Properties

Label 176.4.m
Level 176176
Weight 44
Character orbit 176.m
Rep. character χ176(49,)\chi_{176}(49,\cdot)
Character field Q(ζ5)\Q(\zeta_{5})
Dimension 6868
Newform subspaces 66
Sturm bound 9696
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 176=2411 176 = 2^{4} \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 176.m (of order 55 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 11 11
Character field: Q(ζ5)\Q(\zeta_{5})
Newform subspaces: 6 6
Sturm bound: 9696
Trace bound: 33
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M4(176,[χ])M_{4}(176, [\chi]).

Total New Old
Modular forms 312 76 236
Cusp forms 264 68 196
Eisenstein series 48 8 40

Trace form

68q+3q33q5+17q7118q96q113q1345q1579q17111q19+46q21240q23160q25+171q27203q29+3q31+489q331189q35++3630q99+O(q100) 68 q + 3 q^{3} - 3 q^{5} + 17 q^{7} - 118 q^{9} - 6 q^{11} - 3 q^{13} - 45 q^{15} - 79 q^{17} - 111 q^{19} + 46 q^{21} - 240 q^{23} - 160 q^{25} + 171 q^{27} - 203 q^{29} + 3 q^{31} + 489 q^{33} - 1189 q^{35}+ \cdots + 3630 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(176,[χ])S_{4}^{\mathrm{new}}(176, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
176.4.m.a 176.m 11.c 44 10.38410.384 Q(ζ10)\Q(\zeta_{10}) None 22.4.c.a 00 11 33 25-25 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(3ζ10+5ζ102+3ζ103)q3+(1+)q5+q+(3\zeta_{10}+5\zeta_{10}^{2}+3\zeta_{10}^{3})q^{3}+(1+\cdots)q^{5}+\cdots
176.4.m.b 176.m 11.c 88 10.38410.384 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 22.4.c.b 00 3-3 55 11 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(1β3+β4+β5)q3+(58β2+)q5+q+(-1-\beta _{3}+\beta _{4}+\beta _{5})q^{3}+(-5-8\beta _{2}+\cdots)q^{5}+\cdots
176.4.m.c 176.m 11.c 88 10.38410.384 8.0.\cdots.1 None 11.4.c.a 00 33 7-7 3535 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(1+β2+β4+β5+β6)q3+(2β1+)q5+q+(1+\beta _{2}+\beta _{4}+\beta _{5}+\beta _{6})q^{3}+(2\beta _{1}+\cdots)q^{5}+\cdots
176.4.m.d 176.m 11.c 1212 10.38410.384 Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots) None 44.4.e.a 00 44 4-4 6-6 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+β7q3+(1+β1+3β2+3β4β5+)q5+q+\beta _{7}q^{3}+(1+\beta _{1}+3\beta _{2}+3\beta _{4}-\beta _{5}+\cdots)q^{5}+\cdots
176.4.m.e 176.m 11.c 1616 10.38410.384 Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots) None 88.4.i.a 00 11 1-1 1313 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(β3+β6)q3+(1β3+2β5+β13+)q5+q+(\beta _{3}+\beta _{6})q^{3}+(-1-\beta _{3}+2\beta _{5}+\beta _{13}+\cdots)q^{5}+\cdots
176.4.m.f 176.m 11.c 2020 10.38410.384 Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots) None 88.4.i.b 00 3-3 11 1-1 SU(2)[C5]\mathrm{SU}(2)[C_{5}] q+(1+β6β7β9)q3+(1+β3+)q5+q+(-1+\beta _{6}-\beta _{7}-\beta _{9})q^{3}+(1+\beta _{3}+\cdots)q^{5}+\cdots

Decomposition of S4old(176,[χ])S_{4}^{\mathrm{old}}(176, [\chi]) into lower level spaces

S4old(176,[χ]) S_{4}^{\mathrm{old}}(176, [\chi]) \simeq S4new(11,[χ])S_{4}^{\mathrm{new}}(11, [\chi])5^{\oplus 5}\oplusS4new(22,[χ])S_{4}^{\mathrm{new}}(22, [\chi])4^{\oplus 4}\oplusS4new(44,[χ])S_{4}^{\mathrm{new}}(44, [\chi])3^{\oplus 3}\oplusS4new(88,[χ])S_{4}^{\mathrm{new}}(88, [\chi])2^{\oplus 2}