Properties

Label 176.4
Level 176
Weight 4
Dimension 1553
Nonzero newspaces 8
Newform subspaces 27
Sturm bound 7680
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 27 \)
Sturm bound: \(7680\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(176))\).

Total New Old
Modular forms 3020 1633 1387
Cusp forms 2740 1553 1187
Eisenstein series 280 80 200

Trace form

\( 1553 q - 16 q^{2} - 19 q^{3} - 36 q^{4} - 17 q^{5} + 44 q^{6} + 33 q^{7} + 68 q^{8} + 17 q^{9} + 116 q^{10} - 77 q^{11} - 240 q^{12} - 65 q^{13} - 396 q^{14} + 249 q^{15} - 580 q^{16} - 137 q^{17} - 368 q^{18}+ \cdots - 2239 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(176))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
176.4.a \(\chi_{176}(1, \cdot)\) 176.4.a.a 1 1
176.4.a.b 1
176.4.a.c 1
176.4.a.d 1
176.4.a.e 1
176.4.a.f 1
176.4.a.g 2
176.4.a.h 2
176.4.a.i 2
176.4.a.j 3
176.4.c \(\chi_{176}(89, \cdot)\) None 0 1
176.4.e \(\chi_{176}(175, \cdot)\) 176.4.e.a 2 1
176.4.e.b 2
176.4.e.c 2
176.4.e.d 4
176.4.e.e 8
176.4.g \(\chi_{176}(87, \cdot)\) None 0 1
176.4.i \(\chi_{176}(43, \cdot)\) 176.4.i.a 140 2
176.4.j \(\chi_{176}(45, \cdot)\) 176.4.j.a 120 2
176.4.m \(\chi_{176}(49, \cdot)\) 176.4.m.a 4 4
176.4.m.b 8
176.4.m.c 8
176.4.m.d 12
176.4.m.e 16
176.4.m.f 20
176.4.o \(\chi_{176}(7, \cdot)\) None 0 4
176.4.q \(\chi_{176}(63, \cdot)\) 176.4.q.a 24 4
176.4.q.b 48
176.4.s \(\chi_{176}(9, \cdot)\) None 0 4
176.4.w \(\chi_{176}(5, \cdot)\) 176.4.w.a 560 8
176.4.x \(\chi_{176}(19, \cdot)\) 176.4.x.a 560 8

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(176))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(176)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 2}\)