Properties

Label 121.4.c.b.27.2
Level $121$
Weight $4$
Character 121.27
Analytic conductor $7.139$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [121,4,Mod(3,121)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("121.3"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(121, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 121.c (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-3,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.13923111069\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.29283765625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 10x^{6} - 19x^{5} + 109x^{4} + 171x^{3} + 810x^{2} + 729x + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 27.2
Root \(-2.05602 + 1.49379i\) of defining polynomial
Character \(\chi\) \(=\) 121.27
Dual form 121.4.c.b.9.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.285330 + 0.878155i) q^{2} +(1.24700 + 0.906001i) q^{3} +(5.78239 - 4.20115i) q^{4} +(2.69633 - 8.29844i) q^{5} +(-0.439802 + 1.35357i) q^{6} +(0.627082 - 0.455601i) q^{7} +(11.3152 + 8.22096i) q^{8} +(-7.60928 - 23.4190i) q^{9} +8.05666 q^{10} +11.0169 q^{12} +(-19.9632 - 61.4404i) q^{13} +(0.579014 + 0.420678i) q^{14} +(10.8807 - 7.90531i) q^{15} +(13.6787 - 42.0987i) q^{16} +(-21.6699 + 66.6930i) q^{17} +(18.3943 - 13.3643i) q^{18} +(104.861 + 76.1863i) q^{19} +(-19.2718 - 59.3125i) q^{20} +1.19475 q^{21} +103.308 q^{23} +(6.66187 + 20.5031i) q^{24} +(39.5332 + 28.7225i) q^{25} +(48.2581 - 35.0616i) q^{26} +(24.5893 - 75.6779i) q^{27} +(1.71198 - 5.26893i) q^{28} +(-55.6258 + 40.4145i) q^{29} +(10.0467 + 7.29935i) q^{30} +(1.76980 + 5.44688i) q^{31} +152.763 q^{32} -64.7499 q^{34} +(-2.08996 - 6.43225i) q^{35} +(-142.386 - 103.450i) q^{36} +(-139.388 + 101.272i) q^{37} +(-36.9833 + 113.823i) q^{38} +(30.7709 - 94.7031i) q^{39} +(98.7306 - 71.7320i) q^{40} +(-171.044 - 124.271i) q^{41} +(0.340898 + 1.04917i) q^{42} -300.793 q^{43} -214.858 q^{45} +(29.4768 + 90.7203i) q^{46} +(154.537 + 112.277i) q^{47} +(55.1989 - 40.1043i) q^{48} +(-105.807 + 325.641i) q^{49} +(-13.9428 + 42.9117i) q^{50} +(-87.4464 + 63.5335i) q^{51} +(-373.556 - 271.404i) q^{52} +(198.266 + 610.201i) q^{53} +73.4730 q^{54} +10.8410 q^{56} +(61.7378 + 190.009i) q^{57} +(-51.3620 - 37.3166i) q^{58} +(-42.0710 + 30.5663i) q^{59} +(29.7052 - 91.4232i) q^{60} +(152.276 - 468.657i) q^{61} +(-4.27823 + 3.10832i) q^{62} +(-15.4413 - 11.2188i) q^{63} +(-65.8417 - 202.640i) q^{64} -563.687 q^{65} -320.988 q^{67} +(154.884 + 476.684i) q^{68} +(128.825 + 93.5970i) q^{69} +(5.05219 - 3.67063i) q^{70} +(-56.4304 + 173.675i) q^{71} +(106.426 - 327.545i) q^{72} +(-168.213 + 122.214i) q^{73} +(-128.704 - 93.5088i) q^{74} +(23.2754 + 71.6342i) q^{75} +926.421 q^{76} +91.9439 q^{78} +(-201.747 - 620.913i) q^{79} +(-312.471 - 227.024i) q^{80} +(-438.649 + 318.697i) q^{81} +(60.3252 - 185.662i) q^{82} +(-371.554 + 1143.52i) q^{83} +(6.90850 - 5.01932i) q^{84} +(495.019 + 359.652i) q^{85} +(-85.8253 - 264.143i) q^{86} -105.981 q^{87} +716.942 q^{89} +(-61.3054 - 188.679i) q^{90} +(-40.5109 - 29.4329i) q^{91} +(597.366 - 434.012i) q^{92} +(-2.72794 + 8.39572i) q^{93} +(-54.5031 + 167.743i) q^{94} +(914.969 - 664.764i) q^{95} +(190.496 + 138.403i) q^{96} +(-194.177 - 597.614i) q^{97} -316.153 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 3 q^{2} - 3 q^{3} - 17 q^{4} + 18 q^{5} + 14 q^{6} - 10 q^{7} + 113 q^{8} + 31 q^{9} - 40 q^{10} + 190 q^{12} - 40 q^{13} + 64 q^{14} + 119 q^{15} + 343 q^{16} + 201 q^{17} - 53 q^{18} + 302 q^{19}+ \cdots - 2740 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/121\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.285330 + 0.878155i 0.100879 + 0.310475i 0.988741 0.149635i \(-0.0478099\pi\)
−0.887862 + 0.460110i \(0.847810\pi\)
\(3\) 1.24700 + 0.906001i 0.239986 + 0.174360i 0.701277 0.712889i \(-0.252614\pi\)
−0.461291 + 0.887249i \(0.652614\pi\)
\(4\) 5.78239 4.20115i 0.722799 0.525144i
\(5\) 2.69633 8.29844i 0.241167 0.742235i −0.755076 0.655637i \(-0.772400\pi\)
0.996243 0.0865984i \(-0.0275997\pi\)
\(6\) −0.439802 + 1.35357i −0.0299248 + 0.0920989i
\(7\) 0.627082 0.455601i 0.0338592 0.0246002i −0.570727 0.821140i \(-0.693339\pi\)
0.604586 + 0.796540i \(0.293339\pi\)
\(8\) 11.3152 + 8.22096i 0.500065 + 0.363319i
\(9\) −7.60928 23.4190i −0.281825 0.867369i
\(10\) 8.05666 0.254774
\(11\) 0 0
\(12\) 11.0169 0.265026
\(13\) −19.9632 61.4404i −0.425907 1.31081i −0.902123 0.431480i \(-0.857992\pi\)
0.476215 0.879329i \(-0.342008\pi\)
\(14\) 0.579014 + 0.420678i 0.0110534 + 0.00803079i
\(15\) 10.8807 7.90531i 0.187293 0.136076i
\(16\) 13.6787 42.0987i 0.213730 0.657792i
\(17\) −21.6699 + 66.6930i −0.309160 + 0.951496i 0.668932 + 0.743323i \(0.266752\pi\)
−0.978092 + 0.208173i \(0.933248\pi\)
\(18\) 18.3943 13.3643i 0.240866 0.174999i
\(19\) 104.861 + 76.1863i 1.26615 + 0.919913i 0.999042 0.0437534i \(-0.0139316\pi\)
0.267109 + 0.963666i \(0.413932\pi\)
\(20\) −19.2718 59.3125i −0.215465 0.663134i
\(21\) 1.19475 0.0124150
\(22\) 0 0
\(23\) 103.308 0.936572 0.468286 0.883577i \(-0.344872\pi\)
0.468286 + 0.883577i \(0.344872\pi\)
\(24\) 6.66187 + 20.5031i 0.0566604 + 0.174383i
\(25\) 39.5332 + 28.7225i 0.316265 + 0.229780i
\(26\) 48.2581 35.0616i 0.364008 0.264467i
\(27\) 24.5893 75.6779i 0.175267 0.539416i
\(28\) 1.71198 5.26893i 0.0115548 0.0355620i
\(29\) −55.6258 + 40.4145i −0.356188 + 0.258786i −0.751460 0.659778i \(-0.770650\pi\)
0.395272 + 0.918564i \(0.370650\pi\)
\(30\) 10.0467 + 7.29935i 0.0611422 + 0.0444224i
\(31\) 1.76980 + 5.44688i 0.0102537 + 0.0315577i 0.956052 0.293196i \(-0.0947187\pi\)
−0.945799 + 0.324753i \(0.894719\pi\)
\(32\) 152.763 0.843903
\(33\) 0 0
\(34\) −64.7499 −0.326604
\(35\) −2.08996 6.43225i −0.0100934 0.0310642i
\(36\) −142.386 103.450i −0.659197 0.478934i
\(37\) −139.388 + 101.272i −0.619332 + 0.449971i −0.852688 0.522420i \(-0.825029\pi\)
0.233356 + 0.972391i \(0.425029\pi\)
\(38\) −36.9833 + 113.823i −0.157881 + 0.485908i
\(39\) 30.7709 94.7031i 0.126341 0.388837i
\(40\) 98.7306 71.7320i 0.390267 0.283546i
\(41\) −171.044 124.271i −0.651528 0.473363i 0.212263 0.977213i \(-0.431917\pi\)
−0.863791 + 0.503850i \(0.831917\pi\)
\(42\) 0.340898 + 1.04917i 0.00125242 + 0.00385455i
\(43\) −300.793 −1.06676 −0.533378 0.845877i \(-0.679078\pi\)
−0.533378 + 0.845877i \(0.679078\pi\)
\(44\) 0 0
\(45\) −214.858 −0.711758
\(46\) 29.4768 + 90.7203i 0.0944808 + 0.290782i
\(47\) 154.537 + 112.277i 0.479606 + 0.348454i 0.801173 0.598433i \(-0.204210\pi\)
−0.321567 + 0.946887i \(0.604210\pi\)
\(48\) 55.1989 40.1043i 0.165985 0.120595i
\(49\) −105.807 + 325.641i −0.308476 + 0.949391i
\(50\) −13.9428 + 42.9117i −0.0394363 + 0.121373i
\(51\) −87.4464 + 63.5335i −0.240097 + 0.174441i
\(52\) −373.556 271.404i −0.996209 0.723788i
\(53\) 198.266 + 610.201i 0.513848 + 1.58146i 0.785368 + 0.619030i \(0.212474\pi\)
−0.271519 + 0.962433i \(0.587526\pi\)
\(54\) 73.4730 0.185156
\(55\) 0 0
\(56\) 10.8410 0.0258695
\(57\) 61.7378 + 190.009i 0.143463 + 0.441532i
\(58\) −51.3620 37.3166i −0.116279 0.0844813i
\(59\) −42.0710 + 30.5663i −0.0928334 + 0.0674474i −0.633234 0.773961i \(-0.718273\pi\)
0.540400 + 0.841408i \(0.318273\pi\)
\(60\) 29.7052 91.4232i 0.0639154 0.196711i
\(61\) 152.276 468.657i 0.319621 0.983694i −0.654189 0.756331i \(-0.726990\pi\)
0.973810 0.227362i \(-0.0730102\pi\)
\(62\) −4.27823 + 3.10832i −0.00876348 + 0.00636704i
\(63\) −15.4413 11.2188i −0.0308798 0.0224355i
\(64\) −65.8417 202.640i −0.128597 0.395781i
\(65\) −563.687 −1.07564
\(66\) 0 0
\(67\) −320.988 −0.585298 −0.292649 0.956220i \(-0.594537\pi\)
−0.292649 + 0.956220i \(0.594537\pi\)
\(68\) 154.884 + 476.684i 0.276212 + 0.850094i
\(69\) 128.825 + 93.5970i 0.224764 + 0.163301i
\(70\) 5.05219 3.67063i 0.00862645 0.00626749i
\(71\) −56.4304 + 173.675i −0.0943248 + 0.290302i −0.987077 0.160246i \(-0.948771\pi\)
0.892752 + 0.450548i \(0.148771\pi\)
\(72\) 106.426 327.545i 0.174200 0.536133i
\(73\) −168.213 + 122.214i −0.269696 + 0.195946i −0.714411 0.699727i \(-0.753305\pi\)
0.444714 + 0.895672i \(0.353305\pi\)
\(74\) −128.704 93.5088i −0.202183 0.146894i
\(75\) 23.2754 + 71.6342i 0.0358348 + 0.110288i
\(76\) 926.421 1.39826
\(77\) 0 0
\(78\) 91.9439 0.133469
\(79\) −201.747 620.913i −0.287320 0.884281i −0.985694 0.168547i \(-0.946092\pi\)
0.698373 0.715734i \(-0.253908\pi\)
\(80\) −312.471 227.024i −0.436692 0.317275i
\(81\) −438.649 + 318.697i −0.601714 + 0.437171i
\(82\) 60.3252 185.662i 0.0812415 0.250036i
\(83\) −371.554 + 1143.52i −0.491365 + 1.51227i 0.331181 + 0.943567i \(0.392553\pi\)
−0.822546 + 0.568699i \(0.807447\pi\)
\(84\) 6.90850 5.01932i 0.00897357 0.00651968i
\(85\) 495.019 + 359.652i 0.631675 + 0.458939i
\(86\) −85.8253 264.143i −0.107614 0.331201i
\(87\) −105.981 −0.130602
\(88\) 0 0
\(89\) 716.942 0.853885 0.426942 0.904279i \(-0.359591\pi\)
0.426942 + 0.904279i \(0.359591\pi\)
\(90\) −61.3054 188.679i −0.0718017 0.220983i
\(91\) −40.5109 29.4329i −0.0466670 0.0339056i
\(92\) 597.366 434.012i 0.676954 0.491836i
\(93\) −2.72794 + 8.39572i −0.00304165 + 0.00936124i
\(94\) −54.5031 + 167.743i −0.0598039 + 0.184057i
\(95\) 914.969 664.764i 0.988145 0.717930i
\(96\) 190.496 + 138.403i 0.202525 + 0.147143i
\(97\) −194.177 597.614i −0.203254 0.625552i −0.999781 0.0209481i \(-0.993332\pi\)
0.796526 0.604604i \(-0.206668\pi\)
\(98\) −316.153 −0.325881
\(99\) 0 0
\(100\) 349.264 0.349264
\(101\) −157.355 484.288i −0.155024 0.477114i 0.843140 0.537695i \(-0.180705\pi\)
−0.998163 + 0.0605810i \(0.980705\pi\)
\(102\) −80.7434 58.6635i −0.0783803 0.0569466i
\(103\) 141.519 102.820i 0.135381 0.0983604i −0.518033 0.855360i \(-0.673336\pi\)
0.653415 + 0.757000i \(0.273336\pi\)
\(104\) 279.212 859.327i 0.263260 0.810230i
\(105\) 3.22143 9.91455i 0.00299409 0.00921487i
\(106\) −479.280 + 348.217i −0.439168 + 0.319074i
\(107\) 1431.42 + 1039.99i 1.29327 + 0.939619i 0.999866 0.0163681i \(-0.00521035\pi\)
0.293409 + 0.955987i \(0.405210\pi\)
\(108\) −175.750 540.903i −0.156588 0.481930i
\(109\) 823.593 0.723724 0.361862 0.932232i \(-0.382141\pi\)
0.361862 + 0.932232i \(0.382141\pi\)
\(110\) 0 0
\(111\) −265.570 −0.227088
\(112\) −10.6026 32.6314i −0.00894508 0.0275301i
\(113\) 880.947 + 640.045i 0.733385 + 0.532836i 0.890633 0.454724i \(-0.150262\pi\)
−0.157247 + 0.987559i \(0.550262\pi\)
\(114\) −149.242 + 108.431i −0.122612 + 0.0890830i
\(115\) 278.552 857.294i 0.225870 0.695157i
\(116\) −151.863 + 467.385i −0.121553 + 0.374100i
\(117\) −1286.96 + 935.035i −1.01692 + 0.738838i
\(118\) −38.8461 28.2234i −0.0303057 0.0220184i
\(119\) 16.7967 + 51.6948i 0.0129391 + 0.0398223i
\(120\) 188.107 0.143098
\(121\) 0 0
\(122\) 455.002 0.337655
\(123\) −100.703 309.933i −0.0738221 0.227201i
\(124\) 33.1169 + 24.0608i 0.0239837 + 0.0174252i
\(125\) 1227.33 891.708i 0.878207 0.638054i
\(126\) 5.44597 16.7610i 0.00385052 0.0118507i
\(127\) 387.895 1193.82i 0.271024 0.834127i −0.719220 0.694783i \(-0.755501\pi\)
0.990244 0.139344i \(-0.0444994\pi\)
\(128\) 1147.86 833.973i 0.792640 0.575886i
\(129\) −375.090 272.519i −0.256007 0.186000i
\(130\) −160.837 495.005i −0.108510 0.333960i
\(131\) −1401.18 −0.934519 −0.467259 0.884120i \(-0.654759\pi\)
−0.467259 + 0.884120i \(0.654759\pi\)
\(132\) 0 0
\(133\) 100.467 0.0655009
\(134\) −91.5876 281.878i −0.0590445 0.181720i
\(135\) −561.708 408.105i −0.358105 0.260178i
\(136\) −793.480 + 576.497i −0.500296 + 0.363487i
\(137\) −126.491 + 389.300i −0.0788822 + 0.242775i −0.982719 0.185102i \(-0.940738\pi\)
0.903837 + 0.427877i \(0.140738\pi\)
\(138\) −45.4350 + 139.835i −0.0280267 + 0.0862573i
\(139\) 481.672 349.955i 0.293920 0.213545i −0.431046 0.902330i \(-0.641855\pi\)
0.724966 + 0.688784i \(0.241855\pi\)
\(140\) −39.1079 28.4135i −0.0236087 0.0171527i
\(141\) 90.9842 + 280.021i 0.0543422 + 0.167248i
\(142\) −168.615 −0.0996468
\(143\) 0 0
\(144\) −1089.99 −0.630783
\(145\) 185.392 + 570.578i 0.106179 + 0.326786i
\(146\) −155.319 112.846i −0.0880430 0.0639670i
\(147\) −426.973 + 310.214i −0.239566 + 0.174055i
\(148\) −380.541 + 1171.18i −0.211353 + 0.650478i
\(149\) −670.593 + 2063.87i −0.368705 + 1.13476i 0.578923 + 0.815383i \(0.303473\pi\)
−0.947628 + 0.319376i \(0.896527\pi\)
\(150\) −56.2648 + 40.8788i −0.0306267 + 0.0222516i
\(151\) −1455.23 1057.28i −0.784269 0.569805i 0.121988 0.992532i \(-0.461073\pi\)
−0.906257 + 0.422727i \(0.861073\pi\)
\(152\) 560.202 + 1724.13i 0.298937 + 0.920033i
\(153\) 1726.77 0.912427
\(154\) 0 0
\(155\) 49.9726 0.0258961
\(156\) −219.933 676.884i −0.112876 0.347398i
\(157\) 63.4380 + 46.0904i 0.0322478 + 0.0234294i 0.603792 0.797142i \(-0.293656\pi\)
−0.571545 + 0.820571i \(0.693656\pi\)
\(158\) 487.694 354.330i 0.245562 0.178411i
\(159\) −305.604 + 940.552i −0.152427 + 0.469123i
\(160\) 411.899 1267.69i 0.203522 0.626375i
\(161\) 64.7824 47.0672i 0.0317116 0.0230398i
\(162\) −405.026 294.268i −0.196431 0.142715i
\(163\) 101.615 + 312.739i 0.0488289 + 0.150280i 0.972498 0.232911i \(-0.0748251\pi\)
−0.923669 + 0.383191i \(0.874825\pi\)
\(164\) −1511.13 −0.719508
\(165\) 0 0
\(166\) −1110.21 −0.519089
\(167\) 1088.90 + 3351.28i 0.504560 + 1.55287i 0.801510 + 0.597982i \(0.204030\pi\)
−0.296950 + 0.954893i \(0.595970\pi\)
\(168\) 13.5188 + 9.82198i 0.00620832 + 0.00451061i
\(169\) −1598.99 + 1161.73i −0.727804 + 0.528781i
\(170\) −174.587 + 537.323i −0.0787659 + 0.242417i
\(171\) 986.284 3035.47i 0.441070 1.35747i
\(172\) −1739.30 + 1263.68i −0.771050 + 0.560201i
\(173\) −2190.19 1591.27i −0.962526 0.699316i −0.00878983 0.999961i \(-0.502798\pi\)
−0.953736 + 0.300645i \(0.902798\pi\)
\(174\) −30.2396 93.0680i −0.0131751 0.0405487i
\(175\) 37.8766 0.0163611
\(176\) 0 0
\(177\) −80.1558 −0.0340389
\(178\) 204.565 + 629.587i 0.0861394 + 0.265110i
\(179\) −1191.82 865.907i −0.497658 0.361570i 0.310464 0.950585i \(-0.399516\pi\)
−0.808122 + 0.589016i \(0.799516\pi\)
\(180\) −1242.39 + 902.651i −0.514458 + 0.373776i
\(181\) −152.074 + 468.035i −0.0624505 + 0.192203i −0.977414 0.211334i \(-0.932219\pi\)
0.914963 + 0.403537i \(0.132219\pi\)
\(182\) 14.2877 43.9730i 0.00581908 0.0179093i
\(183\) 614.492 446.454i 0.248222 0.180343i
\(184\) 1168.95 + 849.289i 0.468347 + 0.340274i
\(185\) 464.559 + 1429.77i 0.184622 + 0.568208i
\(186\) −8.15111 −0.00321327
\(187\) 0 0
\(188\) 1365.29 0.529647
\(189\) −19.0595 58.6591i −0.00733532 0.0225758i
\(190\) 844.834 + 613.808i 0.322583 + 0.234370i
\(191\) 1046.81 760.549i 0.396566 0.288122i −0.371575 0.928403i \(-0.621182\pi\)
0.768141 + 0.640281i \(0.221182\pi\)
\(192\) 101.487 312.346i 0.0381469 0.117404i
\(193\) 161.968 498.485i 0.0604077 0.185916i −0.916299 0.400495i \(-0.868838\pi\)
0.976707 + 0.214580i \(0.0688381\pi\)
\(194\) 469.394 341.034i 0.173714 0.126211i
\(195\) −702.920 510.701i −0.258139 0.187549i
\(196\) 756.249 + 2327.50i 0.275601 + 0.848213i
\(197\) 1177.35 0.425801 0.212900 0.977074i \(-0.431709\pi\)
0.212900 + 0.977074i \(0.431709\pi\)
\(198\) 0 0
\(199\) −3054.83 −1.08820 −0.544098 0.839022i \(-0.683128\pi\)
−0.544098 + 0.839022i \(0.683128\pi\)
\(200\) 211.198 + 650.002i 0.0746699 + 0.229810i
\(201\) −400.274 290.816i −0.140463 0.102053i
\(202\) 380.382 276.364i 0.132493 0.0962619i
\(203\) −16.4690 + 50.6864i −0.00569408 + 0.0175246i
\(204\) −238.735 + 734.751i −0.0819353 + 0.252171i
\(205\) −1492.45 + 1084.33i −0.508474 + 0.369428i
\(206\) 130.671 + 94.9382i 0.0441956 + 0.0321100i
\(207\) −786.098 2419.36i −0.263950 0.812353i
\(208\) −2859.63 −0.953269
\(209\) 0 0
\(210\) 9.62569 0.00316303
\(211\) −526.763 1621.21i −0.171867 0.528951i 0.827610 0.561304i \(-0.189700\pi\)
−0.999477 + 0.0323524i \(0.989700\pi\)
\(212\) 3710.00 + 2695.47i 1.20191 + 0.873235i
\(213\) −227.719 + 165.447i −0.0732536 + 0.0532219i
\(214\) −504.843 + 1553.75i −0.161263 + 0.496317i
\(215\) −811.037 + 2496.11i −0.257266 + 0.791784i
\(216\) 900.377 654.162i 0.283625 0.206065i
\(217\) 3.59142 + 2.60932i 0.00112351 + 0.000816276i
\(218\) 234.996 + 723.243i 0.0730088 + 0.224698i
\(219\) −320.488 −0.0988884
\(220\) 0 0
\(221\) 4530.25 1.37890
\(222\) −75.7750 233.212i −0.0229085 0.0705051i
\(223\) −3723.52 2705.29i −1.11814 0.812376i −0.134214 0.990952i \(-0.542851\pi\)
−0.983926 + 0.178576i \(0.942851\pi\)
\(224\) 95.7948 69.5990i 0.0285739 0.0207602i
\(225\) 371.833 1144.38i 0.110173 0.339077i
\(226\) −310.699 + 956.233i −0.0914486 + 0.281450i
\(227\) 2659.61 1932.32i 0.777640 0.564989i −0.126630 0.991950i \(-0.540416\pi\)
0.904270 + 0.426961i \(0.140416\pi\)
\(228\) 1155.25 + 839.338i 0.335563 + 0.243801i
\(229\) −911.905 2806.56i −0.263146 0.809880i −0.992115 0.125333i \(-0.960000\pi\)
0.728969 0.684547i \(-0.240000\pi\)
\(230\) 832.316 0.238614
\(231\) 0 0
\(232\) −961.663 −0.272139
\(233\) −872.263 2684.55i −0.245253 0.754810i −0.995595 0.0937604i \(-0.970111\pi\)
0.750342 0.661050i \(-0.229889\pi\)
\(234\) −1188.32 863.362i −0.331977 0.241195i
\(235\) 1348.41 979.676i 0.374300 0.271945i
\(236\) −114.857 + 353.493i −0.0316803 + 0.0975019i
\(237\) 310.969 957.064i 0.0852304 0.262312i
\(238\) −40.6035 + 29.5002i −0.0110585 + 0.00803450i
\(239\) 1667.52 + 1211.52i 0.451309 + 0.327895i 0.790112 0.612962i \(-0.210022\pi\)
−0.338804 + 0.940857i \(0.610022\pi\)
\(240\) −183.969 566.199i −0.0494798 0.152283i
\(241\) 3089.45 0.825763 0.412881 0.910785i \(-0.364522\pi\)
0.412881 + 0.910785i \(0.364522\pi\)
\(242\) 0 0
\(243\) −2984.19 −0.787803
\(244\) −1088.38 3349.69i −0.285559 0.878860i
\(245\) 2417.02 + 1756.07i 0.630277 + 0.457923i
\(246\) 243.436 176.866i 0.0630930 0.0458398i
\(247\) 2587.55 7963.66i 0.666566 2.05148i
\(248\) −24.7530 + 76.1819i −0.00633797 + 0.0195063i
\(249\) −1499.36 + 1089.35i −0.381600 + 0.277248i
\(250\) 1133.25 + 823.356i 0.286693 + 0.208295i
\(251\) −1245.08 3831.95i −0.313102 0.963629i −0.976529 0.215387i \(-0.930899\pi\)
0.663427 0.748241i \(-0.269101\pi\)
\(252\) −136.420 −0.0341017
\(253\) 0 0
\(254\) 1159.03 0.286316
\(255\) 291.445 + 896.976i 0.0715726 + 0.220278i
\(256\) −319.130 231.861i −0.0779125 0.0566068i
\(257\) 3557.63 2584.77i 0.863498 0.627368i −0.0653367 0.997863i \(-0.520812\pi\)
0.928834 + 0.370496i \(0.120812\pi\)
\(258\) 132.289 407.145i 0.0319224 0.0982471i
\(259\) −41.2684 + 127.011i −0.00990074 + 0.0304714i
\(260\) −3259.46 + 2368.14i −0.777474 + 0.564868i
\(261\) 1369.74 + 995.173i 0.324846 + 0.236014i
\(262\) −399.800 1230.46i −0.0942737 0.290145i
\(263\) 914.661 0.214450 0.107225 0.994235i \(-0.465803\pi\)
0.107225 + 0.994235i \(0.465803\pi\)
\(264\) 0 0
\(265\) 5598.31 1.29774
\(266\) 28.6663 + 88.2259i 0.00660769 + 0.0203364i
\(267\) 894.030 + 649.551i 0.204920 + 0.148883i
\(268\) −1856.08 + 1348.52i −0.423053 + 0.307366i
\(269\) −546.582 + 1682.21i −0.123887 + 0.381286i −0.993697 0.112102i \(-0.964242\pi\)
0.869809 + 0.493388i \(0.164242\pi\)
\(270\) 198.107 609.712i 0.0446534 0.137429i
\(271\) 3251.07 2362.04i 0.728739 0.529460i −0.160425 0.987048i \(-0.551287\pi\)
0.889164 + 0.457588i \(0.151287\pi\)
\(272\) 2511.27 + 1824.55i 0.559810 + 0.406726i
\(273\) −23.8510 73.4059i −0.00528765 0.0162737i
\(274\) −377.957 −0.0833330
\(275\) 0 0
\(276\) 1138.13 0.248216
\(277\) 2053.67 + 6320.53i 0.445461 + 1.37099i 0.881977 + 0.471293i \(0.156212\pi\)
−0.436516 + 0.899697i \(0.643788\pi\)
\(278\) 444.751 + 323.130i 0.0959510 + 0.0697125i
\(279\) 114.093 82.8937i 0.0244824 0.0177875i
\(280\) 29.2310 89.9636i 0.00623887 0.0192013i
\(281\) −1354.44 + 4168.53i −0.287541 + 0.884960i 0.698085 + 0.716015i \(0.254036\pi\)
−0.985626 + 0.168945i \(0.945964\pi\)
\(282\) −219.941 + 159.797i −0.0464443 + 0.0337438i
\(283\) 3021.57 + 2195.30i 0.634677 + 0.461120i 0.858017 0.513620i \(-0.171696\pi\)
−0.223340 + 0.974741i \(0.571696\pi\)
\(284\) 403.332 + 1241.33i 0.0842724 + 0.259364i
\(285\) 1743.25 0.362319
\(286\) 0 0
\(287\) −163.877 −0.0337050
\(288\) −1162.42 3577.55i −0.237833 0.731975i
\(289\) −3.67677 2.67133i −0.000748376 0.000543727i
\(290\) −448.159 + 325.606i −0.0907475 + 0.0659319i
\(291\) 299.300 921.151i 0.0602931 0.185563i
\(292\) −459.234 + 1413.38i −0.0920364 + 0.283259i
\(293\) −1808.29 + 1313.80i −0.360551 + 0.261956i −0.753282 0.657698i \(-0.771530\pi\)
0.392731 + 0.919653i \(0.371530\pi\)
\(294\) −394.244 286.435i −0.0782068 0.0568206i
\(295\) 140.216 + 431.540i 0.0276735 + 0.0851703i
\(296\) −2409.75 −0.473190
\(297\) 0 0
\(298\) −2003.74 −0.389509
\(299\) −2062.35 6347.27i −0.398893 1.22767i
\(300\) 435.534 + 316.434i 0.0838185 + 0.0608977i
\(301\) −188.622 + 137.042i −0.0361195 + 0.0262424i
\(302\) 513.240 1579.59i 0.0977934 0.300977i
\(303\) 242.544 746.473i 0.0459860 0.141530i
\(304\) 4641.71 3372.40i 0.875726 0.636252i
\(305\) −3478.53 2527.30i −0.653050 0.474469i
\(306\) 492.700 + 1516.38i 0.0920451 + 0.283286i
\(307\) −1022.51 −0.190090 −0.0950451 0.995473i \(-0.530300\pi\)
−0.0950451 + 0.995473i \(0.530300\pi\)
\(308\) 0 0
\(309\) 269.629 0.0496398
\(310\) 14.2587 + 43.8837i 0.00261238 + 0.00804009i
\(311\) −4303.47 3126.66i −0.784655 0.570085i 0.121718 0.992565i \(-0.461160\pi\)
−0.906372 + 0.422480i \(0.861160\pi\)
\(312\) 1126.73 818.617i 0.204450 0.148542i
\(313\) −2161.10 + 6651.18i −0.390264 + 1.20111i 0.542326 + 0.840168i \(0.317544\pi\)
−0.932589 + 0.360939i \(0.882456\pi\)
\(314\) −22.3738 + 68.8594i −0.00402110 + 0.0123757i
\(315\) −134.733 + 97.8896i −0.0240996 + 0.0175094i
\(316\) −3775.13 2742.79i −0.672050 0.488273i
\(317\) 1333.31 + 4103.50i 0.236233 + 0.727052i 0.996955 + 0.0779740i \(0.0248451\pi\)
−0.760722 + 0.649078i \(0.775155\pi\)
\(318\) −913.149 −0.161028
\(319\) 0 0
\(320\) −1859.13 −0.324776
\(321\) 842.755 + 2593.73i 0.146536 + 0.450991i
\(322\) 59.8167 + 43.4593i 0.0103523 + 0.00752141i
\(323\) −7353.43 + 5342.58i −1.26674 + 0.920338i
\(324\) −1197.55 + 3685.67i −0.205340 + 0.631973i
\(325\) 975.516 3002.33i 0.166498 0.512429i
\(326\) −245.640 + 178.468i −0.0417323 + 0.0303203i
\(327\) 1027.02 + 746.176i 0.173684 + 0.126189i
\(328\) −913.772 2812.30i −0.153825 0.473425i
\(329\) 148.061 0.0248111
\(330\) 0 0
\(331\) −3886.73 −0.645420 −0.322710 0.946498i \(-0.604594\pi\)
−0.322710 + 0.946498i \(0.604594\pi\)
\(332\) 2655.65 + 8173.26i 0.439000 + 1.35110i
\(333\) 3432.32 + 2493.72i 0.564834 + 0.410376i
\(334\) −2632.25 + 1912.44i −0.431229 + 0.313306i
\(335\) −865.489 + 2663.70i −0.141154 + 0.434429i
\(336\) 16.3426 50.2974i 0.00265346 0.00816651i
\(337\) −7363.75 + 5350.08i −1.19029 + 0.864800i −0.993295 0.115604i \(-0.963120\pi\)
−0.196999 + 0.980404i \(0.563120\pi\)
\(338\) −1476.42 1072.68i −0.237594 0.172622i
\(339\) 518.662 + 1596.28i 0.0830969 + 0.255746i
\(340\) 4373.35 0.697583
\(341\) 0 0
\(342\) 2947.03 0.465957
\(343\) 164.169 + 505.262i 0.0258435 + 0.0795381i
\(344\) −3403.53 2472.81i −0.533448 0.387572i
\(345\) 1124.06 816.680i 0.175413 0.127445i
\(346\) 772.452 2377.36i 0.120021 0.369387i
\(347\) 3137.36 9655.81i 0.485367 1.49381i −0.346081 0.938204i \(-0.612488\pi\)
0.831448 0.555602i \(-0.187512\pi\)
\(348\) −612.825 + 445.243i −0.0943990 + 0.0685849i
\(349\) −8633.94 6272.93i −1.32425 0.962126i −0.999869 0.0162011i \(-0.994843\pi\)
−0.324385 0.945925i \(-0.605157\pi\)
\(350\) 10.8073 + 33.2615i 0.00165050 + 0.00507972i
\(351\) −5140.56 −0.781718
\(352\) 0 0
\(353\) −9301.69 −1.40249 −0.701245 0.712920i \(-0.747372\pi\)
−0.701245 + 0.712920i \(0.747372\pi\)
\(354\) −22.8709 70.3892i −0.00343382 0.0105682i
\(355\) 1289.08 + 936.569i 0.192724 + 0.140022i
\(356\) 4145.64 3011.99i 0.617187 0.448413i
\(357\) −25.8901 + 79.6814i −0.00383823 + 0.0118128i
\(358\) 420.339 1293.67i 0.0620548 0.190985i
\(359\) 6793.64 4935.87i 0.998759 0.725641i 0.0369374 0.999318i \(-0.488240\pi\)
0.961822 + 0.273677i \(0.0882398\pi\)
\(360\) −2431.16 1766.34i −0.355926 0.258595i
\(361\) 3072.03 + 9454.73i 0.447883 + 1.37844i
\(362\) −454.398 −0.0659742
\(363\) 0 0
\(364\) −357.902 −0.0515362
\(365\) 560.627 + 1725.43i 0.0803961 + 0.247434i
\(366\) 567.389 + 412.232i 0.0810325 + 0.0588736i
\(367\) 7578.84 5506.35i 1.07796 0.783185i 0.100636 0.994923i \(-0.467912\pi\)
0.977326 + 0.211738i \(0.0679124\pi\)
\(368\) 1413.12 4349.12i 0.200173 0.616070i
\(369\) −1608.77 + 4951.30i −0.226963 + 0.698521i
\(370\) −1123.00 + 815.911i −0.157790 + 0.114641i
\(371\) 402.337 + 292.315i 0.0563027 + 0.0409063i
\(372\) 19.4977 + 60.0078i 0.00271750 + 0.00836360i
\(373\) −2639.31 −0.366376 −0.183188 0.983078i \(-0.558642\pi\)
−0.183188 + 0.983078i \(0.558642\pi\)
\(374\) 0 0
\(375\) 2338.38 0.322008
\(376\) 825.582 + 2540.88i 0.113234 + 0.348500i
\(377\) 3593.56 + 2610.87i 0.490922 + 0.356676i
\(378\) 46.0736 33.4744i 0.00626923 0.00455486i
\(379\) −2276.38 + 7005.98i −0.308522 + 0.949532i 0.669818 + 0.742526i \(0.266372\pi\)
−0.978339 + 0.207007i \(0.933628\pi\)
\(380\) 2497.93 7687.85i 0.337214 1.03784i
\(381\) 1565.31 1137.26i 0.210480 0.152923i
\(382\) 966.565 + 702.250i 0.129460 + 0.0940583i
\(383\) −995.151 3062.76i −0.132767 0.408615i 0.862469 0.506110i \(-0.168917\pi\)
−0.995236 + 0.0974948i \(0.968917\pi\)
\(384\) 2186.97 0.290634
\(385\) 0 0
\(386\) 483.962 0.0638160
\(387\) 2288.82 + 7044.26i 0.300639 + 0.925271i
\(388\) −3633.47 2639.87i −0.475417 0.345410i
\(389\) −9892.63 + 7187.42i −1.28940 + 0.936803i −0.999793 0.0203426i \(-0.993524\pi\)
−0.289606 + 0.957146i \(0.593524\pi\)
\(390\) 247.911 762.991i 0.0321883 0.0990656i
\(391\) −2238.67 + 6889.91i −0.289551 + 0.891145i
\(392\) −3874.31 + 2814.85i −0.499189 + 0.362682i
\(393\) −1747.28 1269.47i −0.224271 0.162943i
\(394\) 335.933 + 1033.90i 0.0429545 + 0.132200i
\(395\) −5696.59 −0.725636
\(396\) 0 0
\(397\) 8381.55 1.05959 0.529796 0.848125i \(-0.322269\pi\)
0.529796 + 0.848125i \(0.322269\pi\)
\(398\) −871.634 2682.61i −0.109777 0.337857i
\(399\) 125.283 + 91.0235i 0.0157193 + 0.0114207i
\(400\) 1749.94 1271.41i 0.218743 0.158926i
\(401\) −1338.15 + 4118.41i −0.166644 + 0.512876i −0.999154 0.0411337i \(-0.986903\pi\)
0.832510 + 0.554010i \(0.186903\pi\)
\(402\) 141.171 434.481i 0.0175149 0.0539053i
\(403\) 299.328 217.474i 0.0369990 0.0268813i
\(404\) −2944.46 2139.27i −0.362604 0.263447i
\(405\) 1461.95 + 4499.42i 0.179370 + 0.552044i
\(406\) −49.2097 −0.00601536
\(407\) 0 0
\(408\) −1511.78 −0.183442
\(409\) −3689.01 11353.6i −0.445990 1.37262i −0.881395 0.472381i \(-0.843395\pi\)
0.435405 0.900235i \(-0.356605\pi\)
\(410\) −1378.05 1001.21i −0.165993 0.120601i
\(411\) −510.441 + 370.857i −0.0612608 + 0.0445086i
\(412\) 386.358 1189.09i 0.0462002 0.142190i
\(413\) −12.4559 + 38.3352i −0.00148405 + 0.00456744i
\(414\) 1900.28 1380.63i 0.225588 0.163899i
\(415\) 8487.64 + 6166.63i 1.00396 + 0.729417i
\(416\) −3049.64 9385.81i −0.359425 1.10620i
\(417\) 917.707 0.107770
\(418\) 0 0
\(419\) −11888.5 −1.38614 −0.693070 0.720870i \(-0.743743\pi\)
−0.693070 + 0.720870i \(0.743743\pi\)
\(420\) −23.0250 70.8636i −0.00267501 0.00823283i
\(421\) 6864.88 + 4987.63i 0.794712 + 0.577392i 0.909358 0.416014i \(-0.136573\pi\)
−0.114646 + 0.993406i \(0.536573\pi\)
\(422\) 1273.37 925.160i 0.146888 0.106721i
\(423\) 1453.51 4473.43i 0.167073 0.514198i
\(424\) −2773.02 + 8534.47i −0.317617 + 0.977525i
\(425\) −2772.27 + 2014.17i −0.316412 + 0.229887i
\(426\) −210.263 152.765i −0.0239138 0.0173744i
\(427\) −118.031 363.263i −0.0133769 0.0411698i
\(428\) 12646.2 1.42821
\(429\) 0 0
\(430\) −2423.39 −0.271782
\(431\) −3541.56 10899.8i −0.395803 1.21816i −0.928335 0.371746i \(-0.878759\pi\)
0.532532 0.846410i \(-0.321241\pi\)
\(432\) −2849.59 2070.35i −0.317364 0.230578i
\(433\) −2668.20 + 1938.56i −0.296133 + 0.215153i −0.725924 0.687775i \(-0.758587\pi\)
0.429790 + 0.902929i \(0.358587\pi\)
\(434\) −1.26665 + 3.89834i −0.000140094 + 0.000431166i
\(435\) −285.760 + 879.479i −0.0314969 + 0.0969374i
\(436\) 4762.34 3460.04i 0.523107 0.380060i
\(437\) 10833.0 + 7870.64i 1.18584 + 0.861565i
\(438\) −91.4448 281.438i −0.00997581 0.0307024i
\(439\) −5549.93 −0.603380 −0.301690 0.953406i \(-0.597551\pi\)
−0.301690 + 0.953406i \(0.597551\pi\)
\(440\) 0 0
\(441\) 8431.29 0.910408
\(442\) 1292.62 + 3978.26i 0.139103 + 0.428115i
\(443\) −8802.78 6395.59i −0.944092 0.685923i 0.00531025 0.999986i \(-0.498310\pi\)
−0.949402 + 0.314063i \(0.898310\pi\)
\(444\) −1535.63 + 1115.70i −0.164139 + 0.119254i
\(445\) 1933.11 5949.50i 0.205929 0.633783i
\(446\) 1313.24 4041.73i 0.139425 0.429106i
\(447\) −2706.10 + 1966.10i −0.286341 + 0.208039i
\(448\) −133.611 97.0743i −0.0140905 0.0102373i
\(449\) −2331.75 7176.40i −0.245083 0.754288i −0.995623 0.0934627i \(-0.970206\pi\)
0.750540 0.660825i \(-0.229794\pi\)
\(450\) 1111.04 0.116389
\(451\) 0 0
\(452\) 7782.91 0.809906
\(453\) −856.772 2636.87i −0.0888624 0.273490i
\(454\) 2455.74 + 1784.20i 0.253863 + 0.184442i
\(455\) −353.478 + 256.817i −0.0364204 + 0.0264610i
\(456\) −863.485 + 2657.53i −0.0886763 + 0.272918i
\(457\) 1000.98 3080.71i 0.102459 0.315338i −0.886666 0.462410i \(-0.846985\pi\)
0.989126 + 0.147072i \(0.0469849\pi\)
\(458\) 2204.40 1601.59i 0.224901 0.163400i
\(459\) 4514.34 + 3279.86i 0.459067 + 0.333531i
\(460\) −1990.93 6127.45i −0.201799 0.621073i
\(461\) 4837.43 0.488724 0.244362 0.969684i \(-0.421422\pi\)
0.244362 + 0.969684i \(0.421422\pi\)
\(462\) 0 0
\(463\) 14089.7 1.41427 0.707133 0.707081i \(-0.249988\pi\)
0.707133 + 0.707081i \(0.249988\pi\)
\(464\) 940.510 + 2894.59i 0.0940993 + 0.289608i
\(465\) 62.3160 + 45.2752i 0.00621470 + 0.00451524i
\(466\) 2108.57 1531.97i 0.209609 0.152290i
\(467\) 4494.75 13833.4i 0.445379 1.37074i −0.436688 0.899613i \(-0.643849\pi\)
0.882067 0.471123i \(-0.156151\pi\)
\(468\) −3513.51 + 10813.5i −0.347034 + 1.06806i
\(469\) −201.286 + 146.243i −0.0198177 + 0.0143984i
\(470\) 1245.05 + 904.581i 0.122191 + 0.0887771i
\(471\) 37.3494 + 114.950i 0.00365387 + 0.0112454i
\(472\) −727.326 −0.0709277
\(473\) 0 0
\(474\) 929.179 0.0900393
\(475\) 1957.24 + 6023.78i 0.189062 + 0.581873i
\(476\) 314.303 + 228.354i 0.0302648 + 0.0219887i
\(477\) 12781.6 9286.38i 1.22690 0.891392i
\(478\) −588.112 + 1810.02i −0.0562754 + 0.173198i
\(479\) −874.540 + 2691.56i −0.0834212 + 0.256744i −0.984064 0.177817i \(-0.943096\pi\)
0.900642 + 0.434561i \(0.143096\pi\)
\(480\) 1662.17 1207.64i 0.158057 0.114835i
\(481\) 9004.80 + 6542.37i 0.853604 + 0.620180i
\(482\) 881.512 + 2713.02i 0.0833024 + 0.256379i
\(483\) 123.427 0.0116276
\(484\) 0 0
\(485\) −5482.83 −0.513325
\(486\) −851.480 2620.59i −0.0794731 0.244593i
\(487\) 15480.2 + 11247.0i 1.44040 + 1.04651i 0.987959 + 0.154714i \(0.0494455\pi\)
0.452438 + 0.891796i \(0.350555\pi\)
\(488\) 5575.84 4051.08i 0.517226 0.375787i
\(489\) −156.628 + 482.050i −0.0144845 + 0.0445788i
\(490\) −852.453 + 2623.58i −0.0785916 + 0.241880i
\(491\) −9136.80 + 6638.27i −0.839792 + 0.610145i −0.922313 0.386445i \(-0.873703\pi\)
0.0825206 + 0.996589i \(0.473703\pi\)
\(492\) −1884.38 1369.08i −0.172672 0.125453i
\(493\) −1489.96 4585.63i −0.136115 0.418918i
\(494\) 7731.64 0.704176
\(495\) 0 0
\(496\) 253.515 0.0229499
\(497\) 43.7401 + 134.618i 0.00394771 + 0.0121498i
\(498\) −1384.43 1005.85i −0.124574 0.0905084i
\(499\) −700.757 + 509.130i −0.0628661 + 0.0456749i −0.618775 0.785569i \(-0.712371\pi\)
0.555908 + 0.831244i \(0.312371\pi\)
\(500\) 3350.71 10312.4i 0.299696 0.922370i
\(501\) −1678.41 + 5165.60i −0.149672 + 0.460643i
\(502\) 3009.79 2186.74i 0.267597 0.194421i
\(503\) −4840.76 3517.02i −0.429103 0.311762i 0.352187 0.935930i \(-0.385438\pi\)
−0.781290 + 0.624168i \(0.785438\pi\)
\(504\) −82.4924 253.886i −0.00729068 0.0224384i
\(505\) −4443.12 −0.391517
\(506\) 0 0
\(507\) −3046.47 −0.266861
\(508\) −2772.45 8532.72i −0.242141 0.745233i
\(509\) −8953.48 6505.08i −0.779678 0.566469i 0.125205 0.992131i \(-0.460041\pi\)
−0.904882 + 0.425662i \(0.860041\pi\)
\(510\) −704.526 + 511.868i −0.0611705 + 0.0444430i
\(511\) −49.8024 + 153.276i −0.00431141 + 0.0132691i
\(512\) 3620.12 11141.6i 0.312477 0.961704i
\(513\) 8344.09 6062.34i 0.718130 0.521752i
\(514\) 3284.93 + 2386.64i 0.281891 + 0.204806i
\(515\) −471.661 1451.62i −0.0403570 0.124206i
\(516\) −3313.81 −0.282718
\(517\) 0 0
\(518\) −123.311 −0.0104594
\(519\) −1289.49 3968.63i −0.109060 0.335652i
\(520\) −6378.22 4634.05i −0.537892 0.390801i
\(521\) −12056.6 + 8759.66i −1.01384 + 0.736599i −0.965011 0.262208i \(-0.915549\pi\)
−0.0488298 + 0.998807i \(0.515549\pi\)
\(522\) −483.089 + 1486.80i −0.0405062 + 0.124665i
\(523\) 460.262 1416.54i 0.0384815 0.118434i −0.929970 0.367634i \(-0.880168\pi\)
0.968452 + 0.249200i \(0.0801678\pi\)
\(524\) −8102.19 + 5886.59i −0.675469 + 0.490757i
\(525\) 47.2322 + 34.3162i 0.00392644 + 0.00285273i
\(526\) 260.980 + 803.215i 0.0216336 + 0.0665814i
\(527\) −401.620 −0.0331971
\(528\) 0 0
\(529\) −1494.50 −0.122832
\(530\) 1597.36 + 4916.18i 0.130915 + 0.402916i
\(531\) 1035.96 + 752.670i 0.0846646 + 0.0615124i
\(532\) 580.941 422.079i 0.0473440 0.0343974i
\(533\) −4220.67 + 12989.9i −0.342997 + 1.05564i
\(534\) −315.313 + 970.433i −0.0255523 + 0.0786419i
\(535\) 12489.8 9074.39i 1.00931 0.733309i
\(536\) −3632.04 2638.83i −0.292687 0.212650i
\(537\) −701.690 2159.58i −0.0563876 0.173543i
\(538\) −1633.19 −0.130877
\(539\) 0 0
\(540\) −4962.53 −0.395469
\(541\) −164.869 507.416i −0.0131022 0.0403244i 0.944292 0.329110i \(-0.106749\pi\)
−0.957394 + 0.288785i \(0.906749\pi\)
\(542\) 3001.86 + 2180.98i 0.237899 + 0.172844i
\(543\) −613.676 + 445.862i −0.0484998 + 0.0352371i
\(544\) −3310.35 + 10188.2i −0.260901 + 0.802971i
\(545\) 2220.68 6834.54i 0.174538 0.537173i
\(546\) 57.6563 41.8898i 0.00451916 0.00328337i
\(547\) −14966.2 10873.6i −1.16985 0.849944i −0.178857 0.983875i \(-0.557240\pi\)
−0.990991 + 0.133931i \(0.957240\pi\)
\(548\) 904.086 + 2782.49i 0.0704757 + 0.216902i
\(549\) −12134.2 −0.943302
\(550\) 0 0
\(551\) −8912.04 −0.689049
\(552\) 688.223 + 2118.13i 0.0530666 + 0.163322i
\(553\) −409.401 297.447i −0.0314819 0.0228729i
\(554\) −4964.44 + 3606.88i −0.380720 + 0.276609i
\(555\) −716.063 + 2203.82i −0.0547661 + 0.168553i
\(556\) 1315.00 4047.16i 0.100303 0.308701i
\(557\) −12737.0 + 9253.95i −0.968910 + 0.703954i −0.955203 0.295952i \(-0.904363\pi\)
−0.0137069 + 0.999906i \(0.504363\pi\)
\(558\) 105.348 + 76.5397i 0.00799234 + 0.00580678i
\(559\) 6004.79 + 18480.9i 0.454339 + 1.39831i
\(560\) −299.377 −0.0225911
\(561\) 0 0
\(562\) −4047.08 −0.303765
\(563\) −1864.04 5736.91i −0.139538 0.429453i 0.856731 0.515764i \(-0.172492\pi\)
−0.996268 + 0.0863115i \(0.972492\pi\)
\(564\) 1702.52 + 1236.95i 0.127108 + 0.0923493i
\(565\) 7686.70 5584.72i 0.572357 0.415842i
\(566\) −1065.67 + 3279.79i −0.0791403 + 0.243569i
\(567\) −129.870 + 399.699i −0.00961909 + 0.0296045i
\(568\) −2066.30 + 1501.25i −0.152641 + 0.110900i
\(569\) −12644.6 9186.84i −0.931615 0.676858i 0.0147724 0.999891i \(-0.495298\pi\)
−0.946388 + 0.323033i \(0.895298\pi\)
\(570\) 497.400 + 1530.84i 0.0365505 + 0.112491i
\(571\) 7252.67 0.531550 0.265775 0.964035i \(-0.414372\pi\)
0.265775 + 0.964035i \(0.414372\pi\)
\(572\) 0 0
\(573\) 1994.43 0.145407
\(574\) −46.7590 143.909i −0.00340014 0.0104646i
\(575\) 4084.09 + 2967.26i 0.296205 + 0.215206i
\(576\) −4244.61 + 3083.89i −0.307046 + 0.223082i
\(577\) 4016.51 12361.5i 0.289791 0.891885i −0.695131 0.718884i \(-0.744653\pi\)
0.984922 0.173002i \(-0.0553466\pi\)
\(578\) 1.29675 3.99098i 9.33178e−5 0.000287203i
\(579\) 653.602 474.870i 0.0469133 0.0340845i
\(580\) 3469.10 + 2520.45i 0.248356 + 0.180441i
\(581\) 287.997 + 886.363i 0.0205648 + 0.0632918i
\(582\) 894.313 0.0636950
\(583\) 0 0
\(584\) −2908.08 −0.206057
\(585\) 4289.25 + 13201.0i 0.303143 + 0.932979i
\(586\) −1669.68 1213.09i −0.117703 0.0855160i
\(587\) −8197.54 + 5955.86i −0.576403 + 0.418782i −0.837426 0.546551i \(-0.815940\pi\)
0.261022 + 0.965333i \(0.415940\pi\)
\(588\) −1165.67 + 3587.56i −0.0817540 + 0.251613i
\(589\) −229.394 + 706.003i −0.0160476 + 0.0493894i
\(590\) −338.952 + 246.263i −0.0236516 + 0.0171839i
\(591\) 1468.16 + 1066.68i 0.102186 + 0.0742426i
\(592\) 2356.75 + 7253.33i 0.163618 + 0.503564i
\(593\) 838.751 0.0580833 0.0290416 0.999578i \(-0.490754\pi\)
0.0290416 + 0.999578i \(0.490754\pi\)
\(594\) 0 0
\(595\) 474.276 0.0326780
\(596\) 4793.02 + 14751.4i 0.329412 + 1.01383i
\(597\) −3809.38 2767.68i −0.261152 0.189738i
\(598\) 4985.44 3622.14i 0.340920 0.247693i
\(599\) −7945.56 + 24453.9i −0.541981 + 1.66805i 0.186079 + 0.982535i \(0.440422\pi\)
−0.728061 + 0.685513i \(0.759578\pi\)
\(600\) −325.537 + 1001.90i −0.0221500 + 0.0681707i
\(601\) −1151.62 + 836.701i −0.0781623 + 0.0567883i −0.626180 0.779678i \(-0.715383\pi\)
0.548018 + 0.836467i \(0.315383\pi\)
\(602\) −174.163 126.537i −0.0117913 0.00856689i
\(603\) 2442.49 + 7517.21i 0.164952 + 0.507669i
\(604\) −12856.5 −0.866098
\(605\) 0 0
\(606\) 724.724 0.0485807
\(607\) 7902.10 + 24320.2i 0.528396 + 1.62624i 0.757500 + 0.652835i \(0.226420\pi\)
−0.229104 + 0.973402i \(0.573580\pi\)
\(608\) 16018.9 + 11638.4i 1.06851 + 0.776318i
\(609\) −66.4589 + 48.2852i −0.00442208 + 0.00321283i
\(610\) 1226.83 3775.81i 0.0814313 0.250620i
\(611\) 3813.33 11736.2i 0.252489 0.777081i
\(612\) 9984.88 7254.44i 0.659501 0.479156i
\(613\) −3925.34 2851.92i −0.258634 0.187909i 0.450910 0.892569i \(-0.351099\pi\)
−0.709545 + 0.704660i \(0.751099\pi\)
\(614\) −291.753 897.922i −0.0191762 0.0590182i
\(615\) −2843.49 −0.186440
\(616\) 0 0
\(617\) 3850.99 0.251272 0.125636 0.992076i \(-0.459903\pi\)
0.125636 + 0.992076i \(0.459903\pi\)
\(618\) 76.9334 + 236.777i 0.00500763 + 0.0154119i
\(619\) −19487.2 14158.2i −1.26536 0.919334i −0.266348 0.963877i \(-0.585817\pi\)
−0.999007 + 0.0445426i \(0.985817\pi\)
\(620\) 288.961 209.943i 0.0187177 0.0135992i
\(621\) 2540.26 7818.12i 0.164150 0.505202i
\(622\) 1517.78 4671.25i 0.0978416 0.301125i
\(623\) 449.581 326.640i 0.0289119 0.0210057i
\(624\) −3565.97 2590.83i −0.228771 0.166212i
\(625\) −2202.96 6780.02i −0.140989 0.433921i
\(626\) −6457.39 −0.412283
\(627\) 0 0
\(628\) 560.456 0.0356125
\(629\) −3733.58 11490.8i −0.236673 0.728406i
\(630\) −124.406 90.3861i −0.00786737 0.00571598i
\(631\) 2356.15 1711.84i 0.148648 0.107999i −0.510976 0.859595i \(-0.670716\pi\)
0.659624 + 0.751596i \(0.270716\pi\)
\(632\) 2821.70 8684.30i 0.177597 0.546587i
\(633\) 811.943 2498.90i 0.0509824 0.156908i
\(634\) −3223.08 + 2341.70i −0.201900 + 0.146689i
\(635\) −8860.93 6437.84i −0.553756 0.402327i
\(636\) 2184.28 + 6722.53i 0.136183 + 0.419128i
\(637\) 22119.8 1.37585
\(638\) 0 0
\(639\) 4496.68 0.278382
\(640\) −3825.65 11774.2i −0.236285 0.727210i
\(641\) −4975.97 3615.25i −0.306613 0.222767i 0.423829 0.905742i \(-0.360686\pi\)
−0.730442 + 0.682975i \(0.760686\pi\)
\(642\) −2037.24 + 1480.14i −0.125239 + 0.0909913i
\(643\) −3014.57 + 9277.89i −0.184888 + 0.569027i −0.999946 0.0103518i \(-0.996705\pi\)
0.815058 + 0.579379i \(0.196705\pi\)
\(644\) 176.861 544.322i 0.0108219 0.0333063i
\(645\) −3272.85 + 2377.86i −0.199796 + 0.145160i
\(646\) −6789.77 4933.06i −0.413530 0.300447i
\(647\) −562.924 1732.50i −0.0342053 0.105273i 0.932496 0.361180i \(-0.117626\pi\)
−0.966701 + 0.255907i \(0.917626\pi\)
\(648\) −7583.40 −0.459728
\(649\) 0 0
\(650\) 2914.86 0.175892
\(651\) 2.11446 + 6.50765i 0.000127300 + 0.000391790i
\(652\) 1901.44 + 1381.48i 0.114212 + 0.0829799i
\(653\) −5162.62 + 3750.87i −0.309386 + 0.224782i −0.731633 0.681699i \(-0.761241\pi\)
0.422247 + 0.906481i \(0.361241\pi\)
\(654\) −362.218 + 1114.79i −0.0216573 + 0.0666542i
\(655\) −3778.05 + 11627.6i −0.225375 + 0.693633i
\(656\) −7571.32 + 5500.88i −0.450625 + 0.327398i
\(657\) 4142.10 + 3009.41i 0.245964 + 0.178704i
\(658\) 42.2462 + 130.020i 0.00250293 + 0.00770323i
\(659\) 27285.6 1.61289 0.806445 0.591309i \(-0.201389\pi\)
0.806445 + 0.591309i \(0.201389\pi\)
\(660\) 0 0
\(661\) −23925.0 −1.40783 −0.703913 0.710286i \(-0.748566\pi\)
−0.703913 + 0.710286i \(0.748566\pi\)
\(662\) −1109.00 3413.15i −0.0651095 0.200387i
\(663\) 5649.24 + 4104.41i 0.330917 + 0.240426i
\(664\) −13605.1 + 9884.66i −0.795149 + 0.577710i
\(665\) 270.893 833.722i 0.0157966 0.0486171i
\(666\) −1210.53 + 3725.64i −0.0704313 + 0.216765i
\(667\) −5746.58 + 4175.14i −0.333596 + 0.242372i
\(668\) 20375.7 + 14803.8i 1.18018 + 0.857450i
\(669\) −2192.24 6747.02i −0.126692 0.389918i
\(670\) −2586.10 −0.149119
\(671\) 0 0
\(672\) 182.513 0.0104771
\(673\) 2576.19 + 7928.70i 0.147556 + 0.454129i 0.997331 0.0730159i \(-0.0232624\pi\)
−0.849775 + 0.527145i \(0.823262\pi\)
\(674\) −6799.30 4939.98i −0.388575 0.282316i
\(675\) 3145.75 2285.52i 0.179378 0.130326i
\(676\) −4365.35 + 13435.2i −0.248370 + 0.764405i
\(677\) 343.102 1055.96i 0.0194778 0.0599465i −0.940845 0.338837i \(-0.889967\pi\)
0.960323 + 0.278890i \(0.0899666\pi\)
\(678\) −1253.79 + 910.932i −0.0710200 + 0.0515990i
\(679\) −394.038 286.286i −0.0222707 0.0161806i
\(680\) 2644.54 + 8139.07i 0.149138 + 0.458999i
\(681\) 5067.22 0.285134
\(682\) 0 0
\(683\) 8337.88 0.467116 0.233558 0.972343i \(-0.424963\pi\)
0.233558 + 0.972343i \(0.424963\pi\)
\(684\) −7049.39 21695.8i −0.394065 1.21281i
\(685\) 2889.52 + 2099.36i 0.161172 + 0.117098i
\(686\) −396.856 + 288.333i −0.0220875 + 0.0160475i
\(687\) 1405.59 4325.97i 0.0780593 0.240242i
\(688\) −4114.46 + 12663.0i −0.227997 + 0.701704i
\(689\) 33533.0 24363.1i 1.85414 1.34711i
\(690\) 1037.90 + 754.079i 0.0572641 + 0.0416048i
\(691\) −10312.5 31738.6i −0.567736 1.74731i −0.659678 0.751548i \(-0.729307\pi\)
0.0919419 0.995764i \(-0.470693\pi\)
\(692\) −19349.7 −1.06295
\(693\) 0 0
\(694\) 9374.48 0.512753
\(695\) −1605.34 4940.72i −0.0876172 0.269658i
\(696\) −1199.20 871.268i −0.0653096 0.0474502i
\(697\) 11994.5 8714.54i 0.651830 0.473582i
\(698\) 3045.08 9371.80i 0.165126 0.508206i
\(699\) 1344.49 4137.92i 0.0727515 0.223906i
\(700\) 219.017 159.125i 0.0118258 0.00859196i
\(701\) 6317.50 + 4589.93i 0.340383 + 0.247303i 0.744824 0.667261i \(-0.232534\pi\)
−0.404440 + 0.914564i \(0.632534\pi\)
\(702\) −1466.76 4514.22i −0.0788592 0.242704i
\(703\) −22332.0 −1.19810
\(704\) 0 0
\(705\) 2569.06 0.137243
\(706\) −2654.05 8168.33i −0.141482 0.435438i
\(707\) −319.317 231.997i −0.0169861 0.0123411i
\(708\) −463.492 + 336.747i −0.0246033 + 0.0178753i
\(709\) 8637.66 26584.0i 0.457537 1.40816i −0.410593 0.911819i \(-0.634678\pi\)
0.868130 0.496336i \(-0.165322\pi\)
\(710\) −454.641 + 1399.24i −0.0240315 + 0.0739614i
\(711\) −13006.0 + 9449.40i −0.686023 + 0.498425i
\(712\) 8112.34 + 5893.96i 0.426998 + 0.310232i
\(713\) 182.834 + 562.705i 0.00960335 + 0.0295561i
\(714\) −77.3599 −0.00405479
\(715\) 0 0
\(716\) −10529.4 −0.549583
\(717\) 981.760 + 3021.55i 0.0511360 + 0.157380i
\(718\) 6272.89 + 4557.52i 0.326047 + 0.236887i
\(719\) 20211.6 14684.6i 1.04835 0.761672i 0.0764538 0.997073i \(-0.475640\pi\)
0.971898 + 0.235401i \(0.0756402\pi\)
\(720\) −2938.98 + 9045.24i −0.152124 + 0.468189i
\(721\) 41.8992 128.953i 0.00216423 0.00666081i
\(722\) −7426.18 + 5395.44i −0.382789 + 0.278113i
\(723\) 3852.55 + 2799.04i 0.198171 + 0.143980i
\(724\) 1086.94 + 3345.24i 0.0557951 + 0.171720i
\(725\) −3359.87 −0.172114
\(726\) 0 0
\(727\) 31671.2 1.61571 0.807855 0.589381i \(-0.200628\pi\)
0.807855 + 0.589381i \(0.200628\pi\)
\(728\) −216.422 666.077i −0.0110180 0.0339100i
\(729\) 8122.23 + 5901.14i 0.412652 + 0.299809i
\(730\) −1355.23 + 984.636i −0.0687116 + 0.0499219i
\(731\) 6518.15 20060.8i 0.329798 1.01501i
\(732\) 1677.61 5163.15i 0.0847079 0.260704i
\(733\) 9572.11 6954.55i 0.482338 0.350439i −0.319892 0.947454i \(-0.603647\pi\)
0.802230 + 0.597015i \(0.203647\pi\)
\(734\) 6997.90 + 5084.27i 0.351903 + 0.255673i
\(735\) 1423.03 + 4379.65i 0.0714142 + 0.219790i
\(736\) 15781.6 0.790377
\(737\) 0 0
\(738\) −4807.04 −0.239769
\(739\) −1715.09 5278.50i −0.0853728 0.262750i 0.899253 0.437430i \(-0.144111\pi\)
−0.984625 + 0.174679i \(0.944111\pi\)
\(740\) 8692.93 + 6315.79i 0.431836 + 0.313747i
\(741\) 10441.8 7586.39i 0.517663 0.376104i
\(742\) −141.899 + 436.721i −0.00702060 + 0.0216072i
\(743\) −11526.3 + 35474.2i −0.569121 + 1.75158i 0.0862546 + 0.996273i \(0.472510\pi\)
−0.655376 + 0.755303i \(0.727490\pi\)
\(744\) −99.8880 + 72.5729i −0.00492214 + 0.00357614i
\(745\) 15318.8 + 11129.8i 0.753338 + 0.547332i
\(746\) −753.073 2317.72i −0.0369598 0.113750i
\(747\) 29607.4 1.45017
\(748\) 0 0
\(749\) 1371.43 0.0669041
\(750\) 667.209 + 2053.46i 0.0324840 + 0.0999755i
\(751\) 4206.30 + 3056.05i 0.204381 + 0.148491i 0.685268 0.728291i \(-0.259685\pi\)
−0.480887 + 0.876783i \(0.659685\pi\)
\(752\) 6840.59 4969.98i 0.331716 0.241006i
\(753\) 1919.14 5906.50i 0.0928782 0.285850i
\(754\) −1267.40 + 3900.66i −0.0612149 + 0.188400i
\(755\) −12697.6 + 9225.32i −0.612069 + 0.444694i
\(756\) −356.646 259.118i −0.0171575 0.0124657i
\(757\) 48.8436 + 150.325i 0.00234512 + 0.00721752i 0.952222 0.305406i \(-0.0987922\pi\)
−0.949877 + 0.312624i \(0.898792\pi\)
\(758\) −6801.86 −0.325929
\(759\) 0 0
\(760\) 15818.0 0.754974
\(761\) −2056.12 6328.10i −0.0979428 0.301437i 0.890067 0.455830i \(-0.150658\pi\)
−0.988009 + 0.154394i \(0.950658\pi\)
\(762\) 1445.32 + 1050.09i 0.0687119 + 0.0499221i
\(763\) 516.460 375.230i 0.0245047 0.0178037i
\(764\) 2857.86 8795.58i 0.135332 0.416509i
\(765\) 4655.95 14329.5i 0.220047 0.677235i
\(766\) 2405.63 1747.79i 0.113471 0.0824417i
\(767\) 2717.88 + 1974.66i 0.127949 + 0.0929605i
\(768\) −187.889 578.264i −0.00882796 0.0271697i
\(769\) −5519.26 −0.258816 −0.129408 0.991591i \(-0.541308\pi\)
−0.129408 + 0.991591i \(0.541308\pi\)
\(770\) 0 0
\(771\) 6778.18 0.316615
\(772\) −1157.65 3562.89i −0.0539700 0.166102i
\(773\) −24977.9 18147.5i −1.16222 0.844400i −0.172160 0.985069i \(-0.555075\pi\)
−0.990057 + 0.140669i \(0.955075\pi\)
\(774\) −5532.89 + 4019.88i −0.256945 + 0.186682i
\(775\) −86.4825 + 266.166i −0.00400844 + 0.0123367i
\(776\) 2715.82 8358.43i 0.125634 0.386663i
\(777\) −166.534 + 120.994i −0.00768903 + 0.00558640i
\(778\) −9134.33 6636.48i −0.420928 0.305822i
\(779\) −8468.22 26062.5i −0.389481 1.19870i
\(780\) −6210.09 −0.285073
\(781\) 0 0
\(782\) −6689.17 −0.305888
\(783\) 1690.69 + 5203.41i 0.0771652 + 0.237490i
\(784\) 12261.8 + 8908.69i 0.558571 + 0.405826i
\(785\) 553.528 402.162i 0.0251672 0.0182850i
\(786\) 616.244 1896.60i 0.0279652 0.0860682i
\(787\) 7723.49 23770.5i 0.349825 1.07665i −0.609124 0.793075i \(-0.708479\pi\)
0.958949 0.283577i \(-0.0915212\pi\)
\(788\) 6807.90 4946.23i 0.307768 0.223607i
\(789\) 1140.59 + 828.684i 0.0514650 + 0.0373915i
\(790\) −1625.41 5002.49i −0.0732017 0.225292i
\(791\) 844.031 0.0379397
\(792\) 0 0
\(793\) −31834.4 −1.42556
\(794\) 2391.51 + 7360.30i 0.106891 + 0.328976i
\(795\) 6981.11 + 5072.07i 0.311439 + 0.226274i
\(796\) −17664.2 + 12833.8i −0.786547 + 0.571460i
\(797\) −6326.64 + 19471.4i −0.281181 + 0.865385i 0.706337 + 0.707876i \(0.250346\pi\)
−0.987517 + 0.157509i \(0.949654\pi\)
\(798\) −44.1858 + 135.990i −0.00196010 + 0.00603256i
\(799\) −10836.9 + 7873.48i −0.479828 + 0.348615i
\(800\) 6039.20 + 4387.74i 0.266898 + 0.193912i
\(801\) −5455.42 16790.0i −0.240646 0.740633i
\(802\) −3998.41 −0.176046
\(803\) 0 0
\(804\) −3536.30 −0.155119
\(805\) −215.910 664.502i −0.00945319 0.0290939i
\(806\) 276.384 + 200.804i 0.0120784 + 0.00877548i
\(807\) −2205.67 + 1602.51i −0.0962122 + 0.0699023i
\(808\) 2200.82 6773.42i 0.0958224 0.294911i
\(809\) −4534.69 + 13956.3i −0.197072 + 0.606524i 0.802874 + 0.596148i \(0.203303\pi\)
−0.999946 + 0.0103763i \(0.996697\pi\)
\(810\) −3534.05 + 2567.64i −0.153301 + 0.111380i
\(811\) 3821.98 + 2776.83i 0.165484 + 0.120232i 0.667445 0.744659i \(-0.267388\pi\)
−0.501961 + 0.864890i \(0.667388\pi\)
\(812\) 117.711 + 362.278i 0.00508725 + 0.0156570i
\(813\) 6194.10 0.267204
\(814\) 0 0
\(815\) 2869.23 0.123319
\(816\) 1478.53 + 4550.43i 0.0634299 + 0.195217i
\(817\) −31541.6 22916.3i −1.35067 0.981323i
\(818\) 8917.65 6479.05i 0.381171 0.276937i
\(819\) −381.029 + 1172.69i −0.0162567 + 0.0500329i
\(820\) −4074.50 + 12540.0i −0.173521 + 0.534044i
\(821\) 36342.4 26404.3i 1.54489 1.12243i 0.597721 0.801704i \(-0.296073\pi\)
0.947172 0.320726i \(-0.103927\pi\)
\(822\) −471.314 342.430i −0.0199987 0.0145299i
\(823\) 12223.9 + 37621.4i 0.517740 + 1.59344i 0.778241 + 0.627966i \(0.216112\pi\)
−0.260501 + 0.965474i \(0.583888\pi\)
\(824\) 2446.59 0.103436
\(825\) 0 0
\(826\) −37.2183 −0.00156778
\(827\) −4870.94 14991.2i −0.204811 0.630345i −0.999721 0.0236169i \(-0.992482\pi\)
0.794910 0.606728i \(-0.207518\pi\)
\(828\) −14709.6 10687.2i −0.617385 0.448557i
\(829\) −18268.1 + 13272.6i −0.765354 + 0.556062i −0.900548 0.434757i \(-0.856834\pi\)
0.135194 + 0.990819i \(0.456834\pi\)
\(830\) −2993.48 + 9212.99i −0.125187 + 0.385286i
\(831\) −3165.48 + 9742.35i −0.132141 + 0.406689i
\(832\) −11135.9 + 8090.69i −0.464023 + 0.337132i
\(833\) −19425.2 14113.2i −0.807973 0.587027i
\(834\) 261.849 + 805.889i 0.0108718 + 0.0334600i
\(835\) 30746.4 1.27428
\(836\) 0 0
\(837\) 455.727 0.0188199
\(838\) −3392.16 10440.0i −0.139833 0.430362i
\(839\) 18969.6 + 13782.2i 0.780575 + 0.567121i 0.905152 0.425089i \(-0.139757\pi\)
−0.124576 + 0.992210i \(0.539757\pi\)
\(840\) 117.958 85.7017i 0.00484517 0.00352023i
\(841\) −6075.72 + 18699.1i −0.249117 + 0.766704i
\(842\) −2421.15 + 7451.55i −0.0990956 + 0.304985i
\(843\) −5465.68 + 3971.05i −0.223307 + 0.162242i
\(844\) −9856.91 7161.46i −0.402001 0.292071i
\(845\) 5329.17 + 16401.5i 0.216957 + 0.667726i
\(846\) 4343.10 0.176500
\(847\) 0 0
\(848\) 28400.7 1.15010
\(849\) 1778.97 + 5475.09i 0.0719128 + 0.221325i
\(850\) −2559.77 1859.78i −0.103293 0.0750471i
\(851\) −14399.9 + 10462.1i −0.580049 + 0.421431i
\(852\) −621.689 + 1913.36i −0.0249985 + 0.0769374i
\(853\) 4634.27 14262.8i 0.186019 0.572508i −0.813945 0.580941i \(-0.802685\pi\)
0.999964 + 0.00843365i \(0.00268455\pi\)
\(854\) 285.323 207.300i 0.0114327 0.00830638i
\(855\) −22530.3 16369.2i −0.901194 0.654756i
\(856\) 7647.07 + 23535.3i 0.305341 + 0.939742i
\(857\) −46121.7 −1.83838 −0.919188 0.393819i \(-0.871154\pi\)
−0.919188 + 0.393819i \(0.871154\pi\)
\(858\) 0 0
\(859\) −17398.7 −0.691080 −0.345540 0.938404i \(-0.612304\pi\)
−0.345540 + 0.938404i \(0.612304\pi\)
\(860\) 5796.83 + 17840.8i 0.229849 + 0.707403i
\(861\) −204.355 148.473i −0.00808874 0.00587681i
\(862\) 8561.21 6220.08i 0.338278 0.245774i
\(863\) −3433.71 + 10567.9i −0.135440 + 0.416842i −0.995658 0.0930845i \(-0.970327\pi\)
0.860218 + 0.509926i \(0.170327\pi\)
\(864\) 3756.32 11560.8i 0.147908 0.455215i
\(865\) −19110.5 + 13884.6i −0.751186 + 0.545769i
\(866\) −2463.68 1789.97i −0.0966735 0.0702374i
\(867\) −2.16472 6.66231i −8.47954e−5 0.000260974i
\(868\) 31.7291 0.00124073
\(869\) 0 0
\(870\) −853.855 −0.0332740
\(871\) 6407.96 + 19721.7i 0.249283 + 0.767213i
\(872\) 9319.11 + 6770.73i 0.361909 + 0.262942i
\(873\) −12518.0 + 9094.82i −0.485302 + 0.352592i
\(874\) −3820.66 + 11758.8i −0.147867 + 0.455088i
\(875\) 363.373 1118.35i 0.0140391 0.0432081i
\(876\) −1853.19 + 1346.42i −0.0714765 + 0.0519307i
\(877\) 1291.69 + 938.471i 0.0497348 + 0.0361345i 0.612375 0.790567i \(-0.290214\pi\)
−0.562640 + 0.826702i \(0.690214\pi\)
\(878\) −1583.56 4873.70i −0.0608686 0.187334i
\(879\) −3445.25 −0.132202
\(880\) 0 0
\(881\) 4924.45 0.188319 0.0941594 0.995557i \(-0.469984\pi\)
0.0941594 + 0.995557i \(0.469984\pi\)
\(882\) 2405.70 + 7403.98i 0.0918414 + 0.282659i
\(883\) 17451.5 + 12679.2i 0.665105 + 0.483227i 0.868383 0.495894i \(-0.165159\pi\)
−0.203278 + 0.979121i \(0.565159\pi\)
\(884\) 26195.7 19032.3i 0.996670 0.724123i
\(885\) −216.126 + 665.168i −0.00820904 + 0.0252648i
\(886\) 3104.63 9555.06i 0.117722 0.362312i
\(887\) 17898.6 13004.1i 0.677539 0.492261i −0.195001 0.980803i \(-0.562471\pi\)
0.872540 + 0.488542i \(0.162471\pi\)
\(888\) −3004.97 2183.24i −0.113559 0.0825053i
\(889\) −300.663 925.346i −0.0113430 0.0349101i
\(890\) 5776.16 0.217548
\(891\) 0 0
\(892\) −32896.2 −1.23481
\(893\) 7650.93 + 23547.2i 0.286706 + 0.882391i
\(894\) −2498.67 1815.39i −0.0934766 0.0679148i
\(895\) −10399.2 + 7555.47i −0.388388 + 0.282181i
\(896\) 339.846 1045.94i 0.0126713 0.0389981i
\(897\) 3178.87 9783.57i 0.118327 0.364174i
\(898\) 5636.68 4095.28i 0.209464 0.152184i
\(899\) −318.580 231.462i −0.0118189 0.00858696i
\(900\) −2657.65 8179.40i −0.0984314 0.302941i
\(901\) −44992.5 −1.66362
\(902\) 0 0
\(903\) −359.372 −0.0132438
\(904\) 4706.29 + 14484.5i 0.173151 + 0.532905i
\(905\) 3473.92 + 2523.95i 0.127599 + 0.0927060i
\(906\) 2071.12 1504.76i 0.0759474 0.0551791i
\(907\) −629.720 + 1938.08i −0.0230535 + 0.0709514i −0.961921 0.273326i \(-0.911876\pi\)
0.938868 + 0.344278i \(0.111876\pi\)
\(908\) 7260.93 22346.8i 0.265377 0.816747i
\(909\) −10144.2 + 7370.17i −0.370144 + 0.268925i
\(910\) −326.383 237.131i −0.0118895 0.00863826i
\(911\) 13436.6 + 41353.5i 0.488665 + 1.50396i 0.826602 + 0.562787i \(0.190271\pi\)
−0.337938 + 0.941169i \(0.609729\pi\)
\(912\) 8843.64 0.321099
\(913\) 0 0
\(914\) 2990.95 0.108241
\(915\) −2048.00 6303.11i −0.0739945 0.227732i
\(916\) −17063.8 12397.6i −0.615505 0.447191i
\(917\) −878.656 + 638.381i −0.0316421 + 0.0229893i
\(918\) −1592.15 + 4900.14i −0.0572428 + 0.176175i
\(919\) 2977.93 9165.13i 0.106891 0.328977i −0.883279 0.468849i \(-0.844669\pi\)
0.990170 + 0.139872i \(0.0446690\pi\)
\(920\) 10199.6 7410.47i 0.365513 0.265561i
\(921\) −1275.07 926.395i −0.0456190 0.0331441i
\(922\) 1380.26 + 4248.02i 0.0493022 + 0.151736i
\(923\) 11797.2 0.420704
\(924\) 0 0
\(925\) −8419.24 −0.299268
\(926\) 4020.22 + 12373.0i 0.142670 + 0.439094i
\(927\) −3484.79 2531.85i −0.123469 0.0897052i
\(928\) −8497.56 + 6173.84i −0.300588 + 0.218390i
\(929\) 1942.40 5978.10i 0.0685987 0.211125i −0.910881 0.412670i \(-0.864596\pi\)
0.979479 + 0.201545i \(0.0645962\pi\)
\(930\) −21.9781 + 67.6415i −0.000774934 + 0.00238500i
\(931\) −35904.5 + 26086.1i −1.26393 + 0.918302i
\(932\) −16322.0 11858.6i −0.573653 0.416783i
\(933\) −2533.69 7797.90i −0.0889061 0.273625i
\(934\) 13430.4 0.470509
\(935\) 0 0
\(936\) −22249.1 −0.776961
\(937\) −7606.06 23409.0i −0.265186 0.816158i −0.991651 0.128954i \(-0.958838\pi\)
0.726465 0.687204i \(-0.241162\pi\)
\(938\) −185.857 135.033i −0.00646955 0.00470040i
\(939\) −8720.87 + 6336.08i −0.303083 + 0.220203i
\(940\) 3681.26 11329.7i 0.127733 0.393123i
\(941\) −6072.49 + 18689.2i −0.210369 + 0.647450i 0.789081 + 0.614289i \(0.210557\pi\)
−0.999450 + 0.0331604i \(0.989443\pi\)
\(942\) −90.2869 + 65.5972i −0.00312283 + 0.00226887i
\(943\) −17670.2 12838.2i −0.610203 0.443339i
\(944\) 711.327 + 2189.24i 0.0245251 + 0.0754806i
\(945\) −538.170 −0.0185256
\(946\) 0 0
\(947\) 3025.82 0.103829 0.0519144 0.998652i \(-0.483468\pi\)
0.0519144 + 0.998652i \(0.483468\pi\)
\(948\) −2222.63 6840.55i −0.0761473 0.234357i
\(949\) 10866.9 + 7895.29i 0.371713 + 0.270065i
\(950\) −4731.35 + 3437.53i −0.161585 + 0.117398i
\(951\) −2055.14 + 6325.06i −0.0700761 + 0.215672i
\(952\) −234.924 + 723.021i −0.00799782 + 0.0246148i
\(953\) −9471.44 + 6881.40i −0.321941 + 0.233904i −0.737003 0.675889i \(-0.763760\pi\)
0.415062 + 0.909793i \(0.363760\pi\)
\(954\) 11801.9 + 8574.55i 0.400523 + 0.290997i
\(955\) −3488.84 10737.5i −0.118216 0.363831i
\(956\) 14732.0 0.498398
\(957\) 0 0
\(958\) −2613.14 −0.0881281
\(959\) 98.0452 + 301.752i 0.00330140 + 0.0101607i
\(960\) −2318.34 1684.37i −0.0779417 0.0566280i
\(961\) 24074.9 17491.4i 0.808126 0.587138i
\(962\) −3175.88 + 9774.35i −0.106439 + 0.327586i
\(963\) 13463.3 41435.9i 0.450519 1.38655i
\(964\) 17864.4 12979.2i 0.596860 0.433645i
\(965\) −3699.93 2688.16i −0.123425 0.0896734i
\(966\) 35.2174 + 108.388i 0.00117298 + 0.00361007i
\(967\) −12352.3 −0.410779 −0.205390 0.978680i \(-0.565846\pi\)
−0.205390 + 0.978680i \(0.565846\pi\)
\(968\) 0 0
\(969\) −14010.1 −0.464469
\(970\) −1564.42 4814.78i −0.0517839 0.159374i
\(971\) 13679.4 + 9938.68i 0.452104 + 0.328473i 0.790426 0.612557i \(-0.209859\pi\)
−0.338322 + 0.941031i \(0.609859\pi\)
\(972\) −17255.8 + 12537.1i −0.569423 + 0.413710i
\(973\) 142.608 438.901i 0.00469865 0.0144610i
\(974\) −5459.66 + 16803.1i −0.179609 + 0.552778i
\(975\) 3936.59 2860.10i 0.129304 0.0939450i
\(976\) −17646.9 12821.2i −0.578753 0.420489i
\(977\) 7631.70 + 23487.9i 0.249907 + 0.769136i 0.994790 + 0.101941i \(0.0325053\pi\)
−0.744883 + 0.667195i \(0.767495\pi\)
\(978\) −468.005 −0.0153018
\(979\) 0 0
\(980\) 21353.7 0.696039
\(981\) −6266.95 19287.7i −0.203964 0.627736i
\(982\) −8436.44 6129.43i −0.274152 0.199183i
\(983\) 24862.2 18063.4i 0.806694 0.586097i −0.106176 0.994347i \(-0.533861\pi\)
0.912870 + 0.408250i \(0.133861\pi\)
\(984\) 1408.47 4334.83i 0.0456305 0.140436i
\(985\) 3174.52 9770.17i 0.102689 0.316044i
\(986\) 3601.77 2616.84i 0.116332 0.0845204i
\(987\) 184.632 + 134.143i 0.00595432 + 0.00432607i
\(988\) −18494.3 56919.7i −0.595529 1.83285i
\(989\) −31074.3 −0.999094
\(990\) 0 0
\(991\) 40862.5 1.30983 0.654915 0.755703i \(-0.272705\pi\)
0.654915 + 0.755703i \(0.272705\pi\)
\(992\) 270.360 + 832.081i 0.00865315 + 0.0266317i
\(993\) −4846.76 3521.38i −0.154892 0.112535i
\(994\) −105.735 + 76.8212i −0.00337396 + 0.00245133i
\(995\) −8236.81 + 25350.3i −0.262437 + 0.807697i
\(996\) −4093.37 + 12598.1i −0.130224 + 0.400790i
\(997\) 46954.3 34114.3i 1.49153 1.08366i 0.517927 0.855425i \(-0.326704\pi\)
0.973606 0.228237i \(-0.0732960\pi\)
\(998\) −647.042 470.104i −0.0205228 0.0149107i
\(999\) 4236.57 + 13038.8i 0.134173 + 0.412943i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 121.4.c.b.27.2 8
11.2 odd 10 121.4.c.h.9.1 8
11.3 even 5 121.4.a.f.1.3 4
11.4 even 5 121.4.c.i.3.1 8
11.5 even 5 121.4.c.i.81.1 8
11.6 odd 10 11.4.c.a.4.2 yes 8
11.7 odd 10 11.4.c.a.3.2 8
11.8 odd 10 121.4.a.g.1.2 4
11.9 even 5 inner 121.4.c.b.9.2 8
11.10 odd 2 121.4.c.h.27.1 8
33.8 even 10 1089.4.a.y.1.3 4
33.14 odd 10 1089.4.a.bh.1.2 4
33.17 even 10 99.4.f.c.37.1 8
33.29 even 10 99.4.f.c.91.1 8
44.3 odd 10 1936.4.a.bl.1.4 4
44.7 even 10 176.4.m.c.113.2 8
44.19 even 10 1936.4.a.bk.1.4 4
44.39 even 10 176.4.m.c.81.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.4.c.a.3.2 8 11.7 odd 10
11.4.c.a.4.2 yes 8 11.6 odd 10
99.4.f.c.37.1 8 33.17 even 10
99.4.f.c.91.1 8 33.29 even 10
121.4.a.f.1.3 4 11.3 even 5
121.4.a.g.1.2 4 11.8 odd 10
121.4.c.b.9.2 8 11.9 even 5 inner
121.4.c.b.27.2 8 1.1 even 1 trivial
121.4.c.h.9.1 8 11.2 odd 10
121.4.c.h.27.1 8 11.10 odd 2
121.4.c.i.3.1 8 11.4 even 5
121.4.c.i.81.1 8 11.5 even 5
176.4.m.c.81.2 8 44.39 even 10
176.4.m.c.113.2 8 44.7 even 10
1089.4.a.y.1.3 4 33.8 even 10
1089.4.a.bh.1.2 4 33.14 odd 10
1936.4.a.bk.1.4 4 44.19 even 10
1936.4.a.bl.1.4 4 44.3 odd 10