248i 0.00149977 + 0.00461581i
\(526\) 0 0
\(527\) −401.620 −0.0331971
\(528\) 0 0
\(529\) −1494.50 −0.122832
\(530\) 0 0
\(531\) 395.702 + 1217.85i 0.0323390 + 0.0995292i
\(532\) 0 0
\(533\) 11049.9 + 8028.20i 0.897979 + 0.652420i
\(534\) 0 0
\(535\) −4770.69 + 14682.7i −0.385523 + 1.18652i
\(536\) 0 0
\(537\) 1837.05 1334.69i 0.147625 0.107256i
\(538\) 0 0
\(539\) −12353.6 1852.35i −0.987212 0.148027i
\(540\) 0 0
\(541\) −431.634 + 313.600i −0.0343020 + 0.0249219i −0.604804 0.796374i \(-0.706749\pi\)
0.570502 + 0.821296i \(0.306749\pi\)
\(542\) 0 0
\(543\) −234.404 + 721.420i −0.0185253 + 0.0570149i
\(544\) 0 0
\(545\) 5813.81 + 4223.98i 0.456947 + 0.331991i
\(546\) 0 0
\(547\) 5716.57 + 17593.8i 0.446842 + 1.37524i 0.880451 + 0.474138i \(0.157240\pi\)
−0.433609 + 0.901101i \(0.642760\pi\)
\(548\) 0 0
\(549\) 12134.2 0.943302
\(550\) 0 0
\(551\) 8912.04 0.689049
\(552\) 0 0
\(553\) 156.377 + 481.279i 0.0120250 + 0.0370092i
\(554\) 0 0
\(555\) −1874.68 1362.03i −0.143380 0.104171i
\(556\) 0 0
\(557\) −4865.09 + 14973.2i −0.370091 + 1.13902i 0.576641 + 0.816998i \(0.304363\pi\)
−0.946732 + 0.322024i \(0.895637\pi\)
\(558\) 0 0
\(559\) 15720.8 11421.8i 1.18948 0.864205i
\(560\) 0 0
\(561\) 648.977 + 3889.65i 0.0488410 + 0.292730i
\(562\) 0 0
\(563\) 4880.11 3545.61i 0.365314 0.265416i −0.389951 0.920836i \(-0.627508\pi\)
0.755265 + 0.655419i \(0.227508\pi\)
\(564\) 0 0
\(565\) −2936.06 + 9036.26i −0.218621 + 0.672846i
\(566\) 0 0
\(567\) 340.004 + 247.027i 0.0251831 + 0.0182966i
\(568\) 0 0
\(569\) −4829.81 14864.6i −0.355845 1.09518i −0.955518 0.294934i \(-0.904702\pi\)
0.599672 0.800246i \(-0.295298\pi\)
\(570\) 0 0
\(571\) 7252.67 0.531550 0.265775 0.964035i \(-0.414372\pi\)
0.265775 + 0.964035i \(0.414372\pi\)
\(572\) 0 0
\(573\) 1994.43 0.145407
\(574\) 0 0
\(575\) 1559.98 + 4801.13i 0.113140 + 0.348210i
\(576\) 0 0
\(577\) −10515.4 7639.85i −0.758683 0.551215i 0.139823 0.990176i \(-0.455347\pi\)
−0.898506 + 0.438961i \(0.855347\pi\)
\(578\) 0 0
\(579\) −249.654 + 768.355i −0.0179193 + 0.0551498i
\(580\) 0 0
\(581\) −753.986 + 547.803i −0.0538392 + 0.0391165i
\(582\) 0 0
\(583\) 10454.5 20943.2i 0.742677 1.48778i
\(584\) 0 0
\(585\) 11229.4 8158.64i 0.793639 0.576613i
\(586\) 0 0
\(587\) −3131.18 + 9636.79i −0.220166 + 0.677603i 0.778580 + 0.627546i \(0.215940\pi\)
−0.998746 + 0.0500572i \(0.984060\pi\)
\(588\) 0 0
\(589\) −600.562 436.334i −0.0420131 0.0305243i
\(590\) 0 0
\(591\) −560.787 1725.93i −0.0390317 0.120127i
\(592\) 0 0
\(593\) −838.751 −0.0580833 −0.0290416 0.999578i \(-0.509246\pi\)
−0.0290416 + 0.999578i \(0.509246\pi\)
\(594\) 0 0
\(595\) −474.276 −0.0326780
\(596\) 0 0
\(597\) 1455.05 + 4478.20i 0.0997511 + 0.307002i
\(598\) 0 0
\(599\) −20801.8 15113.4i −1.41893 1.03091i −0.991948 0.126648i \(-0.959578\pi\)
−0.426978 0.904262i \(-0.640422\pi\)
\(600\) 0 0
\(601\) −439.880 + 1353.81i −0.0298554 + 0.0918853i −0.964874 0.262714i \(-0.915383\pi\)
0.935019 + 0.354599i \(0.115383\pi\)
\(602\) 0 0
\(603\) 6394.52 4645.89i 0.431849 0.313757i
\(604\) 0 0
\(605\) −10984.6 + 3770.44i −0.738158 + 0.253372i
\(606\) 0 0
\(607\) −20688.0 + 15030.7i −1.38336 + 1.00507i −0.386802 + 0.922163i \(0.626420\pi\)
−0.996557 + 0.0829067i \(0.973580\pi\)
\(608\) 0 0
\(609\) 25.3850 78.1271i 0.00168909 0.00519847i
\(610\) 0 0
\(611\) −9983.42 7253.38i −0.661024 0.480262i
\(612\) 0 0
\(613\) −1499.35 4614.51i −0.0987895 0.304043i 0.889433 0.457065i \(-0.151099\pi\)
−0.988223 + 0.153022i \(0.951099\pi\)
\(614\) 0 0
\(615\) −2843.49 −0.186440
\(616\) 0 0
\(617\) 3850.99 0.251272 0.125636 0.992076i \(-0.459903\pi\)
0.125636 + 0.992076i \(0.459903\pi\)
\(618\) 0 0
\(619\) −7443.43 22908.5i −0.483323 1.48751i −0.834396 0.551166i \(-0.814183\pi\)
0.351073 0.936348i \(-0.385817\pi\)
\(620\) 0 0
\(621\) −6650.49 4831.86i −0.429750 0.312232i
\(622\) 0 0
\(623\) −171.725 + 528.515i −0.0110434 + 0.0339880i
\(624\) 0 0
\(625\) 5767.43 4190.28i 0.369115 0.268178i
\(626\) 0 0
\(627\) −3255.40 + 6521.45i −0.207350 + 0.415377i
\(628\) 0 0
\(629\) −9774.63 + 7101.69i −0.619619 + 0.450179i
\(630\) 0 0
\(631\) 899.970 2769.82i 0.0567785 0.174746i −0.918645 0.395083i \(-0.870716\pi\)
0.975424 + 0.220337i \(0.0707157\pi\)
\(632\) 0 0
\(633\) 2125.69 + 1544.41i 0.133474 + 0.0969742i
\(634\) 0 0
\(635\) 3384.57 + 10416.6i 0.211516 + 0.650979i
\(636\) 0 0
\(637\) −22119.8 −1.37585
\(638\) 0 0
\(639\) −4496.68 −0.278382
\(640\) 0 0
\(641\) 1900.65 + 5849.60i 0.117116 + 0.360445i 0.992382 0.123195i \(-0.0393142\pi\)
−0.875267 + 0.483641i \(0.839314\pi\)
\(642\) 0 0
\(643\) −7892.25 5734.05i −0.484043 0.351678i 0.318846 0.947807i \(-0.396705\pi\)
−0.802889 + 0.596129i \(0.796705\pi\)
\(644\) 0 0
\(645\) −1250.12 + 3847.46i −0.0763152 + 0.234874i
\(646\) 0 0
\(647\) −1473.76 + 1070.75i −0.0895507 + 0.0650624i −0.631660 0.775246i \(-0.717626\pi\)
0.542109 + 0.840308i \(0.317626\pi\)
\(648\) 0 0
\(649\) −312.227 1871.34i −0.0188844 0.113184i
\(650\) 0 0
\(651\) −5.53574 + 4.02195i −0.000333276 + 0.000242139i
\(652\) 0 0
\(653\) 1971.95 6069.03i 0.118175 0.363705i −0.874421 0.485168i \(-0.838759\pi\)
0.992596 + 0.121463i \(0.0387585\pi\)
\(654\) 0 0
\(655\) 9891.06 + 7186.27i 0.590039 + 0.428689i
\(656\) 0 0
\(657\) 1582.14 + 4869.33i 0.0939501 + 0.289149i
\(658\) 0 0
\(659\) 27285.6 1.61289 0.806445 0.591309i \(-0.201389\pi\)
0.806445 + 0.591309i \(0.201389\pi\)
\(660\) 0 0
\(661\) −23925.0 −1.40783 −0.703913 0.710286i \(-0.748566\pi\)
−0.703913 + 0.710286i \(0.748566\pi\)
\(662\) 0 0
\(663\) 2157.82 + 6641.08i 0.126399 + 0.389017i
\(664\) 0 0
\(665\) −709.206 515.269i −0.0413562 0.0300470i
\(666\) 0 0
\(667\) 2195.00 6755.51i 0.127422 0.392166i
\(668\) 0 0
\(669\) 5739.36 4169.89i 0.331684 0.240982i
\(670\) 0 0
\(671\) −17779.1 2665.87i −1.02288 0.153375i
\(672\) 0 0
\(673\) 6744.56 4900.21i 0.386306 0.280667i −0.377634 0.925955i \(-0.623262\pi\)
0.763940 + 0.645287i \(0.223262\pi\)
\(674\) 0 0
\(675\) 1201.57 3698.06i 0.0685163 0.210871i
\(676\) 0 0
\(677\) 898.252 + 652.618i 0.0509935 + 0.0370490i 0.612990 0.790091i \(-0.289967\pi\)
−0.561997 + 0.827140i \(0.689967\pi\)
\(678\) 0 0
\(679\) 150.509 + 463.220i 0.00850665 + 0.0261808i
\(680\) 0 0
\(681\) −5067.22 −0.285134
\(682\) 0 0
\(683\) −8337.88 −0.467116 −0.233558 0.972343i \(-0.575037\pi\)
−0.233558 + 0.972343i \(0.575037\pi\)
\(684\) 0 0
\(685\) −1103.70 3396.83i −0.0615622 0.189469i
\(686\) 0 0
\(687\) 3679.89 + 2673.60i 0.204362 + 0.148478i
\(688\) 0 0
\(689\) 12808.5 39420.4i 0.708219 2.17968i
\(690\) 0 0
\(691\) −26998.5 + 19615.5i −1.48635 + 1.07990i −0.510913 + 0.859632i \(0.670693\pi\)
−0.975440 + 0.220266i \(0.929307\pi\)
\(692\) 0 0
\(693\) −496.424 488.305i −0.0272115 0.0267665i
\(694\) 0 0
\(695\) 4202.83 3053.53i 0.229385 0.166658i
\(696\) 0 0
\(697\) −4581.50 + 14100.4i −0.248977 + 0.766272i
\(698\) 0 0
\(699\) −3519.92 2557.37i −0.190466 0.138382i
\(700\) 0 0
\(701\) 2413.07 + 7426.67i 0.130015 + 0.400145i 0.994781 0.102030i \(-0.0325336\pi\)
−0.864767 + 0.502174i \(0.832534\pi\)
\(702\) 0 0
\(703\) −22332.0 −1.19810
\(704\) 0 0
\(705\) 2569.06 0.137243
\(706\) 0 0
\(707\) −121.968 375.379i −0.00648809 0.0199683i
\(708\) 0 0
\(709\) −22613.7 16429.8i −1.19785 0.870288i −0.203777 0.979017i \(-0.565322\pi\)
−0.994071 + 0.108730i \(0.965322\pi\)
\(710\) 0 0
\(711\) 4967.84 15289.5i 0.262038 0.806469i
\(712\) 0 0
\(713\) −478.666 + 347.771i −0.0251419 + 0.0182667i
\(714\) 0 0
\(715\) −18245.9 + 9487.03i −0.954346 + 0.496216i
\(716\) 0 0
\(717\) 2570.28 1867.42i 0.133876 0.0972664i
\(718\) 0 0
\(719\) 7720.14 23760.2i 0.400435 1.23241i −0.524212 0.851588i \(-0.675640\pi\)
0.924647 0.380824i \(-0.124360\pi\)
\(720\) 0 0
\(721\) 109.694 + 79.6971i 0.00566602 + 0.00411661i
\(722\) 0 0
\(723\) −1471.54 4528.95i −0.0756948 0.232965i
\(724\) 0 0
\(725\) 3359.87 0.172114
\(726\) 0 0
\(727\) −31671.2 −1.61571 −0.807855 0.589381i \(-0.799372\pi\)
−0.807855 + 0.589381i \(0.799372\pi\)
\(728\) 0 0
\(729\) −3102.42 9548.25i −0.157619 0.485102i
\(730\) 0 0
\(731\) 17064.7 + 12398.3i 0.863423 + 0.627314i
\(732\) 0 0
\(733\) 3656.22 11252.7i 0.184237 0.567023i −0.815698 0.578479i \(-0.803647\pi\)
0.999934 + 0.0114559i \(0.00364661\pi\)
\(734\) 0 0
\(735\) 3725.55 2706.77i 0.186965 0.135838i
\(736\) 0 0
\(737\) −10390.0 + 5402.33i −0.519296 + 0.270010i
\(738\) 0 0
\(739\) 4490.16 3262.29i 0.223509 0.162389i −0.470396 0.882456i \(-0.655889\pi\)
0.693905 + 0.720067i \(0.255889\pi\)
\(740\) 0 0
\(741\) −3988.40 + 12275.0i −0.197729 + 0.608549i
\(742\) 0 0
\(743\) 30176.1 + 21924.2i 1.48998 + 1.08253i 0.974166 + 0.225832i \(0.0725101\pi\)
0.515813 + 0.856701i \(0.327490\pi\)
\(744\) 0 0
\(745\) 5851.26 + 18008.3i 0.287750 + 0.885602i
\(746\) 0 0
\(747\) 29607.4 1.45017
\(748\) 0 0
\(749\) 1371.43 0.0669041
\(750\) 0 0
\(751\) 1606.66 + 4944.80i 0.0780665 + 0.240264i 0.982472 0.186410i \(-0.0596852\pi\)
−0.904406 + 0.426674i \(0.859685\pi\)
\(752\) 0 0
\(753\) −5024.37 3650.42i −0.243158 0.176665i
\(754\) 0 0
\(755\) 4850.04 14926.9i 0.233789 0.719530i
\(756\) 0 0
\(757\) −127.874 + 92.9061i −0.00613959 + 0.00446067i −0.590851 0.806781i \(-0.701208\pi\)
0.584711 + 0.811242i \(0.301208\pi\)
\(758\) 0 0
\(759\) 4141.60 + 4073.87i 0.198064 + 0.194825i
\(760\) 0 0
\(761\) −5383.00 + 3910.98i −0.256417 + 0.186298i −0.708566 0.705644i \(-0.750658\pi\)
0.452149 + 0.891943i \(0.350658\pi\)
\(762\) 0 0
\(763\) 197.270 607.135i 0.00935998 0.0288070i
\(764\) 0 0
\(765\) 12189.4 + 8856.13i 0.576091 + 0.418554i
\(766\) 0 0
\(767\) −1038.14 3195.06i −0.0488722 0.150413i
\(768\) 0 0
\(769\) 5519.26 0.258816 0.129408 0.991591i \(-0.458692\pi\)
0.129408 + 0.991591i \(0.458692\pi\)
\(770\) 0 0
\(771\) −6778.18 −0.316615
\(772\) 0 0
\(773\) 9540.72 + 29363.3i 0.443927 + 1.36627i 0.883656 + 0.468137i \(0.155075\pi\)
−0.439729 + 0.898131i \(0.644925\pi\)
\(774\) 0 0
\(775\) −226.414 164.499i −0.0104942 0.00762451i
\(776\) 0 0
\(777\) −63.6103 + 195.772i −0.00293695 + 0.00903899i
\(778\) 0 0
\(779\) −22170.1 + 16107.5i −1.01967 + 0.740836i
\(780\) 0 0
\(781\) 6588.58 + 987.918i 0.301867 + 0.0452631i
\(782\) 0 0
\(783\) −4426.29 + 3215.88i −0.202021 + 0.146777i
\(784\) 0 0
\(785\) −211.429 + 650.711i −0.00961302 + 0.0295858i
\(786\) 0 0
\(787\) −20220.4 14690.9i −0.915855 0.665408i 0.0266338 0.999645i \(-0.491521\pi\)
−0.942489 + 0.334238i \(0.891521\pi\)
\(788\) 0 0
\(789\) 435.665 + 1340.84i 0.0196579 + 0.0605008i
\(790\) 0 0
\(791\) 844.031 0.0379397
\(792\) 0 0
\(793\) −31834.4 −1.42556
\(794\) 0 0
\(795\) 2666.55 + 8206.78i 0.118959 + 0.366119i
\(796\) 0 0
\(797\) 16563.4 + 12034.0i 0.736141 + 0.534838i 0.891500 0.453020i \(-0.149654\pi\)
−0.155359 + 0.987858i \(0.549654\pi\)
\(798\) 0 0
\(799\) 4139.33 12739.6i 0.183278 0.564071i
\(800\) 0 0
\(801\) 14282.5 10376.8i 0.630020 0.457736i
\(802\) 0 0
\(803\) −1248.38 7482.18i −0.0548622 0.328818i
\(804\) 0 0
\(805\) −565.259 + 410.685i −0.0247488 + 0.0179810i
\(806\) 0 0
\(807\) −842.491 + 2592.92i −0.0367498 + 0.113104i
\(808\) 0 0
\(809\) −11872.0 8625.48i −0.515941 0.374853i 0.299132 0.954212i \(-0.403303\pi\)
−0.815072 + 0.579359i \(0.803303\pi\)
\(810\) 0 0
\(811\) −1459.87 4493.01i −0.0632095 0.194539i 0.914465 0.404666i \(-0.132612\pi\)
−0.977674 + 0.210127i \(0.932612\pi\)
\(812\) 0 0
\(813\) −6194.10 −0.267204
\(814\) 0 0
\(815\) −2869.23 −0.123319
\(816\) 0 0
\(817\) 12047.8 + 37079.4i 0.515912 + 1.58781i
\(818\) 0 0
\(819\) −997.546 724.760i −0.0425606 0.0309221i
\(820\) 0 0
\(821\) 13881.5 42723.0i 0.590097 1.81613i 0.0123363 0.999924i \(-0.496073\pi\)
0.577760 0.816207i \(-0.303927\pi\)
\(822\) 0 0
\(823\) 32002.7 23251.3i 1.35546 0.984800i 0.356742 0.934203i \(-0.383888\pi\)
0.998719 0.0505967i \(-0.0161123\pi\)
\(824\) 0 0
\(825\) −1227.30 + 2458.61i −0.0517928 + 0.103755i
\(826\) 0 0
\(827\) 12752.3 9265.07i 0.536203 0.389574i −0.286470 0.958089i \(-0.592482\pi\)
0.822673 + 0.568515i \(0.192482\pi\)
\(828\) 0 0
\(829\) 6977.80 21475.5i 0.292339 0.899727i −0.691763 0.722124i \(-0.743166\pi\)
0.984102 0.177603i \(-0.0568342\pi\)
\(830\) 0 0
\(831\) 8287.34 + 6021.10i 0.345950 + 0.251348i
\(832\) 0 0
\(833\) −7419.75 22835.6i −0.308618 0.949830i
\(834\) 0 0
\(835\) 30746.4 1.27428
\(836\) 0 0
\(837\) 455.727 0.0188199
\(838\) 0 0
\(839\) 7245.74 + 22300.1i 0.298153 + 0.917621i 0.982144 + 0.188131i \(0.0602428\pi\)
−0.683991 + 0.729491i \(0.739757\pi\)
\(840\) 0 0
\(841\) 15906.4 + 11556.7i 0.652197 + 0.473849i
\(842\) 0 0
\(843\) 2087.71 6425.30i 0.0852958 0.262514i
\(844\) 0 0
\(845\) −13952.0 + 10136.7i −0.568002 + 0.412678i
\(846\) 0 0
\(847\) 620.085 + 824.534i 0.0251551 + 0.0334490i
\(848\) 0 0
\(849\) 4657.39 3383.79i 0.188270 0.136786i
\(850\) 0 0
\(851\) −5500.27 + 16928.1i −0.221559 + 0.681889i
\(852\) 0 0
\(853\) 12132.7 + 8814.90i 0.487004 + 0.353829i 0.804031 0.594587i \(-0.202685\pi\)
−0.317027 + 0.948417i \(0.602685\pi\)
\(854\) 0 0
\(855\) 8605.82 + 26486.0i 0.344225 + 1.05942i
\(856\) 0 0
\(857\) 46121.7 1.83838 0.919188 0.393819i \(-0.128846\pi\)
0.919188 + 0.393819i \(0.128846\pi\)
\(858\) 0 0
\(859\) 17398.7 0.691080 0.345540 0.938404i \(-0.387696\pi\)
0.345540 + 0.938404i \(0.387696\pi\)
\(860\) 0 0
\(861\) 78.0567 + 240.234i 0.00308962 + 0.00950888i
\(862\) 0 0
\(863\) −8989.57 6531.30i −0.354587 0.257622i 0.396204 0.918163i \(-0.370327\pi\)
−0.750791 + 0.660540i \(0.770327\pi\)
\(864\) 0 0
\(865\) −7299.56 + 22465.7i −0.286928 + 0.883072i
\(866\) 0 0
\(867\) −5.66730 + 4.11754i −0.000221997 + 0.000161291i
\(868\) 0 0
\(869\) −10638.0 + 21310.8i −0.415270 + 0.831899i
\(870\) 0 0
\(871\) −16776.2 + 12188.7i −0.652631 + 0.474164i
\(872\) 0 0
\(873\) 4781.43 14715.7i 0.185369 0.570507i
\(874\) 0 0
\(875\) −951.323 691.177i −0.0367550 0.0267040i
\(876\) 0 0
\(877\) 493.384 + 1518.48i 0.0189970 + 0.0584668i 0.960106 0.279638i \(-0.0902143\pi\)
−0.941109 + 0.338104i \(0.890214\pi\)
\(878\) 0 0
\(879\) −3445.25 −0.132202
\(880\) 0 0
\(881\) 4924.45 0.188319 0.0941594 0.995557i \(-0.469984\pi\)
0.0941594 + 0.995557i \(0.469984\pi\)
\(882\) 0 0
\(883\) 6665.86 + 20515.4i 0.254048 + 0.781878i 0.994016 + 0.109236i \(0.0348406\pi\)
−0.739968 + 0.672642i \(0.765159\pi\)
\(884\) 0 0
\(885\) 565.826 + 411.097i 0.0214916 + 0.0156145i
\(886\) 0 0
\(887\) −6836.67 + 21041.1i −0.258797 + 0.796495i 0.734261 + 0.678868i \(0.237529\pi\)
−0.993058 + 0.117628i \(0.962471\pi\)
\(888\) 0 0
\(889\) 787.146 571.895i 0.0296963 0.0215756i
\(890\) 0 0
\(891\) 3255.40 + 19511.3i 0.122402 + 0.733618i
\(892\) 0 0
\(893\) 20030.4 14552.9i 0.750607 0.545348i
\(894\) 0 0
\(895\) −3972.15 + 12225.0i −0.148351 + 0.456578i
\(896\) 0 0
\(897\) 8322.40 + 6046.58i 0.309785 + 0.225072i
\(898\) 0 0
\(899\) 121.687 + 374.513i 0.00451443 + 0.0138940i
\(900\) 0 0
\(901\) 44992.5 1.66362
\(902\) 0 0
\(903\) 359.372 0.0132438
\(904\) 0 0
\(905\) −1326.92 4083.83i −0.0487384 0.150001i
\(906\) 0 0
\(907\) −1648.63 1197.80i −0.0603548 0.0438504i 0.557199 0.830379i \(-0.311876\pi\)
−0.617554 + 0.786529i \(0.711876\pi\)
\(908\) 0 0
\(909\) −3874.73 + 11925.2i −0.141382 + 0.435130i
\(910\) 0 0
\(911\) 35177.4 25557.9i 1.27934 0.929495i 0.279808 0.960056i \(-0.409729\pi\)
0.999533 + 0.0305606i \(0.00972926\pi\)
\(912\) 0 0
\(913\) −43381.0 6504.73i −1.57251 0.235789i
\(914\) 0 0
\(915\) 5361.75 3895.54i 0.193720 0.140746i
\(916\) 0 0
\(917\) 335.617 1032.92i 0.0120862 0.0371975i
\(918\) 0 0
\(919\) −7796.33 5664.36i −0.279845 0.203319i 0.439005 0.898485i \(-0.355331\pi\)
−0.718850 + 0.695166i \(0.755331\pi\)
\(920\) 0 0
\(921\) −487.035 1498.94i −0.0174249 0.0536283i
\(922\) 0 0
\(923\) 11797.2 0.420704
\(924\) 0 0
\(925\) −8419.24 −0.299268
\(926\) 0 0
\(927\) −1331.07 4096.61i −0.0471608 0.145146i
\(928\) 0 0
\(929\) −5085.28 3694.67i −0.179594 0.130482i 0.494356 0.869259i \(-0.335404\pi\)
−0.673950 + 0.738777i \(0.735404\pi\)
\(930\) 0 0
\(931\) 13714.3 42208.3i 0.482780 1.48584i
\(932\) 0 0
\(933\) 6633.29 4819.37i 0.232759 0.169109i
\(934\) 0 0
\(935\) −15914.4 15654.1i −0.556637 0.547534i
\(936\) 0 0
\(937\) −19912.9 + 14467.6i −0.694266 + 0.504413i −0.878060 0.478551i \(-0.841162\pi\)
0.183794 + 0.982965i \(0.441162\pi\)
\(938\) 0 0
\(939\) −3331.08 + 10252.0i −0.115767 + 0.356295i
\(940\) 0 0
\(941\) −15898.0 11550.6i −0.550754 0.400146i 0.277310 0.960781i \(-0.410557\pi\)
−0.828063 + 0.560635i \(0.810557\pi\)
\(942\) 0 0
\(943\) 6749.43 + 20772.6i 0.233077 + 0.717337i
\(944\) 0 0
\(945\) 538.170 0.0185256
\(946\) 0 0
\(947\) −3025.82 −0.103829 −0.0519144 0.998652i \(-0.516532\pi\)
−0.0519144 + 0.998652i \(0.516532\pi\)
\(948\) 0 0
\(949\) −4150.80 12774.9i −0.141982 0.436975i
\(950\) 0 0
\(951\) −5380.41 3909.10i −0.183461 0.133293i
\(952\) 0 0
\(953\) −3617.77 + 11134.3i −0.122971 + 0.378465i −0.993526 0.113606i \(-0.963760\pi\)
0.870555 + 0.492071i \(0.163760\pi\)
\(954\) 0 0
\(955\) −9133.90 + 6636.16i −0.309493 + 0.224860i
\(956\) 0 0
\(957\) 3430.49 1783.70i 0.115875 0.0602495i
\(958\) 0 0
\(959\) −256.686 + 186.493i −0.00864319 + 0.00627964i
\(960\) 0 0
\(961\) −9195.79 + 28301.7i −0.308677 + 0.950009i
\(962\) 0 0
\(963\) −35247.4 25608.8i −1.17947 0.856938i
\(964\) 0 0
\(965\) −1413.25 4349.53i −0.0471441 0.145095i
\(966\) 0 0
\(967\) −12352.3 −0.410779 −0.205390 0.978680i \(-0.565846\pi\)
−0.205390 + 0.978680i \(0.565846\pi\)
\(968\) 0 0
\(969\) −14010.1 −0.464469
\(970\) 0 0
\(971\) 5225.07 + 16081.1i 0.172688 + 0.531481i 0.999520 0.0309686i \(-0.00985920\pi\)
−0.826832 + 0.562449i \(0.809859\pi\)
\(972\) 0 0
\(973\) −373.352 271.256i −0.0123012 0.00893737i
\(974\) 0 0
\(975\) −1503.64 + 4627.73i −0.0493898 + 0.152006i
\(976\) 0 0
\(977\) −19980.0 + 14516.3i −0.654266 + 0.475352i −0.864722 0.502251i \(-0.832505\pi\)
0.210456 + 0.977603i \(0.432505\pi\)
\(978\) 0 0
\(979\) −23206.6 + 12066.4i −0.757595 + 0.393915i
\(980\) 0 0
\(981\) −16407.1 + 11920.4i −0.533984 + 0.387962i
\(982\) 0 0
\(983\) 9496.51 29227.2i 0.308130 0.948326i −0.670361 0.742035i \(-0.733861\pi\)
0.978491 0.206291i \(-0.0661392\pi\)
\(984\) 0 0
\(985\) 8311.01 + 6038.30i 0.268843 + 0.195326i
\(986\) 0 0
\(987\) −70.5233 217.048i −0.00227435 0.00699972i
\(988\) 0 0
\(989\) 31074.3 0.999094
\(990\) 0 0
\(991\) −40862.5 −1.30983 −0.654915 0.755703i \(-0.727295\pi\)
−0.654915 + 0.755703i \(0.727295\pi\)
\(992\) 0 0
\(993\) 1851.30 + 5697.71i 0.0591633 + 0.182086i
\(994\) 0 0
\(995\) −21564.3 15667.3i −0.687068 0.499184i
\(996\) 0 0
\(997\) 17934.9 55198.1i 0.569715 1.75340i −0.0837946 0.996483i \(-0.526704\pi\)
0.653509 0.756918i \(-0.273296\pi\)
\(998\) 0 0
\(999\) 11091.5 8058.43i 0.351270 0.255213i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 176.4.m.c.113.2 8
4.3 odd 2 11.4.c.a.3.2 8
11.2 odd 10 1936.4.a.bl.1.4 4
11.4 even 5 inner 176.4.m.c.81.2 8
11.9 even 5 1936.4.a.bk.1.4 4
12.11 even 2 99.4.f.c.91.1 8
44.3 odd 10 121.4.c.h.27.1 8
44.7 even 10 121.4.c.i.81.1 8
44.15 odd 10 11.4.c.a.4.2 yes 8
44.19 even 10 121.4.c.b.27.2 8
44.27 odd 10 121.4.c.h.9.1 8
44.31 odd 10 121.4.a.g.1.2 4
44.35 even 10 121.4.a.f.1.3 4
44.39 even 10 121.4.c.b.9.2 8
44.43 even 2 121.4.c.i.3.1 8
132.35 odd 10 1089.4.a.bh.1.2 4
132.59 even 10 99.4.f.c.37.1 8
132.119 even 10 1089.4.a.y.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.4.c.a.3.2 8 4.3 odd 2
11.4.c.a.4.2 yes 8 44.15 odd 10
99.4.f.c.37.1 8 132.59 even 10
99.4.f.c.91.1 8 12.11 even 2
121.4.a.f.1.3 4 44.35 even 10
121.4.a.g.1.2 4 44.31 odd 10
121.4.c.b.9.2 8 44.39 even 10
121.4.c.b.27.2 8 44.19 even 10
121.4.c.h.9.1 8 44.27 odd 10
121.4.c.h.27.1 8 44.3 odd 10
121.4.c.i.3.1 8 44.43 even 2
121.4.c.i.81.1 8 44.7 even 10
176.4.m.c.81.2 8 11.4 even 5 inner
176.4.m.c.113.2 8 1.1 even 1 trivial
1089.4.a.y.1.3 4 132.119 even 10
1089.4.a.bh.1.2 4 132.35 odd 10
1936.4.a.bk.1.4 4 11.9 even 5
1936.4.a.bl.1.4 4 11.2 odd 10