Defining parameters
| Level: | \( N \) | \(=\) | \( 44 = 2^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 44.e (of order \(5\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
| Character field: | \(\Q(\zeta_{5})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(24\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(44, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 84 | 12 | 72 |
| Cusp forms | 60 | 12 | 48 |
| Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(44, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 44.4.e.a | $12$ | $2.596$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(-4\) | \(-4\) | \(6\) | \(q-\beta _{7}q^{3}+(1+\beta _{1}+3\beta _{2}+3\beta _{4}-\beta _{5}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(44, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(44, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(11, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 2}\)