Defining parameters
Level: | \( N \) | = | \( 176 = 2^{4} \cdot 11 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 8 \) | ||
Newform subspaces: | \( 27 \) | ||
Sturm bound: | \(7680\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(176))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3020 | 1633 | 1387 |
Cusp forms | 2740 | 1553 | 1187 |
Eisenstein series | 280 | 80 | 200 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(176))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
176.4.a | \(\chi_{176}(1, \cdot)\) | 176.4.a.a | 1 | 1 |
176.4.a.b | 1 | |||
176.4.a.c | 1 | |||
176.4.a.d | 1 | |||
176.4.a.e | 1 | |||
176.4.a.f | 1 | |||
176.4.a.g | 2 | |||
176.4.a.h | 2 | |||
176.4.a.i | 2 | |||
176.4.a.j | 3 | |||
176.4.c | \(\chi_{176}(89, \cdot)\) | None | 0 | 1 |
176.4.e | \(\chi_{176}(175, \cdot)\) | 176.4.e.a | 2 | 1 |
176.4.e.b | 2 | |||
176.4.e.c | 2 | |||
176.4.e.d | 4 | |||
176.4.e.e | 8 | |||
176.4.g | \(\chi_{176}(87, \cdot)\) | None | 0 | 1 |
176.4.i | \(\chi_{176}(43, \cdot)\) | 176.4.i.a | 140 | 2 |
176.4.j | \(\chi_{176}(45, \cdot)\) | 176.4.j.a | 120 | 2 |
176.4.m | \(\chi_{176}(49, \cdot)\) | 176.4.m.a | 4 | 4 |
176.4.m.b | 8 | |||
176.4.m.c | 8 | |||
176.4.m.d | 12 | |||
176.4.m.e | 16 | |||
176.4.m.f | 20 | |||
176.4.o | \(\chi_{176}(7, \cdot)\) | None | 0 | 4 |
176.4.q | \(\chi_{176}(63, \cdot)\) | 176.4.q.a | 24 | 4 |
176.4.q.b | 48 | |||
176.4.s | \(\chi_{176}(9, \cdot)\) | None | 0 | 4 |
176.4.w | \(\chi_{176}(5, \cdot)\) | 176.4.w.a | 560 | 8 |
176.4.x | \(\chi_{176}(19, \cdot)\) | 176.4.x.a | 560 | 8 |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(176))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(176)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(176))\)\(^{\oplus 1}\)