Properties

Label 121.4.a.g.1.2
Level $121$
Weight $4$
Character 121.1
Self dual yes
Analytic conductor $7.139$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [121,4,Mod(1,121)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("121.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(121, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 121.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.13923111069\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{5}, \sqrt{37})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 21x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.92335\) of defining polynomial
Character \(\chi\) \(=\) 121.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.923347 q^{2} -1.54138 q^{3} -7.14743 q^{4} +8.72550 q^{5} +1.42323 q^{6} +0.775116 q^{7} +13.9863 q^{8} -24.6241 q^{9} -8.05666 q^{10} +11.0169 q^{12} +64.6023 q^{13} -0.715701 q^{14} -13.4493 q^{15} +44.2652 q^{16} +70.1252 q^{17} +22.7366 q^{18} +129.616 q^{19} -62.3649 q^{20} -1.19475 q^{21} +103.308 q^{23} -21.5583 q^{24} -48.8657 q^{25} -59.6503 q^{26} +79.5725 q^{27} -5.54008 q^{28} -68.7573 q^{29} +12.4184 q^{30} +5.72719 q^{31} -152.763 q^{32} -64.7499 q^{34} +6.76327 q^{35} +175.999 q^{36} +172.293 q^{37} -119.681 q^{38} -99.5768 q^{39} +122.038 q^{40} -211.423 q^{41} +1.10317 q^{42} +300.793 q^{43} -214.858 q^{45} -95.3890 q^{46} -191.018 q^{47} -68.2295 q^{48} -342.399 q^{49} +45.1200 q^{50} -108.090 q^{51} -461.740 q^{52} +641.603 q^{53} -73.4730 q^{54} +10.8410 q^{56} -199.788 q^{57} +63.4869 q^{58} +52.0026 q^{59} +96.1281 q^{60} -492.775 q^{61} -5.28819 q^{62} -19.0866 q^{63} -213.068 q^{64} +563.687 q^{65} -320.988 q^{67} -501.215 q^{68} -159.237 q^{69} -6.24485 q^{70} -182.613 q^{71} -344.402 q^{72} -207.923 q^{73} -159.087 q^{74} +75.3207 q^{75} -926.421 q^{76} +91.9439 q^{78} +652.867 q^{79} +386.236 q^{80} +542.200 q^{81} +195.216 q^{82} +1202.37 q^{83} +8.53938 q^{84} +611.877 q^{85} -277.736 q^{86} +105.981 q^{87} +716.942 q^{89} +198.388 q^{90} +50.0742 q^{91} -738.385 q^{92} -8.82778 q^{93} +176.376 q^{94} +1130.96 q^{95} +235.466 q^{96} -628.369 q^{97} +316.153 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 6 q^{3} + 14 q^{4} - 11 q^{5} + 43 q^{6} + 25 q^{7} + 66 q^{8} - 62 q^{9} + 20 q^{10} + 95 q^{12} + 25 q^{13} + 132 q^{14} + 2 q^{15} + 34 q^{16} + 232 q^{17} + 49 q^{18} + 154 q^{19} - 254 q^{20}+ \cdots + 1370 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.923347 −0.326453 −0.163226 0.986589i \(-0.552190\pi\)
−0.163226 + 0.986589i \(0.552190\pi\)
\(3\) −1.54138 −0.296639 −0.148319 0.988939i \(-0.547386\pi\)
−0.148319 + 0.988939i \(0.547386\pi\)
\(4\) −7.14743 −0.893429
\(5\) 8.72550 0.780432 0.390216 0.920723i \(-0.372400\pi\)
0.390216 + 0.920723i \(0.372400\pi\)
\(6\) 1.42323 0.0968385
\(7\) 0.775116 0.0418523 0.0209262 0.999781i \(-0.493339\pi\)
0.0209262 + 0.999781i \(0.493339\pi\)
\(8\) 13.9863 0.618115
\(9\) −24.6241 −0.912005
\(10\) −8.05666 −0.254774
\(11\) 0 0
\(12\) 11.0169 0.265026
\(13\) 64.6023 1.37827 0.689133 0.724635i \(-0.257992\pi\)
0.689133 + 0.724635i \(0.257992\pi\)
\(14\) −0.715701 −0.0136628
\(15\) −13.4493 −0.231507
\(16\) 44.2652 0.691644
\(17\) 70.1252 1.00046 0.500231 0.865892i \(-0.333248\pi\)
0.500231 + 0.865892i \(0.333248\pi\)
\(18\) 22.7366 0.297726
\(19\) 129.616 1.56505 0.782525 0.622620i \(-0.213932\pi\)
0.782525 + 0.622620i \(0.213932\pi\)
\(20\) −62.3649 −0.697261
\(21\) −1.19475 −0.0124150
\(22\) 0 0
\(23\) 103.308 0.936572 0.468286 0.883577i \(-0.344872\pi\)
0.468286 + 0.883577i \(0.344872\pi\)
\(24\) −21.5583 −0.183357
\(25\) −48.8657 −0.390926
\(26\) −59.6503 −0.449938
\(27\) 79.5725 0.567175
\(28\) −5.54008 −0.0373921
\(29\) −68.7573 −0.440273 −0.220136 0.975469i \(-0.570650\pi\)
−0.220136 + 0.975469i \(0.570650\pi\)
\(30\) 12.4184 0.0755759
\(31\) 5.72719 0.0331817 0.0165909 0.999862i \(-0.494719\pi\)
0.0165909 + 0.999862i \(0.494719\pi\)
\(32\) −152.763 −0.843903
\(33\) 0 0
\(34\) −64.7499 −0.326604
\(35\) 6.76327 0.0326629
\(36\) 175.999 0.814812
\(37\) 172.293 0.765537 0.382768 0.923844i \(-0.374971\pi\)
0.382768 + 0.923844i \(0.374971\pi\)
\(38\) −119.681 −0.510914
\(39\) −99.5768 −0.408847
\(40\) 122.038 0.482397
\(41\) −211.423 −0.805333 −0.402667 0.915347i \(-0.631917\pi\)
−0.402667 + 0.915347i \(0.631917\pi\)
\(42\) 1.10317 0.00405292
\(43\) 300.793 1.06676 0.533378 0.845877i \(-0.320922\pi\)
0.533378 + 0.845877i \(0.320922\pi\)
\(44\) 0 0
\(45\) −214.858 −0.711758
\(46\) −95.3890 −0.305746
\(47\) −191.018 −0.592825 −0.296413 0.955060i \(-0.595790\pi\)
−0.296413 + 0.955060i \(0.595790\pi\)
\(48\) −68.2295 −0.205168
\(49\) −342.399 −0.998248
\(50\) 45.1200 0.127619
\(51\) −108.090 −0.296776
\(52\) −461.740 −1.23138
\(53\) 641.603 1.66285 0.831424 0.555638i \(-0.187526\pi\)
0.831424 + 0.555638i \(0.187526\pi\)
\(54\) −73.4730 −0.185156
\(55\) 0 0
\(56\) 10.8410 0.0258695
\(57\) −199.788 −0.464255
\(58\) 63.4869 0.143728
\(59\) 52.0026 0.114748 0.0573742 0.998353i \(-0.481727\pi\)
0.0573742 + 0.998353i \(0.481727\pi\)
\(60\) 96.1281 0.206835
\(61\) −492.775 −1.03432 −0.517158 0.855890i \(-0.673010\pi\)
−0.517158 + 0.855890i \(0.673010\pi\)
\(62\) −5.28819 −0.0108323
\(63\) −19.0866 −0.0381695
\(64\) −213.068 −0.416149
\(65\) 563.687 1.07564
\(66\) 0 0
\(67\) −320.988 −0.585298 −0.292649 0.956220i \(-0.594537\pi\)
−0.292649 + 0.956220i \(0.594537\pi\)
\(68\) −501.215 −0.893842
\(69\) −159.237 −0.277824
\(70\) −6.24485 −0.0106629
\(71\) −182.613 −0.305241 −0.152621 0.988285i \(-0.548771\pi\)
−0.152621 + 0.988285i \(0.548771\pi\)
\(72\) −344.402 −0.563724
\(73\) −207.923 −0.333363 −0.166681 0.986011i \(-0.553305\pi\)
−0.166681 + 0.986011i \(0.553305\pi\)
\(74\) −159.087 −0.249911
\(75\) 75.3207 0.115964
\(76\) −926.421 −1.39826
\(77\) 0 0
\(78\) 91.9439 0.133469
\(79\) 652.867 0.929788 0.464894 0.885366i \(-0.346092\pi\)
0.464894 + 0.885366i \(0.346092\pi\)
\(80\) 386.236 0.539781
\(81\) 542.200 0.743759
\(82\) 195.216 0.262903
\(83\) 1202.37 1.59009 0.795045 0.606550i \(-0.207447\pi\)
0.795045 + 0.606550i \(0.207447\pi\)
\(84\) 8.53938 0.0110919
\(85\) 611.877 0.780793
\(86\) −277.736 −0.348245
\(87\) 105.981 0.130602
\(88\) 0 0
\(89\) 716.942 0.853885 0.426942 0.904279i \(-0.359591\pi\)
0.426942 + 0.904279i \(0.359591\pi\)
\(90\) 198.388 0.232355
\(91\) 50.0742 0.0576836
\(92\) −738.385 −0.836761
\(93\) −8.82778 −0.00984299
\(94\) 176.376 0.193529
\(95\) 1130.96 1.22141
\(96\) 235.466 0.250335
\(97\) −628.369 −0.657744 −0.328872 0.944375i \(-0.606668\pi\)
−0.328872 + 0.944375i \(0.606668\pi\)
\(98\) 316.153 0.325881
\(99\) 0 0
\(100\) 349.264 0.349264
\(101\) 509.211 0.501667 0.250833 0.968030i \(-0.419295\pi\)
0.250833 + 0.968030i \(0.419295\pi\)
\(102\) 99.8043 0.0968833
\(103\) −174.927 −0.167341 −0.0836703 0.996493i \(-0.526664\pi\)
−0.0836703 + 0.996493i \(0.526664\pi\)
\(104\) 903.549 0.851926
\(105\) −10.4248 −0.00968908
\(106\) −592.422 −0.542841
\(107\) 1769.33 1.59858 0.799288 0.600949i \(-0.205210\pi\)
0.799288 + 0.600949i \(0.205210\pi\)
\(108\) −568.739 −0.506731
\(109\) −823.593 −0.723724 −0.361862 0.932232i \(-0.617859\pi\)
−0.361862 + 0.932232i \(0.617859\pi\)
\(110\) 0 0
\(111\) −265.570 −0.227088
\(112\) 34.3106 0.0289469
\(113\) −1088.91 −0.906514 −0.453257 0.891380i \(-0.649738\pi\)
−0.453257 + 0.891380i \(0.649738\pi\)
\(114\) 184.473 0.151557
\(115\) 901.412 0.730931
\(116\) 491.438 0.393352
\(117\) −1590.78 −1.25699
\(118\) −48.0164 −0.0374599
\(119\) 54.3551 0.0418717
\(120\) −188.107 −0.143098
\(121\) 0 0
\(122\) 455.002 0.337655
\(123\) 325.883 0.238893
\(124\) −40.9347 −0.0296455
\(125\) −1517.06 −1.08552
\(126\) 17.6235 0.0124605
\(127\) −1255.25 −0.877053 −0.438526 0.898718i \(-0.644499\pi\)
−0.438526 + 0.898718i \(0.644499\pi\)
\(128\) 1418.84 0.979756
\(129\) −463.637 −0.316441
\(130\) −520.479 −0.351146
\(131\) 1401.18 0.934519 0.467259 0.884120i \(-0.345241\pi\)
0.467259 + 0.884120i \(0.345241\pi\)
\(132\) 0 0
\(133\) 100.467 0.0655009
\(134\) 296.384 0.191072
\(135\) 694.310 0.442642
\(136\) 980.795 0.618400
\(137\) −409.334 −0.255268 −0.127634 0.991821i \(-0.540738\pi\)
−0.127634 + 0.991821i \(0.540738\pi\)
\(138\) 147.031 0.0906963
\(139\) 595.380 0.363305 0.181653 0.983363i \(-0.441855\pi\)
0.181653 + 0.983363i \(0.441855\pi\)
\(140\) −48.3400 −0.0291820
\(141\) 294.431 0.175855
\(142\) 168.615 0.0996468
\(143\) 0 0
\(144\) −1089.99 −0.630783
\(145\) −599.942 −0.343603
\(146\) 191.985 0.108827
\(147\) 527.768 0.296119
\(148\) −1231.46 −0.683953
\(149\) 2170.08 1.19316 0.596578 0.802555i \(-0.296527\pi\)
0.596578 + 0.802555i \(0.296527\pi\)
\(150\) −69.5471 −0.0378567
\(151\) −1798.76 −0.969410 −0.484705 0.874678i \(-0.661073\pi\)
−0.484705 + 0.874678i \(0.661073\pi\)
\(152\) 1812.85 0.967380
\(153\) −1726.77 −0.912427
\(154\) 0 0
\(155\) 49.9726 0.0258961
\(156\) 711.718 0.365276
\(157\) −78.4137 −0.0398605 −0.0199302 0.999801i \(-0.506344\pi\)
−0.0199302 + 0.999801i \(0.506344\pi\)
\(158\) −602.823 −0.303532
\(159\) −988.955 −0.493266
\(160\) −1332.93 −0.658609
\(161\) 80.0755 0.0391977
\(162\) −500.639 −0.242802
\(163\) 328.833 0.158014 0.0790068 0.996874i \(-0.474825\pi\)
0.0790068 + 0.996874i \(0.474825\pi\)
\(164\) 1511.13 0.719508
\(165\) 0 0
\(166\) −1110.21 −0.519089
\(167\) −3523.75 −1.63279 −0.816394 0.577495i \(-0.804030\pi\)
−0.816394 + 0.577495i \(0.804030\pi\)
\(168\) −16.7102 −0.00767391
\(169\) 1976.46 0.899616
\(170\) −564.975 −0.254892
\(171\) −3191.68 −1.42733
\(172\) −2149.90 −0.953071
\(173\) −2707.22 −1.18975 −0.594874 0.803819i \(-0.702798\pi\)
−0.594874 + 0.803819i \(0.702798\pi\)
\(174\) −97.8575 −0.0426354
\(175\) −37.8766 −0.0163611
\(176\) 0 0
\(177\) −80.1558 −0.0340389
\(178\) −661.987 −0.278753
\(179\) 1473.17 0.615139 0.307569 0.951526i \(-0.400484\pi\)
0.307569 + 0.951526i \(0.400484\pi\)
\(180\) 1535.68 0.635905
\(181\) −492.121 −0.202094 −0.101047 0.994882i \(-0.532219\pi\)
−0.101047 + 0.994882i \(0.532219\pi\)
\(182\) −46.2359 −0.0188310
\(183\) 759.554 0.306819
\(184\) 1444.90 0.578909
\(185\) 1503.35 0.597450
\(186\) 8.15111 0.00321327
\(187\) 0 0
\(188\) 1365.29 0.529647
\(189\) 61.6779 0.0237376
\(190\) −1044.27 −0.398734
\(191\) −1293.92 −0.490183 −0.245091 0.969500i \(-0.578818\pi\)
−0.245091 + 0.969500i \(0.578818\pi\)
\(192\) 328.420 0.123446
\(193\) −524.138 −0.195483 −0.0977417 0.995212i \(-0.531162\pi\)
−0.0977417 + 0.995212i \(0.531162\pi\)
\(194\) 580.202 0.214722
\(195\) −868.857 −0.319078
\(196\) 2447.27 0.891864
\(197\) −1177.35 −0.425801 −0.212900 0.977074i \(-0.568291\pi\)
−0.212900 + 0.977074i \(0.568291\pi\)
\(198\) 0 0
\(199\) −3054.83 −1.08820 −0.544098 0.839022i \(-0.683128\pi\)
−0.544098 + 0.839022i \(0.683128\pi\)
\(200\) −683.452 −0.241637
\(201\) 494.765 0.173622
\(202\) −470.178 −0.163770
\(203\) −53.2949 −0.0184264
\(204\) 772.563 0.265148
\(205\) −1844.77 −0.628508
\(206\) 161.519 0.0546288
\(207\) −2543.87 −0.854159
\(208\) 2859.63 0.953269
\(209\) 0 0
\(210\) 9.62569 0.00316303
\(211\) 1704.64 0.556172 0.278086 0.960556i \(-0.410300\pi\)
0.278086 + 0.960556i \(0.410300\pi\)
\(212\) −4585.81 −1.48564
\(213\) 281.476 0.0905465
\(214\) −1633.71 −0.521859
\(215\) 2624.57 0.832531
\(216\) 1112.93 0.350579
\(217\) 4.43923 0.00138873
\(218\) 760.463 0.236262
\(219\) 320.488 0.0988884
\(220\) 0 0
\(221\) 4530.25 1.37890
\(222\) 245.213 0.0741335
\(223\) 4602.52 1.38210 0.691049 0.722808i \(-0.257149\pi\)
0.691049 + 0.722808i \(0.257149\pi\)
\(224\) −118.409 −0.0353193
\(225\) 1203.28 0.356526
\(226\) 1005.44 0.295934
\(227\) 3287.46 0.961216 0.480608 0.876936i \(-0.340416\pi\)
0.480608 + 0.876936i \(0.340416\pi\)
\(228\) 1427.97 0.414778
\(229\) −2950.99 −0.851558 −0.425779 0.904827i \(-0.640000\pi\)
−0.425779 + 0.904827i \(0.640000\pi\)
\(230\) −832.316 −0.238614
\(231\) 0 0
\(232\) −961.663 −0.272139
\(233\) 2822.70 0.793654 0.396827 0.917893i \(-0.370111\pi\)
0.396827 + 0.917893i \(0.370111\pi\)
\(234\) 1468.84 0.410346
\(235\) −1666.72 −0.462660
\(236\) −371.685 −0.102520
\(237\) −1006.32 −0.275811
\(238\) −50.1887 −0.0136691
\(239\) 2061.17 0.557848 0.278924 0.960313i \(-0.410022\pi\)
0.278924 + 0.960313i \(0.410022\pi\)
\(240\) −595.337 −0.160120
\(241\) −3089.45 −0.825763 −0.412881 0.910785i \(-0.635478\pi\)
−0.412881 + 0.910785i \(0.635478\pi\)
\(242\) 0 0
\(243\) −2984.19 −0.787803
\(244\) 3522.07 0.924088
\(245\) −2987.60 −0.779065
\(246\) −300.903 −0.0779873
\(247\) 8373.49 2.15705
\(248\) 80.1024 0.0205101
\(249\) −1853.31 −0.471683
\(250\) 1400.78 0.354372
\(251\) −4029.16 −1.01322 −0.506610 0.862176i \(-0.669101\pi\)
−0.506610 + 0.862176i \(0.669101\pi\)
\(252\) 136.420 0.0341017
\(253\) 0 0
\(254\) 1159.03 0.286316
\(255\) −943.136 −0.231614
\(256\) 394.466 0.0963052
\(257\) −4397.47 −1.06734 −0.533671 0.845692i \(-0.679188\pi\)
−0.533671 + 0.845692i \(0.679188\pi\)
\(258\) 428.098 0.103303
\(259\) 133.547 0.0320395
\(260\) −4028.91 −0.961010
\(261\) 1693.09 0.401531
\(262\) −1293.78 −0.305076
\(263\) −914.661 −0.214450 −0.107225 0.994235i \(-0.534197\pi\)
−0.107225 + 0.994235i \(0.534197\pi\)
\(264\) 0 0
\(265\) 5598.31 1.29774
\(266\) −92.7662 −0.0213829
\(267\) −1105.08 −0.253296
\(268\) 2294.24 0.522922
\(269\) −1768.78 −0.400908 −0.200454 0.979703i \(-0.564242\pi\)
−0.200454 + 0.979703i \(0.564242\pi\)
\(270\) −641.089 −0.144502
\(271\) 4018.54 0.900771 0.450385 0.892834i \(-0.351287\pi\)
0.450385 + 0.892834i \(0.351287\pi\)
\(272\) 3104.11 0.691963
\(273\) −77.1835 −0.0171112
\(274\) 377.957 0.0833330
\(275\) 0 0
\(276\) 1138.13 0.248216
\(277\) −6645.80 −1.44154 −0.720772 0.693173i \(-0.756212\pi\)
−0.720772 + 0.693173i \(0.756212\pi\)
\(278\) −549.742 −0.118602
\(279\) −141.027 −0.0302619
\(280\) 94.5934 0.0201894
\(281\) 4383.05 0.930502 0.465251 0.885179i \(-0.345964\pi\)
0.465251 + 0.885179i \(0.345964\pi\)
\(282\) −271.862 −0.0574084
\(283\) 3734.87 0.784504 0.392252 0.919858i \(-0.371696\pi\)
0.392252 + 0.919858i \(0.371696\pi\)
\(284\) 1305.21 0.272711
\(285\) −1743.25 −0.362319
\(286\) 0 0
\(287\) −163.877 −0.0337050
\(288\) 3761.65 0.769644
\(289\) 4.54474 0.000925043 0
\(290\) 553.955 0.112170
\(291\) 968.556 0.195113
\(292\) 1486.11 0.297836
\(293\) −2235.17 −0.445665 −0.222833 0.974857i \(-0.571530\pi\)
−0.222833 + 0.974857i \(0.571530\pi\)
\(294\) −487.313 −0.0966689
\(295\) 453.748 0.0895534
\(296\) 2409.75 0.473190
\(297\) 0 0
\(298\) −2003.74 −0.389509
\(299\) 6673.92 1.29085
\(300\) −538.349 −0.103605
\(301\) 233.149 0.0446462
\(302\) 1660.88 0.316466
\(303\) −784.888 −0.148814
\(304\) 5737.47 1.08246
\(305\) −4299.70 −0.807214
\(306\) 1594.41 0.297864
\(307\) 1022.51 0.190090 0.0950451 0.995473i \(-0.469700\pi\)
0.0950451 + 0.995473i \(0.469700\pi\)
\(308\) 0 0
\(309\) 269.629 0.0496398
\(310\) −46.1420 −0.00845385
\(311\) 5319.39 0.969886 0.484943 0.874546i \(-0.338840\pi\)
0.484943 + 0.874546i \(0.338840\pi\)
\(312\) −1392.71 −0.252714
\(313\) −6993.46 −1.26292 −0.631460 0.775409i \(-0.717544\pi\)
−0.631460 + 0.775409i \(0.717544\pi\)
\(314\) 72.4030 0.0130125
\(315\) −166.540 −0.0297887
\(316\) −4666.32 −0.830699
\(317\) 4314.67 0.764468 0.382234 0.924066i \(-0.375155\pi\)
0.382234 + 0.924066i \(0.375155\pi\)
\(318\) 913.149 0.161028
\(319\) 0 0
\(320\) −1859.13 −0.324776
\(321\) −2727.21 −0.474200
\(322\) −73.9375 −0.0127962
\(323\) 9089.34 1.56577
\(324\) −3875.34 −0.664496
\(325\) −3156.84 −0.538799
\(326\) −303.627 −0.0515839
\(327\) 1269.47 0.214685
\(328\) −2957.03 −0.497788
\(329\) −148.061 −0.0248111
\(330\) 0 0
\(331\) −3886.73 −0.645420 −0.322710 0.946498i \(-0.604594\pi\)
−0.322710 + 0.946498i \(0.604594\pi\)
\(332\) −8593.87 −1.42063
\(333\) −4242.58 −0.698174
\(334\) 3253.64 0.533028
\(335\) −2800.78 −0.456785
\(336\) −52.8858 −0.00858677
\(337\) −9102.10 −1.47129 −0.735643 0.677370i \(-0.763120\pi\)
−0.735643 + 0.677370i \(0.763120\pi\)
\(338\) −1824.96 −0.293682
\(339\) 1678.43 0.268907
\(340\) −4373.35 −0.697583
\(341\) 0 0
\(342\) 2947.03 0.465957
\(343\) −531.264 −0.0836313
\(344\) 4206.99 0.659378
\(345\) −1389.42 −0.216823
\(346\) 2499.71 0.388396
\(347\) −10152.7 −1.57068 −0.785340 0.619064i \(-0.787512\pi\)
−0.785340 + 0.619064i \(0.787512\pi\)
\(348\) −757.493 −0.116684
\(349\) −10672.1 −1.63687 −0.818434 0.574601i \(-0.805157\pi\)
−0.818434 + 0.574601i \(0.805157\pi\)
\(350\) 34.9732 0.00534113
\(351\) 5140.56 0.781718
\(352\) 0 0
\(353\) −9301.69 −1.40249 −0.701245 0.712920i \(-0.747372\pi\)
−0.701245 + 0.712920i \(0.747372\pi\)
\(354\) 74.0116 0.0111121
\(355\) −1593.39 −0.238220
\(356\) −5124.30 −0.762885
\(357\) −83.7820 −0.0124208
\(358\) −1360.25 −0.200814
\(359\) 8397.40 1.23453 0.617267 0.786754i \(-0.288240\pi\)
0.617267 + 0.786754i \(0.288240\pi\)
\(360\) −3005.08 −0.439948
\(361\) 9941.29 1.44938
\(362\) 454.398 0.0659742
\(363\) 0 0
\(364\) −357.902 −0.0515362
\(365\) −1814.23 −0.260167
\(366\) −701.332 −0.100162
\(367\) −9367.96 −1.33243 −0.666217 0.745758i \(-0.732088\pi\)
−0.666217 + 0.745758i \(0.732088\pi\)
\(368\) 4572.94 0.647774
\(369\) 5206.10 0.734468
\(370\) −1388.11 −0.195039
\(371\) 497.316 0.0695940
\(372\) 63.0960 0.00879401
\(373\) 2639.31 0.366376 0.183188 0.983078i \(-0.441358\pi\)
0.183188 + 0.983078i \(0.441358\pi\)
\(374\) 0 0
\(375\) 2338.38 0.322008
\(376\) −2671.64 −0.366434
\(377\) −4441.88 −0.606813
\(378\) −56.9501 −0.00774920
\(379\) −7366.52 −0.998398 −0.499199 0.866488i \(-0.666372\pi\)
−0.499199 + 0.866488i \(0.666372\pi\)
\(380\) −8083.48 −1.09125
\(381\) 1934.82 0.260168
\(382\) 1194.74 0.160021
\(383\) −3220.38 −0.429644 −0.214822 0.976653i \(-0.568917\pi\)
−0.214822 + 0.976653i \(0.568917\pi\)
\(384\) −2186.97 −0.290634
\(385\) 0 0
\(386\) 483.962 0.0638160
\(387\) −7406.77 −0.972887
\(388\) 4491.22 0.587647
\(389\) 12228.0 1.59379 0.796893 0.604121i \(-0.206476\pi\)
0.796893 + 0.604121i \(0.206476\pi\)
\(390\) 802.256 0.104164
\(391\) 7244.48 0.937005
\(392\) −4788.91 −0.617032
\(393\) −2159.76 −0.277215
\(394\) 1087.10 0.139004
\(395\) 5696.59 0.725636
\(396\) 0 0
\(397\) 8381.55 1.05959 0.529796 0.848125i \(-0.322269\pi\)
0.529796 + 0.848125i \(0.322269\pi\)
\(398\) 2820.67 0.355244
\(399\) −154.858 −0.0194301
\(400\) −2163.05 −0.270381
\(401\) −4330.35 −0.539270 −0.269635 0.962963i \(-0.586903\pi\)
−0.269635 + 0.962963i \(0.586903\pi\)
\(402\) −456.840 −0.0566794
\(403\) 369.990 0.0457332
\(404\) −3639.55 −0.448204
\(405\) 4730.97 0.580454
\(406\) 49.2097 0.00601536
\(407\) 0 0
\(408\) −1511.78 −0.183442
\(409\) 11937.9 1.44325 0.721627 0.692282i \(-0.243395\pi\)
0.721627 + 0.692282i \(0.243395\pi\)
\(410\) 1703.36 0.205178
\(411\) 630.940 0.0757225
\(412\) 1250.28 0.149507
\(413\) 40.3080 0.00480249
\(414\) 2348.87 0.278842
\(415\) 10491.3 1.24096
\(416\) −9868.83 −1.16312
\(417\) −917.707 −0.107770
\(418\) 0 0
\(419\) −11888.5 −1.38614 −0.693070 0.720870i \(-0.743743\pi\)
−0.693070 + 0.720870i \(0.743743\pi\)
\(420\) 74.5103 0.00865651
\(421\) −8485.46 −0.982318 −0.491159 0.871070i \(-0.663427\pi\)
−0.491159 + 0.871070i \(0.663427\pi\)
\(422\) −1573.98 −0.181564
\(423\) 4703.65 0.540660
\(424\) 8973.68 1.02783
\(425\) −3426.72 −0.391106
\(426\) −259.900 −0.0295591
\(427\) −381.957 −0.0432885
\(428\) −12646.2 −1.42821
\(429\) 0 0
\(430\) −2423.39 −0.271782
\(431\) 11460.7 1.28084 0.640422 0.768023i \(-0.278759\pi\)
0.640422 + 0.768023i \(0.278759\pi\)
\(432\) 3522.29 0.392283
\(433\) 3298.08 0.366041 0.183020 0.983109i \(-0.441413\pi\)
0.183020 + 0.983109i \(0.441413\pi\)
\(434\) −4.09895 −0.000453355 0
\(435\) 924.739 0.101926
\(436\) 5886.57 0.646596
\(437\) 13390.3 1.46578
\(438\) −295.922 −0.0322824
\(439\) 5549.93 0.603380 0.301690 0.953406i \(-0.402449\pi\)
0.301690 + 0.953406i \(0.402449\pi\)
\(440\) 0 0
\(441\) 8431.29 0.910408
\(442\) −4182.99 −0.450146
\(443\) 10880.8 1.16696 0.583481 0.812127i \(-0.301690\pi\)
0.583481 + 0.812127i \(0.301690\pi\)
\(444\) 1898.14 0.202887
\(445\) 6255.68 0.666399
\(446\) −4249.73 −0.451189
\(447\) −3344.93 −0.353937
\(448\) −165.153 −0.0174168
\(449\) −7545.71 −0.793105 −0.396553 0.918012i \(-0.629794\pi\)
−0.396553 + 0.918012i \(0.629794\pi\)
\(450\) −1111.04 −0.116389
\(451\) 0 0
\(452\) 7782.91 0.809906
\(453\) 2772.57 0.287565
\(454\) −3035.46 −0.313791
\(455\) 436.923 0.0450181
\(456\) −2794.30 −0.286963
\(457\) −3239.25 −0.331566 −0.165783 0.986162i \(-0.553015\pi\)
−0.165783 + 0.986162i \(0.553015\pi\)
\(458\) 2724.79 0.277993
\(459\) 5580.04 0.567438
\(460\) −6442.78 −0.653035
\(461\) −4837.43 −0.488724 −0.244362 0.969684i \(-0.578578\pi\)
−0.244362 + 0.969684i \(0.578578\pi\)
\(462\) 0 0
\(463\) 14089.7 1.41427 0.707133 0.707081i \(-0.249988\pi\)
0.707133 + 0.707081i \(0.249988\pi\)
\(464\) −3043.56 −0.304512
\(465\) −77.0268 −0.00768179
\(466\) −2606.34 −0.259090
\(467\) 14545.3 1.44128 0.720639 0.693311i \(-0.243849\pi\)
0.720639 + 0.693311i \(0.243849\pi\)
\(468\) 11370.0 1.12303
\(469\) −248.803 −0.0244961
\(470\) 1538.97 0.151037
\(471\) 120.865 0.0118242
\(472\) 727.326 0.0709277
\(473\) 0 0
\(474\) 929.179 0.0900393
\(475\) −6333.77 −0.611818
\(476\) −388.500 −0.0374093
\(477\) −15798.9 −1.51653
\(478\) −1903.17 −0.182111
\(479\) 2830.07 0.269957 0.134978 0.990849i \(-0.456904\pi\)
0.134978 + 0.990849i \(0.456904\pi\)
\(480\) 2054.56 0.195369
\(481\) 11130.5 1.05511
\(482\) 2852.63 0.269572
\(483\) −123.427 −0.0116276
\(484\) 0 0
\(485\) −5482.83 −0.513325
\(486\) 2755.45 0.257180
\(487\) −19134.5 −1.78043 −0.890214 0.455542i \(-0.849445\pi\)
−0.890214 + 0.455542i \(0.849445\pi\)
\(488\) −6892.11 −0.639326
\(489\) −506.857 −0.0468730
\(490\) 2758.60 0.254328
\(491\) −11293.7 −1.03804 −0.519020 0.854762i \(-0.673703\pi\)
−0.519020 + 0.854762i \(0.673703\pi\)
\(492\) −2329.22 −0.213434
\(493\) −4821.62 −0.440476
\(494\) −7731.64 −0.704176
\(495\) 0 0
\(496\) 253.515 0.0229499
\(497\) −141.546 −0.0127751
\(498\) 1711.25 0.153982
\(499\) 866.184 0.0777068 0.0388534 0.999245i \(-0.487629\pi\)
0.0388534 + 0.999245i \(0.487629\pi\)
\(500\) 10843.1 0.969838
\(501\) 5431.44 0.484349
\(502\) 3720.31 0.330768
\(503\) −5983.51 −0.530401 −0.265200 0.964193i \(-0.585438\pi\)
−0.265200 + 0.964193i \(0.585438\pi\)
\(504\) −266.951 −0.0235931
\(505\) 4443.12 0.391517
\(506\) 0 0
\(507\) −3046.47 −0.266861
\(508\) 8971.83 0.783584
\(509\) 11067.1 0.963734 0.481867 0.876244i \(-0.339959\pi\)
0.481867 + 0.876244i \(0.339959\pi\)
\(510\) 870.842 0.0756109
\(511\) −161.164 −0.0139520
\(512\) −11714.9 −1.01120
\(513\) 10313.9 0.887657
\(514\) 4060.39 0.348436
\(515\) −1526.33 −0.130598
\(516\) 3313.81 0.282718
\(517\) 0 0
\(518\) −123.311 −0.0104594
\(519\) 4172.86 0.352925
\(520\) 7883.92 0.664871
\(521\) 14902.8 1.25318 0.626588 0.779351i \(-0.284451\pi\)
0.626588 + 0.779351i \(0.284451\pi\)
\(522\) −1563.31 −0.131081
\(523\) −1489.44 −0.124529 −0.0622645 0.998060i \(-0.519832\pi\)
−0.0622645 + 0.998060i \(0.519832\pi\)
\(524\) −10014.9 −0.834926
\(525\) 58.3822 0.00485335
\(526\) 844.550 0.0700078
\(527\) 401.620 0.0331971
\(528\) 0 0
\(529\) −1494.50 −0.122832
\(530\) −5169.18 −0.423651
\(531\) −1280.52 −0.104651
\(532\) −718.083 −0.0585204
\(533\) −13658.4 −1.10996
\(534\) 1020.37 0.0826890
\(535\) 15438.3 1.24758
\(536\) −4489.45 −0.361781
\(537\) −2270.72 −0.182474
\(538\) 1633.19 0.130877
\(539\) 0 0
\(540\) −4962.53 −0.395469
\(541\) 533.528 0.0423996 0.0211998 0.999775i \(-0.493251\pi\)
0.0211998 + 0.999775i \(0.493251\pi\)
\(542\) −3710.51 −0.294059
\(543\) 758.546 0.0599490
\(544\) −10712.5 −0.844294
\(545\) −7186.26 −0.564818
\(546\) 71.2672 0.00558599
\(547\) −18499.2 −1.44601 −0.723006 0.690842i \(-0.757240\pi\)
−0.723006 + 0.690842i \(0.757240\pi\)
\(548\) 2925.69 0.228064
\(549\) 12134.2 0.943302
\(550\) 0 0
\(551\) −8912.04 −0.689049
\(552\) −2227.14 −0.171727
\(553\) 506.047 0.0389138
\(554\) 6136.38 0.470596
\(555\) −2317.23 −0.177227
\(556\) −4255.43 −0.324587
\(557\) −15743.8 −1.19764 −0.598819 0.800884i \(-0.704363\pi\)
−0.598819 + 0.800884i \(0.704363\pi\)
\(558\) 130.217 0.00987908
\(559\) 19431.9 1.47027
\(560\) 299.377 0.0225911
\(561\) 0 0
\(562\) −4047.08 −0.303765
\(563\) 6032.14 0.451553 0.225777 0.974179i \(-0.427508\pi\)
0.225777 + 0.974179i \(0.427508\pi\)
\(564\) −2104.43 −0.157114
\(565\) −9501.28 −0.707473
\(566\) −3448.58 −0.256103
\(567\) 420.268 0.0311280
\(568\) −2554.08 −0.188674
\(569\) −15629.6 −1.15154 −0.575770 0.817612i \(-0.695298\pi\)
−0.575770 + 0.817612i \(0.695298\pi\)
\(570\) 1609.62 0.118280
\(571\) −7252.67 −0.531550 −0.265775 0.964035i \(-0.585628\pi\)
−0.265775 + 0.964035i \(0.585628\pi\)
\(572\) 0 0
\(573\) 1994.43 0.145407
\(574\) 151.315 0.0110031
\(575\) −5048.21 −0.366130
\(576\) 5246.63 0.379530
\(577\) 12997.7 0.937783 0.468892 0.883256i \(-0.344653\pi\)
0.468892 + 0.883256i \(0.344653\pi\)
\(578\) −4.19637 −0.000301983 0
\(579\) 807.897 0.0579880
\(580\) 4288.04 0.306985
\(581\) 931.978 0.0665490
\(582\) −894.313 −0.0636950
\(583\) 0 0
\(584\) −2908.08 −0.206057
\(585\) −13880.3 −0.980992
\(586\) 2063.84 0.145489
\(587\) 10132.7 0.712474 0.356237 0.934396i \(-0.384060\pi\)
0.356237 + 0.934396i \(0.384060\pi\)
\(588\) −3772.18 −0.264562
\(589\) 742.335 0.0519310
\(590\) −418.967 −0.0292349
\(591\) 1814.75 0.126309
\(592\) 7626.60 0.529479
\(593\) −838.751 −0.0580833 −0.0290416 0.999578i \(-0.509246\pi\)
−0.0290416 + 0.999578i \(0.509246\pi\)
\(594\) 0 0
\(595\) 474.276 0.0326780
\(596\) −15510.5 −1.06600
\(597\) 4708.65 0.322801
\(598\) −6162.35 −0.421400
\(599\) −25712.4 −1.75389 −0.876944 0.480592i \(-0.840422\pi\)
−0.876944 + 0.480592i \(0.840422\pi\)
\(600\) 1053.46 0.0716789
\(601\) −1423.48 −0.0966140 −0.0483070 0.998833i \(-0.515383\pi\)
−0.0483070 + 0.998833i \(0.515383\pi\)
\(602\) −215.278 −0.0145749
\(603\) 7904.06 0.533795
\(604\) 12856.5 0.866098
\(605\) 0 0
\(606\) 724.724 0.0485807
\(607\) −25571.7 −1.70993 −0.854963 0.518689i \(-0.826420\pi\)
−0.854963 + 0.518689i \(0.826420\pi\)
\(608\) −19800.5 −1.32075
\(609\) 82.1477 0.00546600
\(610\) 3970.12 0.263517
\(611\) −12340.2 −0.817071
\(612\) 12342.0 0.815189
\(613\) −4851.98 −0.319690 −0.159845 0.987142i \(-0.551099\pi\)
−0.159845 + 0.987142i \(0.551099\pi\)
\(614\) −944.131 −0.0620554
\(615\) 2843.49 0.186440
\(616\) 0 0
\(617\) 3850.99 0.251272 0.125636 0.992076i \(-0.459903\pi\)
0.125636 + 0.992076i \(0.459903\pi\)
\(618\) −248.962 −0.0162050
\(619\) 24087.4 1.56407 0.782033 0.623238i \(-0.214183\pi\)
0.782033 + 0.623238i \(0.214183\pi\)
\(620\) −357.176 −0.0231363
\(621\) 8220.46 0.531201
\(622\) −4911.64 −0.316622
\(623\) 555.713 0.0357370
\(624\) −4407.78 −0.282777
\(625\) −7128.93 −0.456252
\(626\) 6457.39 0.412283
\(627\) 0 0
\(628\) 560.456 0.0356125
\(629\) 12082.1 0.765891
\(630\) 153.774 0.00972461
\(631\) −2912.36 −0.183739 −0.0918695 0.995771i \(-0.529284\pi\)
−0.0918695 + 0.995771i \(0.529284\pi\)
\(632\) 9131.21 0.574715
\(633\) −2627.50 −0.164982
\(634\) −3983.94 −0.249562
\(635\) −10952.7 −0.684480
\(636\) 7068.49 0.440698
\(637\) −22119.8 −1.37585
\(638\) 0 0
\(639\) 4496.68 0.278382
\(640\) 12380.1 0.764633
\(641\) 6150.64 0.378995 0.189497 0.981881i \(-0.439314\pi\)
0.189497 + 0.981881i \(0.439314\pi\)
\(642\) 2518.16 0.154804
\(643\) −9755.36 −0.598311 −0.299155 0.954204i \(-0.596705\pi\)
−0.299155 + 0.954204i \(0.596705\pi\)
\(644\) −572.334 −0.0350204
\(645\) −4045.46 −0.246961
\(646\) −8392.62 −0.511151
\(647\) −1821.66 −0.110691 −0.0553454 0.998467i \(-0.517626\pi\)
−0.0553454 + 0.998467i \(0.517626\pi\)
\(648\) 7583.40 0.459728
\(649\) 0 0
\(650\) 2914.86 0.175892
\(651\) −6.84255 −0.000411952 0
\(652\) −2350.31 −0.141174
\(653\) 6381.35 0.382422 0.191211 0.981549i \(-0.438759\pi\)
0.191211 + 0.981549i \(0.438759\pi\)
\(654\) −1172.16 −0.0700844
\(655\) 12226.0 0.729328
\(656\) −9358.66 −0.557004
\(657\) 5119.91 0.304029
\(658\) 136.712 0.00809965
\(659\) −27285.6 −1.61289 −0.806445 0.591309i \(-0.798611\pi\)
−0.806445 + 0.591309i \(0.798611\pi\)
\(660\) 0 0
\(661\) −23925.0 −1.40783 −0.703913 0.710286i \(-0.748566\pi\)
−0.703913 + 0.710286i \(0.748566\pi\)
\(662\) 3588.80 0.210699
\(663\) −6982.84 −0.409036
\(664\) 16816.8 0.982859
\(665\) 876.627 0.0511190
\(666\) 3917.37 0.227921
\(667\) −7103.16 −0.412347
\(668\) 25185.7 1.45878
\(669\) −7094.24 −0.409984
\(670\) 2586.10 0.149119
\(671\) 0 0
\(672\) 182.513 0.0104771
\(673\) −8336.73 −0.477500 −0.238750 0.971081i \(-0.576738\pi\)
−0.238750 + 0.971081i \(0.576738\pi\)
\(674\) 8404.40 0.480305
\(675\) −3888.37 −0.221723
\(676\) −14126.6 −0.803743
\(677\) −1110.30 −0.0630315 −0.0315157 0.999503i \(-0.510033\pi\)
−0.0315157 + 0.999503i \(0.510033\pi\)
\(678\) −1549.77 −0.0877855
\(679\) −487.058 −0.0275281
\(680\) 8557.92 0.482620
\(681\) −5067.22 −0.285134
\(682\) 0 0
\(683\) 8337.88 0.467116 0.233558 0.972343i \(-0.424963\pi\)
0.233558 + 0.972343i \(0.424963\pi\)
\(684\) 22812.3 1.27522
\(685\) −3571.64 −0.199220
\(686\) 490.541 0.0273017
\(687\) 4548.60 0.252605
\(688\) 13314.7 0.737815
\(689\) 41449.0 2.29185
\(690\) 1282.92 0.0707823
\(691\) −33371.9 −1.83723 −0.918617 0.395150i \(-0.870693\pi\)
−0.918617 + 0.395150i \(0.870693\pi\)
\(692\) 19349.7 1.06295
\(693\) 0 0
\(694\) 9374.48 0.512753
\(695\) 5194.98 0.283535
\(696\) 1482.29 0.0807271
\(697\) −14826.1 −0.805706
\(698\) 9854.09 0.534359
\(699\) −4350.86 −0.235429
\(700\) 270.720 0.0146175
\(701\) 7808.86 0.420737 0.210368 0.977622i \(-0.432534\pi\)
0.210368 + 0.977622i \(0.432534\pi\)
\(702\) −4746.53 −0.255194
\(703\) 22332.0 1.19810
\(704\) 0 0
\(705\) 2569.06 0.137243
\(706\) 8588.69 0.457847
\(707\) 394.697 0.0209959
\(708\) 572.908 0.0304113
\(709\) 27952.0 1.48062 0.740311 0.672265i \(-0.234678\pi\)
0.740311 + 0.672265i \(0.234678\pi\)
\(710\) 1471.25 0.0777676
\(711\) −16076.3 −0.847971
\(712\) 10027.4 0.527799
\(713\) 591.663 0.0310771
\(714\) 77.3599 0.00405479
\(715\) 0 0
\(716\) −10529.4 −0.549583
\(717\) −3177.04 −0.165479
\(718\) −7753.72 −0.403017
\(719\) −24982.9 −1.29583 −0.647917 0.761711i \(-0.724360\pi\)
−0.647917 + 0.761711i \(0.724360\pi\)
\(720\) −9510.73 −0.492283
\(721\) −135.589 −0.00700359
\(722\) −9179.27 −0.473154
\(723\) 4762.02 0.244953
\(724\) 3517.40 0.180557
\(725\) 3359.87 0.172114
\(726\) 0 0
\(727\) 31671.2 1.61571 0.807855 0.589381i \(-0.200628\pi\)
0.807855 + 0.589381i \(0.200628\pi\)
\(728\) 700.355 0.0356551
\(729\) −10039.6 −0.510066
\(730\) 1675.16 0.0849322
\(731\) 21093.2 1.06725
\(732\) −5428.86 −0.274121
\(733\) 11831.8 0.596203 0.298102 0.954534i \(-0.403647\pi\)
0.298102 + 0.954534i \(0.403647\pi\)
\(734\) 8649.88 0.434977
\(735\) 4605.04 0.231101
\(736\) −15781.6 −0.790377
\(737\) 0 0
\(738\) −4807.04 −0.239769
\(739\) 5550.14 0.276272 0.138136 0.990413i \(-0.455889\pi\)
0.138136 + 0.990413i \(0.455889\pi\)
\(740\) −10745.1 −0.533779
\(741\) −12906.7 −0.639866
\(742\) −459.196 −0.0227191
\(743\) 37299.7 1.84172 0.920858 0.389898i \(-0.127490\pi\)
0.920858 + 0.389898i \(0.127490\pi\)
\(744\) −123.468 −0.00608410
\(745\) 18935.1 0.931177
\(746\) −2437.00 −0.119604
\(747\) −29607.4 −1.45017
\(748\) 0 0
\(749\) 1371.43 0.0669041
\(750\) −2159.13 −0.105120
\(751\) −5199.27 −0.252628 −0.126314 0.991990i \(-0.540315\pi\)
−0.126314 + 0.991990i \(0.540315\pi\)
\(752\) −8455.44 −0.410024
\(753\) 6210.46 0.300560
\(754\) 4101.40 0.198096
\(755\) −15695.1 −0.756558
\(756\) −440.838 −0.0212078
\(757\) 158.061 0.00758895 0.00379448 0.999993i \(-0.498792\pi\)
0.00379448 + 0.999993i \(0.498792\pi\)
\(758\) 6801.86 0.325929
\(759\) 0 0
\(760\) 15818.0 0.754974
\(761\) 6653.76 0.316949 0.158475 0.987363i \(-0.449342\pi\)
0.158475 + 0.987363i \(0.449342\pi\)
\(762\) −1786.51 −0.0849325
\(763\) −638.380 −0.0302895
\(764\) 9248.22 0.437944
\(765\) −15067.0 −0.712087
\(766\) 2973.53 0.140258
\(767\) 3359.49 0.158154
\(768\) −608.022 −0.0285679
\(769\) 5519.26 0.258816 0.129408 0.991591i \(-0.458692\pi\)
0.129408 + 0.991591i \(0.458692\pi\)
\(770\) 0 0
\(771\) 6778.18 0.316615
\(772\) 3746.24 0.174650
\(773\) 30874.4 1.43658 0.718289 0.695744i \(-0.244925\pi\)
0.718289 + 0.695744i \(0.244925\pi\)
\(774\) 6839.02 0.317602
\(775\) −279.863 −0.0129716
\(776\) −8788.58 −0.406561
\(777\) −205.847 −0.00950416
\(778\) −11290.7 −0.520295
\(779\) −27403.7 −1.26039
\(780\) 6210.09 0.285073
\(781\) 0 0
\(782\) −6689.17 −0.305888
\(783\) −5471.19 −0.249712
\(784\) −15156.4 −0.690432
\(785\) −684.198 −0.0311084
\(786\) 1994.21 0.0904974
\(787\) −24993.7 −1.13206 −0.566030 0.824385i \(-0.691521\pi\)
−0.566030 + 0.824385i \(0.691521\pi\)
\(788\) 8415.03 0.380423
\(789\) 1409.84 0.0636143
\(790\) −5259.93 −0.236886
\(791\) −844.031 −0.0379397
\(792\) 0 0
\(793\) −31834.4 −1.42556
\(794\) −7739.08 −0.345906
\(795\) −8629.12 −0.384960
\(796\) 21834.2 0.972225
\(797\) −20473.4 −0.909920 −0.454960 0.890512i \(-0.650346\pi\)
−0.454960 + 0.890512i \(0.650346\pi\)
\(798\) 142.988 0.00634301
\(799\) −13395.2 −0.593100
\(800\) 7464.86 0.329903
\(801\) −17654.1 −0.778748
\(802\) 3998.41 0.176046
\(803\) 0 0
\(804\) −3536.30 −0.155119
\(805\) 698.698 0.0305912
\(806\) −341.629 −0.0149297
\(807\) 2726.36 0.118925
\(808\) 7121.99 0.310088
\(809\) 14674.6 0.637738 0.318869 0.947799i \(-0.396697\pi\)
0.318869 + 0.947799i \(0.396697\pi\)
\(810\) −4368.33 −0.189491
\(811\) 4724.23 0.204550 0.102275 0.994756i \(-0.467388\pi\)
0.102275 + 0.994756i \(0.467388\pi\)
\(812\) 380.921 0.0164627
\(813\) −6194.10 −0.267204
\(814\) 0 0
\(815\) 2869.23 0.123319
\(816\) −4784.61 −0.205263
\(817\) 38987.6 1.66953
\(818\) −11022.8 −0.471154
\(819\) −1233.04 −0.0526077
\(820\) 13185.3 0.561527
\(821\) 44921.6 1.90959 0.954796 0.297261i \(-0.0960731\pi\)
0.954796 + 0.297261i \(0.0960731\pi\)
\(822\) −582.576 −0.0247198
\(823\) 39557.5 1.67544 0.837721 0.546099i \(-0.183888\pi\)
0.837721 + 0.546099i \(0.183888\pi\)
\(824\) −2446.59 −0.103436
\(825\) 0 0
\(826\) −37.2183 −0.00156778
\(827\) 15762.7 0.662784 0.331392 0.943493i \(-0.392482\pi\)
0.331392 + 0.943493i \(0.392482\pi\)
\(828\) 18182.1 0.763130
\(829\) 22580.6 0.946029 0.473014 0.881055i \(-0.343166\pi\)
0.473014 + 0.881055i \(0.343166\pi\)
\(830\) −9687.11 −0.405114
\(831\) 10243.7 0.427618
\(832\) −13764.7 −0.573564
\(833\) −24010.8 −0.998710
\(834\) 847.362 0.0351820
\(835\) −30746.4 −1.27428
\(836\) 0 0
\(837\) 455.727 0.0188199
\(838\) 10977.2 0.452509
\(839\) −23447.7 −0.964844 −0.482422 0.875939i \(-0.660243\pi\)
−0.482422 + 0.875939i \(0.660243\pi\)
\(840\) −145.804 −0.00598897
\(841\) −19661.4 −0.806160
\(842\) 7835.02 0.320680
\(843\) −6755.96 −0.276023
\(844\) −12183.8 −0.496900
\(845\) 17245.6 0.702089
\(846\) −4343.10 −0.176500
\(847\) 0 0
\(848\) 28400.7 1.15010
\(849\) −5756.85 −0.232715
\(850\) 3164.05 0.127678
\(851\) 17799.3 0.716981
\(852\) −2011.83 −0.0808968
\(853\) −14996.8 −0.601970 −0.300985 0.953629i \(-0.597315\pi\)
−0.300985 + 0.953629i \(0.597315\pi\)
\(854\) 352.679 0.0141317
\(855\) −27849.0 −1.11394
\(856\) 24746.4 0.988103
\(857\) 46121.7 1.83838 0.919188 0.393819i \(-0.128846\pi\)
0.919188 + 0.393819i \(0.128846\pi\)
\(858\) 0 0
\(859\) −17398.7 −0.691080 −0.345540 0.938404i \(-0.612304\pi\)
−0.345540 + 0.938404i \(0.612304\pi\)
\(860\) −18758.9 −0.743807
\(861\) 252.597 0.00999823
\(862\) −10582.2 −0.418135
\(863\) −11111.7 −0.438293 −0.219147 0.975692i \(-0.570327\pi\)
−0.219147 + 0.975692i \(0.570327\pi\)
\(864\) −12155.7 −0.478641
\(865\) −23621.9 −0.928517
\(866\) −3045.27 −0.119495
\(867\) −7.00517 −0.000274404 0
\(868\) −31.7291 −0.00124073
\(869\) 0 0
\(870\) −853.855 −0.0332740
\(871\) −20736.6 −0.806696
\(872\) −11519.1 −0.447344
\(873\) 15473.0 0.599866
\(874\) −12363.9 −0.478508
\(875\) −1175.90 −0.0454316
\(876\) −2290.67 −0.0883498
\(877\) 1596.62 0.0614756 0.0307378 0.999527i \(-0.490214\pi\)
0.0307378 + 0.999527i \(0.490214\pi\)
\(878\) −5124.51 −0.196975
\(879\) 3445.25 0.132202
\(880\) 0 0
\(881\) 4924.45 0.188319 0.0941594 0.995557i \(-0.469984\pi\)
0.0941594 + 0.995557i \(0.469984\pi\)
\(882\) −7785.01 −0.297205
\(883\) −21571.2 −0.822116 −0.411058 0.911609i \(-0.634841\pi\)
−0.411058 + 0.911609i \(0.634841\pi\)
\(884\) −32379.6 −1.23195
\(885\) −699.399 −0.0265650
\(886\) −10046.8 −0.380958
\(887\) 22123.9 0.837485 0.418742 0.908105i \(-0.362471\pi\)
0.418742 + 0.908105i \(0.362471\pi\)
\(888\) −3714.35 −0.140366
\(889\) −972.966 −0.0367067
\(890\) −5776.16 −0.217548
\(891\) 0 0
\(892\) −32896.2 −1.23481
\(893\) −24758.9 −0.927801
\(894\) 3088.53 0.115543
\(895\) 12854.1 0.480074
\(896\) 1099.76 0.0410051
\(897\) −10287.1 −0.382915
\(898\) 6967.31 0.258911
\(899\) −393.786 −0.0146090
\(900\) −8600.33 −0.318531
\(901\) 44992.5 1.66362
\(902\) 0 0
\(903\) −359.372 −0.0132438
\(904\) −15229.9 −0.560330
\(905\) −4294.00 −0.157721
\(906\) −2560.05 −0.0938762
\(907\) −2037.82 −0.0746027 −0.0373013 0.999304i \(-0.511876\pi\)
−0.0373013 + 0.999304i \(0.511876\pi\)
\(908\) −23496.9 −0.858778
\(909\) −12538.9 −0.457523
\(910\) −403.431 −0.0146963
\(911\) 43481.7 1.58135 0.790676 0.612235i \(-0.209729\pi\)
0.790676 + 0.612235i \(0.209729\pi\)
\(912\) −8843.64 −0.321099
\(913\) 0 0
\(914\) 2990.95 0.108241
\(915\) 6627.48 0.239451
\(916\) 21092.0 0.760806
\(917\) 1086.08 0.0391118
\(918\) −5152.31 −0.185241
\(919\) −9636.79 −0.345907 −0.172953 0.984930i \(-0.555331\pi\)
−0.172953 + 0.984930i \(0.555331\pi\)
\(920\) 12607.4 0.451799
\(921\) −1576.08 −0.0563882
\(922\) 4466.63 0.159545
\(923\) −11797.2 −0.420704
\(924\) 0 0
\(925\) −8419.24 −0.299268
\(926\) −13009.7 −0.461691
\(927\) 4307.43 0.152616
\(928\) 10503.6 0.371548
\(929\) 6285.75 0.221990 0.110995 0.993821i \(-0.464596\pi\)
0.110995 + 0.993821i \(0.464596\pi\)
\(930\) 71.1225 0.00250774
\(931\) −44380.4 −1.56231
\(932\) −20175.1 −0.709074
\(933\) −8199.20 −0.287706
\(934\) −13430.4 −0.470509
\(935\) 0 0
\(936\) −22249.1 −0.776961
\(937\) 24613.7 0.858159 0.429080 0.903267i \(-0.358838\pi\)
0.429080 + 0.903267i \(0.358838\pi\)
\(938\) 229.732 0.00799680
\(939\) 10779.6 0.374631
\(940\) 11912.8 0.413354
\(941\) 19651.0 0.680769 0.340384 0.940286i \(-0.389443\pi\)
0.340384 + 0.940286i \(0.389443\pi\)
\(942\) −111.601 −0.00386003
\(943\) −21841.6 −0.754253
\(944\) 2301.90 0.0793650
\(945\) 538.170 0.0185256
\(946\) 0 0
\(947\) 3025.82 0.103829 0.0519144 0.998652i \(-0.483468\pi\)
0.0519144 + 0.998652i \(0.483468\pi\)
\(948\) 7192.58 0.246418
\(949\) −13432.3 −0.459463
\(950\) 5848.27 0.199729
\(951\) −6650.56 −0.226771
\(952\) 760.229 0.0258815
\(953\) −11707.3 −0.397941 −0.198971 0.980005i \(-0.563760\pi\)
−0.198971 + 0.980005i \(0.563760\pi\)
\(954\) 14587.9 0.495074
\(955\) −11290.1 −0.382555
\(956\) −14732.0 −0.498398
\(957\) 0 0
\(958\) −2613.14 −0.0881281
\(959\) −317.281 −0.0106836
\(960\) 2865.62 0.0963413
\(961\) −29758.2 −0.998899
\(962\) −10277.4 −0.344444
\(963\) −43568.2 −1.45791
\(964\) 22081.6 0.737760
\(965\) −4573.37 −0.152562
\(966\) 113.966 0.00379585
\(967\) 12352.3 0.410779 0.205390 0.978680i \(-0.434154\pi\)
0.205390 + 0.978680i \(0.434154\pi\)
\(968\) 0 0
\(969\) −14010.1 −0.464469
\(970\) 5062.56 0.167576
\(971\) −16908.7 −0.558832 −0.279416 0.960170i \(-0.590141\pi\)
−0.279416 + 0.960170i \(0.590141\pi\)
\(972\) 21329.3 0.703846
\(973\) 461.488 0.0152052
\(974\) 17667.8 0.581225
\(975\) 4865.89 0.159829
\(976\) −21812.8 −0.715379
\(977\) 24696.7 0.808717 0.404359 0.914600i \(-0.367495\pi\)
0.404359 + 0.914600i \(0.367495\pi\)
\(978\) 468.005 0.0153018
\(979\) 0 0
\(980\) 21353.7 0.696039
\(981\) 20280.3 0.660040
\(982\) 10428.0 0.338871
\(983\) −30731.3 −0.997129 −0.498564 0.866853i \(-0.666139\pi\)
−0.498564 + 0.866853i \(0.666139\pi\)
\(984\) 4557.91 0.147663
\(985\) −10273.0 −0.332309
\(986\) 4452.03 0.143795
\(987\) 228.218 0.00735994
\(988\) −59848.9 −1.92717
\(989\) 31074.3 0.999094
\(990\) 0 0
\(991\) 40862.5 1.30983 0.654915 0.755703i \(-0.272705\pi\)
0.654915 + 0.755703i \(0.272705\pi\)
\(992\) −874.902 −0.0280022
\(993\) 5990.93 0.191457
\(994\) 130.696 0.00417045
\(995\) −26654.9 −0.849263
\(996\) 13246.4 0.421415
\(997\) 58038.7 1.84364 0.921818 0.387624i \(-0.126704\pi\)
0.921818 + 0.387624i \(0.126704\pi\)
\(998\) −799.788 −0.0253676
\(999\) 13709.8 0.434194
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 121.4.a.g.1.2 4
3.2 odd 2 1089.4.a.y.1.3 4
4.3 odd 2 1936.4.a.bk.1.4 4
11.2 odd 10 121.4.c.i.81.1 8
11.3 even 5 121.4.c.h.9.1 8
11.4 even 5 121.4.c.h.27.1 8
11.5 even 5 11.4.c.a.3.2 8
11.6 odd 10 121.4.c.i.3.1 8
11.7 odd 10 121.4.c.b.27.2 8
11.8 odd 10 121.4.c.b.9.2 8
11.9 even 5 11.4.c.a.4.2 yes 8
11.10 odd 2 121.4.a.f.1.3 4
33.5 odd 10 99.4.f.c.91.1 8
33.20 odd 10 99.4.f.c.37.1 8
33.32 even 2 1089.4.a.bh.1.2 4
44.27 odd 10 176.4.m.c.113.2 8
44.31 odd 10 176.4.m.c.81.2 8
44.43 even 2 1936.4.a.bl.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.4.c.a.3.2 8 11.5 even 5
11.4.c.a.4.2 yes 8 11.9 even 5
99.4.f.c.37.1 8 33.20 odd 10
99.4.f.c.91.1 8 33.5 odd 10
121.4.a.f.1.3 4 11.10 odd 2
121.4.a.g.1.2 4 1.1 even 1 trivial
121.4.c.b.9.2 8 11.8 odd 10
121.4.c.b.27.2 8 11.7 odd 10
121.4.c.h.9.1 8 11.3 even 5
121.4.c.h.27.1 8 11.4 even 5
121.4.c.i.3.1 8 11.6 odd 10
121.4.c.i.81.1 8 11.2 odd 10
176.4.m.c.81.2 8 44.31 odd 10
176.4.m.c.113.2 8 44.27 odd 10
1089.4.a.y.1.3 4 3.2 odd 2
1089.4.a.bh.1.2 4 33.32 even 2
1936.4.a.bk.1.4 4 4.3 odd 2
1936.4.a.bl.1.4 4 44.43 even 2