Properties

Label 44.4.e
Level $44$
Weight $4$
Character orbit 44.e
Rep. character $\chi_{44}(5,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $12$
Newform subspaces $1$
Sturm bound $24$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 44 = 2^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 44.e (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 1 \)
Sturm bound: \(24\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(44, [\chi])\).

Total New Old
Modular forms 84 12 72
Cusp forms 60 12 48
Eisenstein series 24 0 24

Trace form

\( 12 q - 4 q^{3} - 4 q^{5} + 6 q^{7} + 47 q^{9} + 39 q^{11} - 10 q^{13} + 74 q^{15} - 56 q^{17} - 141 q^{19} - 304 q^{21} - 388 q^{23} - 203 q^{25} - 331 q^{27} + 772 q^{29} + 882 q^{31} + 981 q^{33} + 412 q^{35}+ \cdots + 3563 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(44, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
44.4.e.a 44.e 11.c $12$ $2.596$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 44.4.e.a \(0\) \(-4\) \(-4\) \(6\) $\mathrm{SU}(2)[C_{5}]$ \(q-\beta _{7}q^{3}+(1+\beta _{1}+3\beta _{2}+3\beta _{4}-\beta _{5}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(44, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(44, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(11, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 2}\)