Properties

Label 1682.2.b.i.1681.1
Level $1682$
Weight $2$
Character 1682.1681
Analytic conductor $13.431$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1682,2,Mod(1681,1682)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1682, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1682.1681"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-12,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4308376200\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 30x^{10} + 341x^{8} + 1897x^{6} + 5456x^{4} + 7680x^{2} + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1681.1
Root \(-3.41744i\) of defining polynomial
Character \(\chi\) \(=\) 1682.1681
Dual form 1682.2.b.i.1681.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -3.41744i q^{3} -1.00000 q^{4} -1.61551 q^{5} -3.41744 q^{6} -1.52091 q^{7} +1.00000i q^{8} -8.67893 q^{9} +1.61551i q^{10} -1.89654i q^{11} +3.41744i q^{12} +3.18562 q^{13} +1.52091i q^{14} +5.52091i q^{15} +1.00000 q^{16} +1.69929i q^{17} +8.67893i q^{18} +3.67893i q^{19} +1.61551 q^{20} +5.19761i q^{21} -1.89654 q^{22} -2.69101 q^{23} +3.41744 q^{24} -2.39014 q^{25} -3.18562i q^{26} +19.4074i q^{27} +1.52091 q^{28} +5.52091 q^{30} +1.78239i q^{31} -1.00000i q^{32} -6.48132 q^{33} +1.69929 q^{34} +2.45703 q^{35} +8.67893 q^{36} -7.07024i q^{37} +3.67893 q^{38} -10.8867i q^{39} -1.61551i q^{40} -5.03259i q^{41} +5.19761 q^{42} +1.89654i q^{43} +1.89654i q^{44} +14.0209 q^{45} +2.69101i q^{46} +2.57063i q^{47} -3.41744i q^{48} -4.68684 q^{49} +2.39014i q^{50} +5.80722 q^{51} -3.18562 q^{52} +8.24904 q^{53} +19.4074 q^{54} +3.06387i q^{55} -1.52091i q^{56} +12.5725 q^{57} +2.95027 q^{59} -5.52091i q^{60} +7.74593i q^{61} +1.78239 q^{62} +13.1998 q^{63} -1.00000 q^{64} -5.14639 q^{65} +6.48132i q^{66} -2.47909 q^{67} -1.69929i q^{68} +9.19638i q^{69} -2.45703i q^{70} -6.06870 q^{71} -8.67893i q^{72} +3.74813i q^{73} -7.07024 q^{74} +8.16816i q^{75} -3.67893i q^{76} +2.88446i q^{77} -10.8867 q^{78} -9.22066i q^{79} -1.61551 q^{80} +40.2870 q^{81} -5.03259 q^{82} -5.52313 q^{83} -5.19761i q^{84} -2.74521i q^{85} +1.89654 q^{86} +1.89654 q^{88} -15.9704i q^{89} -14.0209i q^{90} -4.84503 q^{91} +2.69101 q^{92} +6.09122 q^{93} +2.57063 q^{94} -5.94334i q^{95} -3.41744 q^{96} +14.9078i q^{97} +4.68684i q^{98} +16.4599i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} - 4 q^{6} - 6 q^{7} - 24 q^{9} + 6 q^{13} + 12 q^{16} + 2 q^{22} - 28 q^{23} + 4 q^{24} + 8 q^{25} + 6 q^{28} + 54 q^{30} - 40 q^{33} + 12 q^{34} + 18 q^{35} + 24 q^{36} - 36 q^{38} + 20 q^{42}+ \cdots - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1682\mathbb{Z}\right)^\times\).

\(n\) \(843\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) − 3.41744i − 1.97306i −0.163572 0.986531i \(-0.552302\pi\)
0.163572 0.986531i \(-0.447698\pi\)
\(4\) −1.00000 −0.500000
\(5\) −1.61551 −0.722477 −0.361238 0.932474i \(-0.617646\pi\)
−0.361238 + 0.932474i \(0.617646\pi\)
\(6\) −3.41744 −1.39517
\(7\) −1.52091 −0.574848 −0.287424 0.957803i \(-0.592799\pi\)
−0.287424 + 0.957803i \(0.592799\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −8.67893 −2.89298
\(10\) 1.61551i 0.510868i
\(11\) − 1.89654i − 0.571828i −0.958255 0.285914i \(-0.907703\pi\)
0.958255 0.285914i \(-0.0922972\pi\)
\(12\) 3.41744i 0.986531i
\(13\) 3.18562 0.883532 0.441766 0.897130i \(-0.354352\pi\)
0.441766 + 0.897130i \(0.354352\pi\)
\(14\) 1.52091i 0.406479i
\(15\) 5.52091i 1.42549i
\(16\) 1.00000 0.250000
\(17\) 1.69929i 0.412138i 0.978537 + 0.206069i \(0.0660671\pi\)
−0.978537 + 0.206069i \(0.933933\pi\)
\(18\) 8.67893i 2.04564i
\(19\) 3.67893i 0.844004i 0.906595 + 0.422002i \(0.138673\pi\)
−0.906595 + 0.422002i \(0.861327\pi\)
\(20\) 1.61551 0.361238
\(21\) 5.19761i 1.13421i
\(22\) −1.89654 −0.404343
\(23\) −2.69101 −0.561114 −0.280557 0.959837i \(-0.590519\pi\)
−0.280557 + 0.959837i \(0.590519\pi\)
\(24\) 3.41744 0.697583
\(25\) −2.39014 −0.478027
\(26\) − 3.18562i − 0.624751i
\(27\) 19.4074i 3.73496i
\(28\) 1.52091 0.287424
\(29\) 0 0
\(30\) 5.52091 1.00797
\(31\) 1.78239i 0.320127i 0.987107 + 0.160063i \(0.0511698\pi\)
−0.987107 + 0.160063i \(0.948830\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) −6.48132 −1.12825
\(34\) 1.69929 0.291425
\(35\) 2.45703 0.415315
\(36\) 8.67893 1.44649
\(37\) − 7.07024i − 1.16234i −0.813782 0.581170i \(-0.802595\pi\)
0.813782 0.581170i \(-0.197405\pi\)
\(38\) 3.67893 0.596801
\(39\) − 10.8867i − 1.74326i
\(40\) − 1.61551i − 0.255434i
\(41\) − 5.03259i − 0.785959i −0.919547 0.392979i \(-0.871444\pi\)
0.919547 0.392979i \(-0.128556\pi\)
\(42\) 5.19761 0.802009
\(43\) 1.89654i 0.289219i 0.989489 + 0.144610i \(0.0461927\pi\)
−0.989489 + 0.144610i \(0.953807\pi\)
\(44\) 1.89654i 0.285914i
\(45\) 14.0209 2.09011
\(46\) 2.69101i 0.396768i
\(47\) 2.57063i 0.374966i 0.982268 + 0.187483i \(0.0600329\pi\)
−0.982268 + 0.187483i \(0.939967\pi\)
\(48\) − 3.41744i − 0.493266i
\(49\) −4.68684 −0.669549
\(50\) 2.39014i 0.338016i
\(51\) 5.80722 0.813174
\(52\) −3.18562 −0.441766
\(53\) 8.24904 1.13309 0.566546 0.824030i \(-0.308279\pi\)
0.566546 + 0.824030i \(0.308279\pi\)
\(54\) 19.4074 2.64102
\(55\) 3.06387i 0.413132i
\(56\) − 1.52091i − 0.203240i
\(57\) 12.5725 1.66527
\(58\) 0 0
\(59\) 2.95027 0.384093 0.192046 0.981386i \(-0.438488\pi\)
0.192046 + 0.981386i \(0.438488\pi\)
\(60\) − 5.52091i − 0.712746i
\(61\) 7.74593i 0.991765i 0.868390 + 0.495883i \(0.165155\pi\)
−0.868390 + 0.495883i \(0.834845\pi\)
\(62\) 1.78239 0.226364
\(63\) 13.1998 1.66302
\(64\) −1.00000 −0.125000
\(65\) −5.14639 −0.638331
\(66\) 6.48132i 0.797795i
\(67\) −2.47909 −0.302870 −0.151435 0.988467i \(-0.548389\pi\)
−0.151435 + 0.988467i \(0.548389\pi\)
\(68\) − 1.69929i − 0.206069i
\(69\) 9.19638i 1.10711i
\(70\) − 2.45703i − 0.293672i
\(71\) −6.06870 −0.720223 −0.360111 0.932909i \(-0.617261\pi\)
−0.360111 + 0.932909i \(0.617261\pi\)
\(72\) − 8.67893i − 1.02282i
\(73\) 3.74813i 0.438686i 0.975648 + 0.219343i \(0.0703913\pi\)
−0.975648 + 0.219343i \(0.929609\pi\)
\(74\) −7.07024 −0.821898
\(75\) 8.16816i 0.943178i
\(76\) − 3.67893i − 0.422002i
\(77\) 2.88446i 0.328714i
\(78\) −10.8867 −1.23267
\(79\) − 9.22066i − 1.03741i −0.854955 0.518703i \(-0.826415\pi\)
0.854955 0.518703i \(-0.173585\pi\)
\(80\) −1.61551 −0.180619
\(81\) 40.2870 4.47634
\(82\) −5.03259 −0.555757
\(83\) −5.52313 −0.606242 −0.303121 0.952952i \(-0.598029\pi\)
−0.303121 + 0.952952i \(0.598029\pi\)
\(84\) − 5.19761i − 0.567106i
\(85\) − 2.74521i − 0.297760i
\(86\) 1.89654 0.204509
\(87\) 0 0
\(88\) 1.89654 0.202172
\(89\) − 15.9704i − 1.69286i −0.532498 0.846431i \(-0.678747\pi\)
0.532498 0.846431i \(-0.321253\pi\)
\(90\) − 14.0209i − 1.47793i
\(91\) −4.84503 −0.507897
\(92\) 2.69101 0.280557
\(93\) 6.09122 0.631630
\(94\) 2.57063 0.265141
\(95\) − 5.94334i − 0.609773i
\(96\) −3.41744 −0.348791
\(97\) 14.9078i 1.51366i 0.653612 + 0.756830i \(0.273253\pi\)
−0.653612 + 0.756830i \(0.726747\pi\)
\(98\) 4.68684i 0.473443i
\(99\) 16.4599i 1.65428i
\(100\) 2.39014 0.239014
\(101\) − 0.183919i − 0.0183006i −0.999958 0.00915031i \(-0.997087\pi\)
0.999958 0.00915031i \(-0.00291267\pi\)
\(102\) − 5.80722i − 0.575001i
\(103\) −15.0468 −1.48261 −0.741303 0.671171i \(-0.765792\pi\)
−0.741303 + 0.671171i \(0.765792\pi\)
\(104\) 3.18562i 0.312376i
\(105\) − 8.39678i − 0.819442i
\(106\) − 8.24904i − 0.801218i
\(107\) −0.304005 −0.0293893 −0.0146947 0.999892i \(-0.504678\pi\)
−0.0146947 + 0.999892i \(0.504678\pi\)
\(108\) − 19.4074i − 1.86748i
\(109\) −9.02387 −0.864330 −0.432165 0.901795i \(-0.642250\pi\)
−0.432165 + 0.901795i \(0.642250\pi\)
\(110\) 3.06387 0.292129
\(111\) −24.1621 −2.29337
\(112\) −1.52091 −0.143712
\(113\) 8.09737i 0.761737i 0.924629 + 0.380868i \(0.124375\pi\)
−0.924629 + 0.380868i \(0.875625\pi\)
\(114\) − 12.5725i − 1.17753i
\(115\) 4.34735 0.405392
\(116\) 0 0
\(117\) −27.6478 −2.55604
\(118\) − 2.95027i − 0.271595i
\(119\) − 2.58446i − 0.236917i
\(120\) −5.52091 −0.503987
\(121\) 7.40314 0.673013
\(122\) 7.74593 0.701284
\(123\) −17.1986 −1.55075
\(124\) − 1.78239i − 0.160063i
\(125\) 11.9388 1.06784
\(126\) − 13.1998i − 1.17593i
\(127\) 9.51489i 0.844310i 0.906524 + 0.422155i \(0.138726\pi\)
−0.906524 + 0.422155i \(0.861274\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 6.48132 0.570648
\(130\) 5.14639i 0.451368i
\(131\) 14.2546i 1.24543i 0.782450 + 0.622713i \(0.213970\pi\)
−0.782450 + 0.622713i \(0.786030\pi\)
\(132\) 6.48132 0.564126
\(133\) − 5.59530i − 0.485174i
\(134\) 2.47909i 0.214161i
\(135\) − 31.3528i − 2.69842i
\(136\) −1.69929 −0.145713
\(137\) − 6.46454i − 0.552303i −0.961114 0.276151i \(-0.910941\pi\)
0.961114 0.276151i \(-0.0890591\pi\)
\(138\) 9.19638 0.782848
\(139\) −14.2573 −1.20929 −0.604645 0.796495i \(-0.706685\pi\)
−0.604645 + 0.796495i \(0.706685\pi\)
\(140\) −2.45703 −0.207657
\(141\) 8.78500 0.739831
\(142\) 6.06870i 0.509274i
\(143\) − 6.04165i − 0.505228i
\(144\) −8.67893 −0.723244
\(145\) 0 0
\(146\) 3.74813 0.310198
\(147\) 16.0170i 1.32106i
\(148\) 7.07024i 0.581170i
\(149\) 8.23917 0.674979 0.337490 0.941329i \(-0.390422\pi\)
0.337490 + 0.941329i \(0.390422\pi\)
\(150\) 8.16816 0.666928
\(151\) 22.0029 1.79057 0.895285 0.445494i \(-0.146972\pi\)
0.895285 + 0.445494i \(0.146972\pi\)
\(152\) −3.67893 −0.298401
\(153\) − 14.7480i − 1.19230i
\(154\) 2.88446 0.232436
\(155\) − 2.87946i − 0.231284i
\(156\) 10.8867i 0.871632i
\(157\) 0.135585i 0.0108208i 0.999985 + 0.00541041i \(0.00172220\pi\)
−0.999985 + 0.00541041i \(0.998278\pi\)
\(158\) −9.22066 −0.733556
\(159\) − 28.1906i − 2.23566i
\(160\) 1.61551i 0.127717i
\(161\) 4.09277 0.322556
\(162\) − 40.2870i − 3.16525i
\(163\) 10.2536i 0.803121i 0.915832 + 0.401561i \(0.131532\pi\)
−0.915832 + 0.401561i \(0.868468\pi\)
\(164\) 5.03259i 0.392979i
\(165\) 10.4706 0.815136
\(166\) 5.52313i 0.428678i
\(167\) −16.7882 −1.29911 −0.649555 0.760314i \(-0.725045\pi\)
−0.649555 + 0.760314i \(0.725045\pi\)
\(168\) −5.19761 −0.401004
\(169\) −2.85183 −0.219371
\(170\) −2.74521 −0.210548
\(171\) − 31.9292i − 2.44168i
\(172\) − 1.89654i − 0.144610i
\(173\) −4.15473 −0.315878 −0.157939 0.987449i \(-0.550485\pi\)
−0.157939 + 0.987449i \(0.550485\pi\)
\(174\) 0 0
\(175\) 3.63517 0.274793
\(176\) − 1.89654i − 0.142957i
\(177\) − 10.0824i − 0.757839i
\(178\) −15.9704 −1.19703
\(179\) −10.6004 −0.792308 −0.396154 0.918184i \(-0.629655\pi\)
−0.396154 + 0.918184i \(0.629655\pi\)
\(180\) −14.0209 −1.04505
\(181\) 21.7666 1.61790 0.808949 0.587878i \(-0.200037\pi\)
0.808949 + 0.587878i \(0.200037\pi\)
\(182\) 4.84503i 0.359137i
\(183\) 26.4713 1.95681
\(184\) − 2.69101i − 0.198384i
\(185\) 11.4220i 0.839763i
\(186\) − 6.09122i − 0.446630i
\(187\) 3.22276 0.235672
\(188\) − 2.57063i − 0.187483i
\(189\) − 29.5169i − 2.14704i
\(190\) −5.94334 −0.431175
\(191\) 14.5209i 1.05069i 0.850888 + 0.525346i \(0.176064\pi\)
−0.850888 + 0.525346i \(0.823936\pi\)
\(192\) 3.41744i 0.246633i
\(193\) 4.80523i 0.345888i 0.984932 + 0.172944i \(0.0553280\pi\)
−0.984932 + 0.172944i \(0.944672\pi\)
\(194\) 14.9078 1.07032
\(195\) 17.5875i 1.25947i
\(196\) 4.68684 0.334775
\(197\) −15.2225 −1.08456 −0.542280 0.840198i \(-0.682439\pi\)
−0.542280 + 0.840198i \(0.682439\pi\)
\(198\) 16.4599 1.16976
\(199\) −12.1934 −0.864371 −0.432185 0.901785i \(-0.642257\pi\)
−0.432185 + 0.901785i \(0.642257\pi\)
\(200\) − 2.39014i − 0.169008i
\(201\) 8.47217i 0.597581i
\(202\) −0.183919 −0.0129405
\(203\) 0 0
\(204\) −5.80722 −0.406587
\(205\) 8.13019i 0.567837i
\(206\) 15.0468i 1.04836i
\(207\) 23.3551 1.62329
\(208\) 3.18562 0.220883
\(209\) 6.97723 0.482625
\(210\) −8.39678 −0.579433
\(211\) 14.3852i 0.990318i 0.868802 + 0.495159i \(0.164890\pi\)
−0.868802 + 0.495159i \(0.835110\pi\)
\(212\) −8.24904 −0.566546
\(213\) 20.7395i 1.42104i
\(214\) 0.304005i 0.0207814i
\(215\) − 3.06387i − 0.208954i
\(216\) −19.4074 −1.32051
\(217\) − 2.71085i − 0.184024i
\(218\) 9.02387i 0.611174i
\(219\) 12.8090 0.865555
\(220\) − 3.06387i − 0.206566i
\(221\) 5.41328i 0.364137i
\(222\) 24.1621i 1.62166i
\(223\) −12.7850 −0.856147 −0.428073 0.903744i \(-0.640808\pi\)
−0.428073 + 0.903744i \(0.640808\pi\)
\(224\) 1.52091i 0.101620i
\(225\) 20.7438 1.38292
\(226\) 8.09737 0.538629
\(227\) 26.4267 1.75400 0.877002 0.480487i \(-0.159540\pi\)
0.877002 + 0.480487i \(0.159540\pi\)
\(228\) −12.5725 −0.832637
\(229\) 19.2020i 1.26890i 0.772963 + 0.634452i \(0.218774\pi\)
−0.772963 + 0.634452i \(0.781226\pi\)
\(230\) − 4.34735i − 0.286656i
\(231\) 9.85747 0.648574
\(232\) 0 0
\(233\) −8.12368 −0.532200 −0.266100 0.963945i \(-0.585735\pi\)
−0.266100 + 0.963945i \(0.585735\pi\)
\(234\) 27.6478i 1.80739i
\(235\) − 4.15288i − 0.270904i
\(236\) −2.95027 −0.192046
\(237\) −31.5111 −2.04687
\(238\) −2.58446 −0.167525
\(239\) −30.3139 −1.96085 −0.980423 0.196903i \(-0.936912\pi\)
−0.980423 + 0.196903i \(0.936912\pi\)
\(240\) 5.52091i 0.356373i
\(241\) −4.57387 −0.294629 −0.147315 0.989090i \(-0.547063\pi\)
−0.147315 + 0.989090i \(0.547063\pi\)
\(242\) − 7.40314i − 0.475892i
\(243\) − 79.4564i − 5.09713i
\(244\) − 7.74593i − 0.495883i
\(245\) 7.57163 0.483734
\(246\) 17.1986i 1.09654i
\(247\) 11.7197i 0.745705i
\(248\) −1.78239 −0.113182
\(249\) 18.8750i 1.19615i
\(250\) − 11.9388i − 0.755077i
\(251\) 13.3162i 0.840511i 0.907406 + 0.420256i \(0.138060\pi\)
−0.907406 + 0.420256i \(0.861940\pi\)
\(252\) −13.1998 −0.831511
\(253\) 5.10361i 0.320861i
\(254\) 9.51489 0.597017
\(255\) −9.38161 −0.587499
\(256\) 1.00000 0.0625000
\(257\) 19.4778 1.21499 0.607495 0.794324i \(-0.292175\pi\)
0.607495 + 0.794324i \(0.292175\pi\)
\(258\) − 6.48132i − 0.403509i
\(259\) 10.7532i 0.668169i
\(260\) 5.14639 0.319166
\(261\) 0 0
\(262\) 14.2546 0.880649
\(263\) − 10.0414i − 0.619180i −0.950870 0.309590i \(-0.899808\pi\)
0.950870 0.309590i \(-0.100192\pi\)
\(264\) − 6.48132i − 0.398897i
\(265\) −13.3264 −0.818633
\(266\) −5.59530 −0.343070
\(267\) −54.5781 −3.34012
\(268\) 2.47909 0.151435
\(269\) − 5.93600i − 0.361924i −0.983490 0.180962i \(-0.942079\pi\)
0.983490 0.180962i \(-0.0579211\pi\)
\(270\) −31.3528 −1.90807
\(271\) 18.9788i 1.15288i 0.817140 + 0.576439i \(0.195558\pi\)
−0.817140 + 0.576439i \(0.804442\pi\)
\(272\) 1.69929i 0.103034i
\(273\) 16.5576i 1.00211i
\(274\) −6.46454 −0.390537
\(275\) 4.53299i 0.273349i
\(276\) − 9.19638i − 0.553557i
\(277\) −25.8106 −1.55081 −0.775405 0.631464i \(-0.782454\pi\)
−0.775405 + 0.631464i \(0.782454\pi\)
\(278\) 14.2573i 0.855098i
\(279\) − 15.4692i − 0.926119i
\(280\) 2.45703i 0.146836i
\(281\) 25.2296 1.50507 0.752537 0.658550i \(-0.228830\pi\)
0.752537 + 0.658550i \(0.228830\pi\)
\(282\) − 8.78500i − 0.523139i
\(283\) −12.3473 −0.733974 −0.366987 0.930226i \(-0.619611\pi\)
−0.366987 + 0.930226i \(0.619611\pi\)
\(284\) 6.06870 0.360111
\(285\) −20.3110 −1.20312
\(286\) −6.04165 −0.357250
\(287\) 7.65410i 0.451807i
\(288\) 8.67893i 0.511411i
\(289\) 14.1124 0.830142
\(290\) 0 0
\(291\) 50.9467 2.98655
\(292\) − 3.74813i − 0.219343i
\(293\) − 12.3492i − 0.721447i −0.932673 0.360724i \(-0.882530\pi\)
0.932673 0.360724i \(-0.117470\pi\)
\(294\) 16.0170 0.934132
\(295\) −4.76618 −0.277498
\(296\) 7.07024 0.410949
\(297\) 36.8069 2.13575
\(298\) − 8.23917i − 0.477282i
\(299\) −8.57254 −0.495763
\(300\) − 8.16816i − 0.471589i
\(301\) − 2.88446i − 0.166257i
\(302\) − 22.0029i − 1.26612i
\(303\) −0.628533 −0.0361083
\(304\) 3.67893i 0.211001i
\(305\) − 12.5136i − 0.716527i
\(306\) −14.7480 −0.843087
\(307\) − 11.8371i − 0.675579i −0.941222 0.337790i \(-0.890321\pi\)
0.941222 0.337790i \(-0.109679\pi\)
\(308\) − 2.88446i − 0.164357i
\(309\) 51.4216i 2.92527i
\(310\) −2.87946 −0.163543
\(311\) 10.1775i 0.577112i 0.957463 + 0.288556i \(0.0931751\pi\)
−0.957463 + 0.288556i \(0.906825\pi\)
\(312\) 10.8867 0.616337
\(313\) −13.3421 −0.754142 −0.377071 0.926184i \(-0.623069\pi\)
−0.377071 + 0.926184i \(0.623069\pi\)
\(314\) 0.135585 0.00765148
\(315\) −21.3244 −1.20150
\(316\) 9.22066i 0.518703i
\(317\) − 11.9741i − 0.672534i −0.941767 0.336267i \(-0.890835\pi\)
0.941767 0.336267i \(-0.109165\pi\)
\(318\) −28.1906 −1.58085
\(319\) 0 0
\(320\) 1.61551 0.0903096
\(321\) 1.03892i 0.0579870i
\(322\) − 4.09277i − 0.228081i
\(323\) −6.25156 −0.347846
\(324\) −40.2870 −2.23817
\(325\) −7.61407 −0.422352
\(326\) 10.2536 0.567893
\(327\) 30.8386i 1.70538i
\(328\) 5.03259 0.277878
\(329\) − 3.90969i − 0.215548i
\(330\) − 10.4706i − 0.576388i
\(331\) − 23.3952i − 1.28592i −0.765902 0.642958i \(-0.777707\pi\)
0.765902 0.642958i \(-0.222293\pi\)
\(332\) 5.52313 0.303121
\(333\) 61.3621i 3.36262i
\(334\) 16.7882i 0.918610i
\(335\) 4.00499 0.218816
\(336\) 5.19761i 0.283553i
\(337\) 22.8550i 1.24499i 0.782623 + 0.622496i \(0.213881\pi\)
−0.782623 + 0.622496i \(0.786119\pi\)
\(338\) 2.85183i 0.155119i
\(339\) 27.6723 1.50295
\(340\) 2.74521i 0.148880i
\(341\) 3.38037 0.183057
\(342\) −31.9292 −1.72653
\(343\) 17.7746 0.959738
\(344\) −1.89654 −0.102255
\(345\) − 14.8568i − 0.799864i
\(346\) 4.15473i 0.223360i
\(347\) −6.48177 −0.347960 −0.173980 0.984749i \(-0.555663\pi\)
−0.173980 + 0.984749i \(0.555663\pi\)
\(348\) 0 0
\(349\) −11.7835 −0.630754 −0.315377 0.948966i \(-0.602131\pi\)
−0.315377 + 0.948966i \(0.602131\pi\)
\(350\) − 3.63517i − 0.194308i
\(351\) 61.8247i 3.29996i
\(352\) −1.89654 −0.101086
\(353\) 19.1188 1.01759 0.508795 0.860888i \(-0.330091\pi\)
0.508795 + 0.860888i \(0.330091\pi\)
\(354\) −10.0824 −0.535873
\(355\) 9.80404 0.520344
\(356\) 15.9704i 0.846431i
\(357\) −8.83224 −0.467452
\(358\) 10.6004i 0.560247i
\(359\) 8.29076i 0.437570i 0.975773 + 0.218785i \(0.0702093\pi\)
−0.975773 + 0.218785i \(0.929791\pi\)
\(360\) 14.0209i 0.738965i
\(361\) 5.46548 0.287657
\(362\) − 21.7666i − 1.14403i
\(363\) − 25.2998i − 1.32790i
\(364\) 4.84503 0.253948
\(365\) − 6.05514i − 0.316940i
\(366\) − 26.4713i − 1.38368i
\(367\) − 28.8615i − 1.50656i −0.657700 0.753280i \(-0.728471\pi\)
0.657700 0.753280i \(-0.271529\pi\)
\(368\) −2.69101 −0.140279
\(369\) 43.6775i 2.27376i
\(370\) 11.4220 0.593802
\(371\) −12.5460 −0.651357
\(372\) −6.09122 −0.315815
\(373\) −22.3691 −1.15823 −0.579114 0.815247i \(-0.696601\pi\)
−0.579114 + 0.815247i \(0.696601\pi\)
\(374\) − 3.22276i − 0.166645i
\(375\) − 40.8003i − 2.10692i
\(376\) −2.57063 −0.132570
\(377\) 0 0
\(378\) −29.5169 −1.51818
\(379\) 14.8947i 0.765091i 0.923937 + 0.382545i \(0.124952\pi\)
−0.923937 + 0.382545i \(0.875048\pi\)
\(380\) 5.94334i 0.304887i
\(381\) 32.5166 1.66588
\(382\) 14.5209 0.742952
\(383\) −10.9322 −0.558612 −0.279306 0.960202i \(-0.590104\pi\)
−0.279306 + 0.960202i \(0.590104\pi\)
\(384\) 3.41744 0.174396
\(385\) − 4.65986i − 0.237488i
\(386\) 4.80523 0.244580
\(387\) − 16.4599i − 0.836705i
\(388\) − 14.9078i − 0.756830i
\(389\) 15.6282i 0.792380i 0.918169 + 0.396190i \(0.129668\pi\)
−0.918169 + 0.396190i \(0.870332\pi\)
\(390\) 17.5875 0.890578
\(391\) − 4.57280i − 0.231256i
\(392\) − 4.68684i − 0.236721i
\(393\) 48.7142 2.45730
\(394\) 15.2225i 0.766899i
\(395\) 14.8960i 0.749501i
\(396\) − 16.4599i − 0.827142i
\(397\) −7.66254 −0.384572 −0.192286 0.981339i \(-0.561590\pi\)
−0.192286 + 0.981339i \(0.561590\pi\)
\(398\) 12.1934i 0.611202i
\(399\) −19.1216 −0.957280
\(400\) −2.39014 −0.119507
\(401\) 4.71384 0.235398 0.117699 0.993049i \(-0.462448\pi\)
0.117699 + 0.993049i \(0.462448\pi\)
\(402\) 8.47217 0.422553
\(403\) 5.67802i 0.282842i
\(404\) 0.183919i 0.00915031i
\(405\) −65.0840 −3.23405
\(406\) 0 0
\(407\) −13.4090 −0.664658
\(408\) 5.80722i 0.287500i
\(409\) 7.70115i 0.380798i 0.981707 + 0.190399i \(0.0609781\pi\)
−0.981707 + 0.190399i \(0.939022\pi\)
\(410\) 8.13019 0.401521
\(411\) −22.0922 −1.08973
\(412\) 15.0468 0.741303
\(413\) −4.48709 −0.220795
\(414\) − 23.3551i − 1.14784i
\(415\) 8.92265 0.437996
\(416\) − 3.18562i − 0.156188i
\(417\) 48.7236i 2.38601i
\(418\) − 6.97723i − 0.341268i
\(419\) 25.7571 1.25832 0.629159 0.777277i \(-0.283400\pi\)
0.629159 + 0.777277i \(0.283400\pi\)
\(420\) 8.39678i 0.409721i
\(421\) 5.77170i 0.281296i 0.990060 + 0.140648i \(0.0449185\pi\)
−0.990060 + 0.140648i \(0.955081\pi\)
\(422\) 14.3852 0.700261
\(423\) − 22.3104i − 1.08477i
\(424\) 8.24904i 0.400609i
\(425\) − 4.06153i − 0.197013i
\(426\) 20.7395 1.00483
\(427\) − 11.7808i − 0.570115i
\(428\) 0.304005 0.0146947
\(429\) −20.6470 −0.996847
\(430\) −3.06387 −0.147753
\(431\) −16.3606 −0.788063 −0.394032 0.919097i \(-0.628920\pi\)
−0.394032 + 0.919097i \(0.628920\pi\)
\(432\) 19.4074i 0.933740i
\(433\) 25.2730i 1.21454i 0.794494 + 0.607271i \(0.207736\pi\)
−0.794494 + 0.607271i \(0.792264\pi\)
\(434\) −2.71085 −0.130125
\(435\) 0 0
\(436\) 9.02387 0.432165
\(437\) − 9.90003i − 0.473583i
\(438\) − 12.8090i − 0.612040i
\(439\) −6.47777 −0.309167 −0.154583 0.987980i \(-0.549404\pi\)
−0.154583 + 0.987980i \(0.549404\pi\)
\(440\) −3.06387 −0.146064
\(441\) 40.6768 1.93699
\(442\) 5.41328 0.257484
\(443\) − 25.8813i − 1.22966i −0.788661 0.614828i \(-0.789225\pi\)
0.788661 0.614828i \(-0.210775\pi\)
\(444\) 24.1621 1.14668
\(445\) 25.8003i 1.22305i
\(446\) 12.7850i 0.605387i
\(447\) − 28.1569i − 1.33178i
\(448\) 1.52091 0.0718561
\(449\) − 8.86533i − 0.418381i −0.977875 0.209190i \(-0.932917\pi\)
0.977875 0.209190i \(-0.0670829\pi\)
\(450\) − 20.7438i − 0.977873i
\(451\) −9.54450 −0.449433
\(452\) − 8.09737i − 0.380868i
\(453\) − 75.1937i − 3.53291i
\(454\) − 26.4267i − 1.24027i
\(455\) 7.82718 0.366944
\(456\) 12.5725i 0.588763i
\(457\) −22.1684 −1.03700 −0.518498 0.855079i \(-0.673509\pi\)
−0.518498 + 0.855079i \(0.673509\pi\)
\(458\) 19.2020 0.897250
\(459\) −32.9788 −1.53932
\(460\) −4.34735 −0.202696
\(461\) 38.5808i 1.79689i 0.439090 + 0.898443i \(0.355301\pi\)
−0.439090 + 0.898443i \(0.644699\pi\)
\(462\) − 9.85747i − 0.458611i
\(463\) −30.1073 −1.39921 −0.699603 0.714531i \(-0.746640\pi\)
−0.699603 + 0.714531i \(0.746640\pi\)
\(464\) 0 0
\(465\) −9.84041 −0.456338
\(466\) 8.12368i 0.376322i
\(467\) − 5.64252i − 0.261104i −0.991441 0.130552i \(-0.958325\pi\)
0.991441 0.130552i \(-0.0416750\pi\)
\(468\) 27.6478 1.27802
\(469\) 3.77047 0.174104
\(470\) −4.15288 −0.191558
\(471\) 0.463353 0.0213502
\(472\) 2.95027i 0.135797i
\(473\) 3.59686 0.165384
\(474\) 31.5111i 1.44735i
\(475\) − 8.79314i − 0.403457i
\(476\) 2.58446i 0.118458i
\(477\) −71.5928 −3.27801
\(478\) 30.3139i 1.38653i
\(479\) − 21.3948i − 0.977554i −0.872409 0.488777i \(-0.837443\pi\)
0.872409 0.488777i \(-0.162557\pi\)
\(480\) 5.52091 0.251994
\(481\) − 22.5231i − 1.02696i
\(482\) 4.57387i 0.208334i
\(483\) − 13.9868i − 0.636423i
\(484\) −7.40314 −0.336506
\(485\) − 24.0837i − 1.09358i
\(486\) −79.4564 −3.60421
\(487\) 12.6886 0.574977 0.287489 0.957784i \(-0.407180\pi\)
0.287489 + 0.957784i \(0.407180\pi\)
\(488\) −7.74593 −0.350642
\(489\) 35.0410 1.58461
\(490\) − 7.57163i − 0.342051i
\(491\) − 12.3249i − 0.556214i −0.960550 0.278107i \(-0.910293\pi\)
0.960550 0.278107i \(-0.0897069\pi\)
\(492\) 17.1986 0.775373
\(493\) 0 0
\(494\) 11.7197 0.527293
\(495\) − 26.5911i − 1.19518i
\(496\) 1.78239i 0.0800317i
\(497\) 9.22993 0.414019
\(498\) 18.8750 0.845808
\(499\) 3.86155 0.172867 0.0864335 0.996258i \(-0.472453\pi\)
0.0864335 + 0.996258i \(0.472453\pi\)
\(500\) −11.9388 −0.533920
\(501\) 57.3728i 2.56323i
\(502\) 13.3162 0.594331
\(503\) − 38.8953i − 1.73426i −0.498084 0.867129i \(-0.665963\pi\)
0.498084 0.867129i \(-0.334037\pi\)
\(504\) 13.1998i 0.587967i
\(505\) 0.297122i 0.0132218i
\(506\) 5.10361 0.226883
\(507\) 9.74596i 0.432833i
\(508\) − 9.51489i − 0.422155i
\(509\) −32.3241 −1.43274 −0.716370 0.697721i \(-0.754198\pi\)
−0.716370 + 0.697721i \(0.754198\pi\)
\(510\) 9.38161i 0.415425i
\(511\) − 5.70056i − 0.252178i
\(512\) − 1.00000i − 0.0441942i
\(513\) −71.3985 −3.15232
\(514\) − 19.4778i − 0.859127i
\(515\) 24.3082 1.07115
\(516\) −6.48132 −0.285324
\(517\) 4.87531 0.214416
\(518\) 10.7532 0.472467
\(519\) 14.1986i 0.623248i
\(520\) − 5.14639i − 0.225684i
\(521\) −7.79081 −0.341321 −0.170661 0.985330i \(-0.554590\pi\)
−0.170661 + 0.985330i \(0.554590\pi\)
\(522\) 0 0
\(523\) −34.8524 −1.52399 −0.761995 0.647582i \(-0.775780\pi\)
−0.761995 + 0.647582i \(0.775780\pi\)
\(524\) − 14.2546i − 0.622713i
\(525\) − 12.4230i − 0.542184i
\(526\) −10.0414 −0.437826
\(527\) −3.02879 −0.131936
\(528\) −6.48132 −0.282063
\(529\) −15.7585 −0.685151
\(530\) 13.3264i 0.578861i
\(531\) −25.6052 −1.11117
\(532\) 5.59530i 0.242587i
\(533\) − 16.0319i − 0.694420i
\(534\) 54.5781i 2.36182i
\(535\) 0.491123 0.0212331
\(536\) − 2.47909i − 0.107081i
\(537\) 36.2262i 1.56327i
\(538\) −5.93600 −0.255919
\(539\) 8.88878i 0.382867i
\(540\) 31.3528i 1.34921i
\(541\) − 12.2808i − 0.527995i −0.964523 0.263997i \(-0.914959\pi\)
0.964523 0.263997i \(-0.0850410\pi\)
\(542\) 18.9788 0.815208
\(543\) − 74.3862i − 3.19222i
\(544\) 1.69929 0.0728563
\(545\) 14.5781 0.624458
\(546\) 16.5576 0.708601
\(547\) 3.33790 0.142718 0.0713592 0.997451i \(-0.477266\pi\)
0.0713592 + 0.997451i \(0.477266\pi\)
\(548\) 6.46454i 0.276151i
\(549\) − 67.2264i − 2.86915i
\(550\) 4.53299 0.193287
\(551\) 0 0
\(552\) −9.19638 −0.391424
\(553\) 14.0238i 0.596351i
\(554\) 25.8106i 1.09659i
\(555\) 39.0341 1.65691
\(556\) 14.2573 0.604645
\(557\) −8.26501 −0.350200 −0.175100 0.984551i \(-0.556025\pi\)
−0.175100 + 0.984551i \(0.556025\pi\)
\(558\) −15.4692 −0.654865
\(559\) 6.04165i 0.255535i
\(560\) 2.45703 0.103829
\(561\) − 11.0136i − 0.464995i
\(562\) − 25.2296i − 1.06425i
\(563\) 16.4004i 0.691193i 0.938383 + 0.345596i \(0.112323\pi\)
−0.938383 + 0.345596i \(0.887677\pi\)
\(564\) −8.78500 −0.369915
\(565\) − 13.0814i − 0.550337i
\(566\) 12.3473i 0.518998i
\(567\) −61.2728 −2.57321
\(568\) − 6.06870i − 0.254637i
\(569\) − 18.6616i − 0.782336i −0.920319 0.391168i \(-0.872071\pi\)
0.920319 0.391168i \(-0.127929\pi\)
\(570\) 20.3110i 0.850735i
\(571\) −39.1811 −1.63968 −0.819839 0.572594i \(-0.805937\pi\)
−0.819839 + 0.572594i \(0.805937\pi\)
\(572\) 6.04165i 0.252614i
\(573\) 49.6243 2.07308
\(574\) 7.65410 0.319476
\(575\) 6.43188 0.268228
\(576\) 8.67893 0.361622
\(577\) 7.81699i 0.325426i 0.986673 + 0.162713i \(0.0520244\pi\)
−0.986673 + 0.162713i \(0.947976\pi\)
\(578\) − 14.1124i − 0.586999i
\(579\) 16.4216 0.682459
\(580\) 0 0
\(581\) 8.40016 0.348497
\(582\) − 50.9467i − 2.11181i
\(583\) − 15.6446i − 0.647934i
\(584\) −3.74813 −0.155099
\(585\) 44.6652 1.84668
\(586\) −12.3492 −0.510140
\(587\) −7.64544 −0.315561 −0.157780 0.987474i \(-0.550434\pi\)
−0.157780 + 0.987474i \(0.550434\pi\)
\(588\) − 16.0170i − 0.660531i
\(589\) −6.55729 −0.270188
\(590\) 4.76618i 0.196221i
\(591\) 52.0221i 2.13990i
\(592\) − 7.07024i − 0.290585i
\(593\) −9.75328 −0.400519 −0.200260 0.979743i \(-0.564179\pi\)
−0.200260 + 0.979743i \(0.564179\pi\)
\(594\) − 36.8069i − 1.51021i
\(595\) 4.17521i 0.171167i
\(596\) −8.23917 −0.337490
\(597\) 41.6704i 1.70546i
\(598\) 8.57254i 0.350557i
\(599\) 21.4393i 0.875984i 0.898979 + 0.437992i \(0.144310\pi\)
−0.898979 + 0.437992i \(0.855690\pi\)
\(600\) −8.16816 −0.333464
\(601\) − 27.3326i − 1.11492i −0.830204 0.557459i \(-0.811776\pi\)
0.830204 0.557459i \(-0.188224\pi\)
\(602\) −2.88446 −0.117562
\(603\) 21.5159 0.876194
\(604\) −22.0029 −0.895285
\(605\) −11.9598 −0.486236
\(606\) 0.628533i 0.0255324i
\(607\) 33.2949i 1.35140i 0.737177 + 0.675700i \(0.236158\pi\)
−0.737177 + 0.675700i \(0.763842\pi\)
\(608\) 3.67893 0.149200
\(609\) 0 0
\(610\) −12.5136 −0.506661
\(611\) 8.18906i 0.331294i
\(612\) 14.7480i 0.596152i
\(613\) −29.9946 −1.21147 −0.605736 0.795666i \(-0.707121\pi\)
−0.605736 + 0.795666i \(0.707121\pi\)
\(614\) −11.8371 −0.477707
\(615\) 27.7845 1.12038
\(616\) −2.88446 −0.116218
\(617\) − 19.0269i − 0.765992i −0.923750 0.382996i \(-0.874892\pi\)
0.923750 0.382996i \(-0.125108\pi\)
\(618\) 51.4216 2.06848
\(619\) − 41.0136i − 1.64848i −0.566243 0.824238i \(-0.691604\pi\)
0.566243 0.824238i \(-0.308396\pi\)
\(620\) 2.87946i 0.115642i
\(621\) − 52.2256i − 2.09574i
\(622\) 10.1775 0.408080
\(623\) 24.2895i 0.973139i
\(624\) − 10.8867i − 0.435816i
\(625\) −7.33656 −0.293462
\(626\) 13.3421i 0.533259i
\(627\) − 23.8443i − 0.952250i
\(628\) − 0.135585i − 0.00541041i
\(629\) 12.0144 0.479044
\(630\) 21.3244i 0.849585i
\(631\) −27.0196 −1.07563 −0.537816 0.843062i \(-0.680750\pi\)
−0.537816 + 0.843062i \(0.680750\pi\)
\(632\) 9.22066 0.366778
\(633\) 49.1606 1.95396
\(634\) −11.9741 −0.475554
\(635\) − 15.3714i − 0.609994i
\(636\) 28.1906i 1.11783i
\(637\) −14.9305 −0.591568
\(638\) 0 0
\(639\) 52.6699 2.08359
\(640\) − 1.61551i − 0.0638585i
\(641\) − 30.9387i − 1.22201i −0.791629 0.611003i \(-0.790767\pi\)
0.791629 0.611003i \(-0.209233\pi\)
\(642\) 1.03892 0.0410030
\(643\) 2.10623 0.0830617 0.0415309 0.999137i \(-0.486777\pi\)
0.0415309 + 0.999137i \(0.486777\pi\)
\(644\) −4.09277 −0.161278
\(645\) −10.4706 −0.412280
\(646\) 6.25156i 0.245964i
\(647\) 15.5641 0.611886 0.305943 0.952050i \(-0.401028\pi\)
0.305943 + 0.952050i \(0.401028\pi\)
\(648\) 40.2870i 1.58262i
\(649\) − 5.59530i − 0.219635i
\(650\) 7.61407i 0.298648i
\(651\) −9.26417 −0.363092
\(652\) − 10.2536i − 0.401561i
\(653\) − 44.9331i − 1.75837i −0.476481 0.879185i \(-0.658088\pi\)
0.476481 0.879185i \(-0.341912\pi\)
\(654\) 30.8386 1.20588
\(655\) − 23.0283i − 0.899792i
\(656\) − 5.03259i − 0.196490i
\(657\) − 32.5298i − 1.26911i
\(658\) −3.90969 −0.152416
\(659\) − 8.58905i − 0.334582i −0.985908 0.167291i \(-0.946498\pi\)
0.985908 0.167291i \(-0.0535019\pi\)
\(660\) −10.4706 −0.407568
\(661\) −3.16191 −0.122984 −0.0614921 0.998108i \(-0.519586\pi\)
−0.0614921 + 0.998108i \(0.519586\pi\)
\(662\) −23.3952 −0.909280
\(663\) 18.4996 0.718465
\(664\) − 5.52313i − 0.214339i
\(665\) 9.03925i 0.350527i
\(666\) 61.3621 2.37773
\(667\) 0 0
\(668\) 16.7882 0.649555
\(669\) 43.6920i 1.68923i
\(670\) − 4.00499i − 0.154726i
\(671\) 14.6905 0.567119
\(672\) 5.19761 0.200502
\(673\) −17.6361 −0.679821 −0.339911 0.940458i \(-0.610397\pi\)
−0.339911 + 0.940458i \(0.610397\pi\)
\(674\) 22.8550 0.880342
\(675\) − 46.3864i − 1.78541i
\(676\) 2.85183 0.109686
\(677\) − 4.31076i − 0.165676i −0.996563 0.0828380i \(-0.973602\pi\)
0.996563 0.0828380i \(-0.0263984\pi\)
\(678\) − 27.6723i − 1.06275i
\(679\) − 22.6734i − 0.870125i
\(680\) 2.74521 0.105274
\(681\) − 90.3119i − 3.46076i
\(682\) − 3.38037i − 0.129441i
\(683\) 39.7629 1.52149 0.760743 0.649054i \(-0.224835\pi\)
0.760743 + 0.649054i \(0.224835\pi\)
\(684\) 31.9292i 1.22084i
\(685\) 10.4435i 0.399026i
\(686\) − 17.7746i − 0.678637i
\(687\) 65.6217 2.50363
\(688\) 1.89654i 0.0723049i
\(689\) 26.2783 1.00112
\(690\) −14.8568 −0.565589
\(691\) −18.4629 −0.702363 −0.351182 0.936307i \(-0.614220\pi\)
−0.351182 + 0.936307i \(0.614220\pi\)
\(692\) 4.15473 0.157939
\(693\) − 25.0340i − 0.950963i
\(694\) 6.48177i 0.246045i
\(695\) 23.0328 0.873684
\(696\) 0 0
\(697\) 8.55182 0.323923
\(698\) 11.7835i 0.446011i
\(699\) 27.7622i 1.05006i
\(700\) −3.63517 −0.137397
\(701\) −19.4613 −0.735042 −0.367521 0.930015i \(-0.619793\pi\)
−0.367521 + 0.930015i \(0.619793\pi\)
\(702\) 61.8247 2.33342
\(703\) 26.0109 0.981020
\(704\) 1.89654i 0.0714785i
\(705\) −14.1922 −0.534510
\(706\) − 19.1188i − 0.719545i
\(707\) 0.279723i 0.0105201i
\(708\) 10.0824i 0.378919i
\(709\) −6.61831 −0.248556 −0.124278 0.992247i \(-0.539661\pi\)
−0.124278 + 0.992247i \(0.539661\pi\)
\(710\) − 9.80404i − 0.367939i
\(711\) 80.0255i 3.00119i
\(712\) 15.9704 0.598517
\(713\) − 4.79643i − 0.179628i
\(714\) 8.83224i 0.330538i
\(715\) 9.76033i 0.365016i
\(716\) 10.6004 0.396154
\(717\) 103.596i 3.86887i
\(718\) 8.29076 0.309408
\(719\) −18.1282 −0.676068 −0.338034 0.941134i \(-0.609762\pi\)
−0.338034 + 0.941134i \(0.609762\pi\)
\(720\) 14.0209 0.522527
\(721\) 22.8848 0.852274
\(722\) − 5.46548i − 0.203404i
\(723\) 15.6310i 0.581322i
\(724\) −21.7666 −0.808949
\(725\) 0 0
\(726\) −25.2998 −0.938965
\(727\) 14.2407i 0.528159i 0.964501 + 0.264079i \(0.0850681\pi\)
−0.964501 + 0.264079i \(0.914932\pi\)
\(728\) − 4.84503i − 0.179569i
\(729\) −150.677 −5.58062
\(730\) −6.05514 −0.224111
\(731\) −3.22276 −0.119198
\(732\) −26.4713 −0.978407
\(733\) 18.9693i 0.700648i 0.936629 + 0.350324i \(0.113928\pi\)
−0.936629 + 0.350324i \(0.886072\pi\)
\(734\) −28.8615 −1.06530
\(735\) − 25.8756i − 0.954437i
\(736\) 2.69101i 0.0991920i
\(737\) 4.70170i 0.173189i
\(738\) 43.6775 1.60779
\(739\) 44.1573i 1.62435i 0.583412 + 0.812176i \(0.301717\pi\)
−0.583412 + 0.812176i \(0.698283\pi\)
\(740\) − 11.4220i − 0.419882i
\(741\) 40.0513 1.47132
\(742\) 12.5460i 0.460579i
\(743\) 32.3756i 1.18775i 0.804558 + 0.593874i \(0.202402\pi\)
−0.804558 + 0.593874i \(0.797598\pi\)
\(744\) 6.09122i 0.223315i
\(745\) −13.3104 −0.487657
\(746\) 22.3691i 0.818990i
\(747\) 47.9348 1.75384
\(748\) −3.22276 −0.117836
\(749\) 0.462364 0.0168944
\(750\) −40.8003 −1.48981
\(751\) − 27.0657i − 0.987643i −0.869563 0.493821i \(-0.835600\pi\)
0.869563 0.493821i \(-0.164400\pi\)
\(752\) 2.57063i 0.0937414i
\(753\) 45.5074 1.65838
\(754\) 0 0
\(755\) −35.5458 −1.29364
\(756\) 29.5169i 1.07352i
\(757\) 49.9459i 1.81531i 0.419713 + 0.907657i \(0.362131\pi\)
−0.419713 + 0.907657i \(0.637869\pi\)
\(758\) 14.8947 0.541001
\(759\) 17.4413 0.633079
\(760\) 5.94334 0.215587
\(761\) −8.75212 −0.317264 −0.158632 0.987338i \(-0.550708\pi\)
−0.158632 + 0.987338i \(0.550708\pi\)
\(762\) − 32.5166i − 1.17795i
\(763\) 13.7245 0.496859
\(764\) − 14.5209i − 0.525346i
\(765\) 23.8255i 0.861412i
\(766\) 10.9322i 0.394998i
\(767\) 9.39844 0.339358
\(768\) − 3.41744i − 0.123316i
\(769\) 22.0733i 0.795983i 0.917389 + 0.397992i \(0.130293\pi\)
−0.917389 + 0.397992i \(0.869707\pi\)
\(770\) −4.65986 −0.167930
\(771\) − 66.5642i − 2.39725i
\(772\) − 4.80523i − 0.172944i
\(773\) − 11.5345i − 0.414865i −0.978249 0.207433i \(-0.933489\pi\)
0.978249 0.207433i \(-0.0665108\pi\)
\(774\) −16.4599 −0.591640
\(775\) − 4.26016i − 0.153029i
\(776\) −14.9078 −0.535160
\(777\) 36.7484 1.31834
\(778\) 15.6282 0.560297
\(779\) 18.5145 0.663352
\(780\) − 17.5875i − 0.629734i
\(781\) 11.5095i 0.411844i
\(782\) −4.57280 −0.163523
\(783\) 0 0
\(784\) −4.68684 −0.167387
\(785\) − 0.219038i − 0.00781779i
\(786\) − 48.7142i − 1.73758i
\(787\) −4.93112 −0.175775 −0.0878877 0.996130i \(-0.528012\pi\)
−0.0878877 + 0.996130i \(0.528012\pi\)
\(788\) 15.2225 0.542280
\(789\) −34.3160 −1.22168
\(790\) 14.8960 0.529977
\(791\) − 12.3153i − 0.437883i
\(792\) −16.4599 −0.584878
\(793\) 24.6756i 0.876256i
\(794\) 7.66254i 0.271933i
\(795\) 45.5422i 1.61521i
\(796\) 12.1934 0.432185
\(797\) − 23.2713i − 0.824312i −0.911113 0.412156i \(-0.864776\pi\)
0.911113 0.412156i \(-0.135224\pi\)
\(798\) 19.1216i 0.676899i
\(799\) −4.36825 −0.154537
\(800\) 2.39014i 0.0845041i
\(801\) 138.606i 4.89741i
\(802\) − 4.71384i − 0.166452i
\(803\) 7.10848 0.250853
\(804\) − 8.47217i − 0.298790i
\(805\) −6.61190 −0.233039
\(806\) 5.67802 0.200000
\(807\) −20.2860 −0.714099
\(808\) 0.183919 0.00647024
\(809\) − 35.3445i − 1.24265i −0.783554 0.621324i \(-0.786595\pi\)
0.783554 0.621324i \(-0.213405\pi\)
\(810\) 65.0840i 2.28682i
\(811\) 9.47070 0.332561 0.166281 0.986078i \(-0.446824\pi\)
0.166281 + 0.986078i \(0.446824\pi\)
\(812\) 0 0
\(813\) 64.8589 2.27470
\(814\) 13.4090i 0.469984i
\(815\) − 16.5647i − 0.580237i
\(816\) 5.80722 0.203293
\(817\) −6.97723 −0.244102
\(818\) 7.70115 0.269265
\(819\) 42.0497 1.46933
\(820\) − 8.13019i − 0.283918i
\(821\) −29.4248 −1.02693 −0.513466 0.858110i \(-0.671639\pi\)
−0.513466 + 0.858110i \(0.671639\pi\)
\(822\) 22.0922i 0.770554i
\(823\) − 29.4484i − 1.02651i −0.858238 0.513253i \(-0.828440\pi\)
0.858238 0.513253i \(-0.171560\pi\)
\(824\) − 15.0468i − 0.524180i
\(825\) 15.4912 0.539336
\(826\) 4.48709i 0.156126i
\(827\) − 15.1182i − 0.525710i −0.964835 0.262855i \(-0.915336\pi\)
0.964835 0.262855i \(-0.0846641\pi\)
\(828\) −23.3551 −0.811645
\(829\) − 44.2208i − 1.53585i −0.640539 0.767925i \(-0.721289\pi\)
0.640539 0.767925i \(-0.278711\pi\)
\(830\) − 8.92265i − 0.309710i
\(831\) 88.2064i 3.05985i
\(832\) −3.18562 −0.110441
\(833\) − 7.96430i − 0.275947i
\(834\) 48.7236 1.68716
\(835\) 27.1215 0.938577
\(836\) −6.97723 −0.241313
\(837\) −34.5916 −1.19566
\(838\) − 25.7571i − 0.889765i
\(839\) 4.77844i 0.164970i 0.996592 + 0.0824850i \(0.0262856\pi\)
−0.996592 + 0.0824850i \(0.973714\pi\)
\(840\) 8.39678 0.289716
\(841\) 0 0
\(842\) 5.77170 0.198906
\(843\) − 86.2209i − 2.96961i
\(844\) − 14.3852i − 0.495159i
\(845\) 4.60715 0.158491
\(846\) −22.3104 −0.767046
\(847\) −11.2595 −0.386880
\(848\) 8.24904 0.283273
\(849\) 42.1964i 1.44818i
\(850\) −4.06153 −0.139309
\(851\) 19.0261i 0.652206i
\(852\) − 20.7395i − 0.710522i
\(853\) 7.44372i 0.254868i 0.991847 + 0.127434i \(0.0406741\pi\)
−0.991847 + 0.127434i \(0.959326\pi\)
\(854\) −11.7808 −0.403132
\(855\) 51.5818i 1.76406i
\(856\) − 0.304005i − 0.0103907i
\(857\) 12.7075 0.434079 0.217039 0.976163i \(-0.430360\pi\)
0.217039 + 0.976163i \(0.430360\pi\)
\(858\) 20.6470i 0.704877i
\(859\) 17.2703i 0.589256i 0.955612 + 0.294628i \(0.0951958\pi\)
−0.955612 + 0.294628i \(0.904804\pi\)
\(860\) 3.06387i 0.104477i
\(861\) 26.1575 0.891444
\(862\) 16.3606i 0.557245i
\(863\) 36.4394 1.24041 0.620207 0.784439i \(-0.287049\pi\)
0.620207 + 0.784439i \(0.287049\pi\)
\(864\) 19.4074 0.660254
\(865\) 6.71200 0.228215
\(866\) 25.2730 0.858811
\(867\) − 48.2284i − 1.63792i
\(868\) 2.71085i 0.0920122i
\(869\) −17.4873 −0.593217
\(870\) 0 0
\(871\) −7.89745 −0.267595
\(872\) − 9.02387i − 0.305587i
\(873\) − 129.384i − 4.37898i
\(874\) −9.90003 −0.334874
\(875\) −18.1578 −0.613846
\(876\) −12.8090 −0.432777
\(877\) 8.65427 0.292234 0.146117 0.989267i \(-0.453322\pi\)
0.146117 + 0.989267i \(0.453322\pi\)
\(878\) 6.47777i 0.218614i
\(879\) −42.2027 −1.42346
\(880\) 3.06387i 0.103283i
\(881\) − 7.63470i − 0.257220i −0.991695 0.128610i \(-0.958949\pi\)
0.991695 0.128610i \(-0.0410515\pi\)
\(882\) − 40.6768i − 1.36966i
\(883\) 0.617416 0.0207777 0.0103888 0.999946i \(-0.496693\pi\)
0.0103888 + 0.999946i \(0.496693\pi\)
\(884\) − 5.41328i − 0.182068i
\(885\) 16.2882i 0.547521i
\(886\) −25.8813 −0.869499
\(887\) 20.0952i 0.674732i 0.941374 + 0.337366i \(0.109536\pi\)
−0.941374 + 0.337366i \(0.890464\pi\)
\(888\) − 24.1621i − 0.810829i
\(889\) − 14.4713i − 0.485350i
\(890\) 25.8003 0.864830
\(891\) − 76.4059i − 2.55969i
\(892\) 12.7850 0.428073
\(893\) −9.45718 −0.316472
\(894\) −28.1569 −0.941708
\(895\) 17.1250 0.572424
\(896\) − 1.52091i − 0.0508099i
\(897\) 29.2962i 0.978171i
\(898\) −8.86533 −0.295840
\(899\) 0 0
\(900\) −20.7438 −0.691461
\(901\) 14.0175i 0.466990i
\(902\) 9.54450i 0.317797i
\(903\) −9.85747 −0.328036
\(904\) −8.09737 −0.269315
\(905\) −35.1641 −1.16889
\(906\) −75.1937 −2.49814
\(907\) 0.179212i 0.00595064i 0.999996 + 0.00297532i \(0.000947076\pi\)
−0.999996 + 0.00297532i \(0.999053\pi\)
\(908\) −26.4267 −0.877002
\(909\) 1.59622i 0.0529432i
\(910\) − 7.82718i − 0.259468i
\(911\) 43.3911i 1.43761i 0.695211 + 0.718806i \(0.255311\pi\)
−0.695211 + 0.718806i \(0.744689\pi\)
\(912\) 12.5725 0.416318
\(913\) 10.4748i 0.346666i
\(914\) 22.1684i 0.733267i
\(915\) −42.7646 −1.41375
\(916\) − 19.2020i − 0.634452i
\(917\) − 21.6798i − 0.715931i
\(918\) 32.9788i 1.08846i
\(919\) −18.8553 −0.621978 −0.310989 0.950413i \(-0.600660\pi\)
−0.310989 + 0.950413i \(0.600660\pi\)
\(920\) 4.34735i 0.143328i
\(921\) −40.4526 −1.33296
\(922\) 38.5808 1.27059
\(923\) −19.3326 −0.636340
\(924\) −9.85747 −0.324287
\(925\) 16.8988i 0.555630i
\(926\) 30.1073i 0.989389i
\(927\) 130.590 4.28914
\(928\) 0 0
\(929\) 44.1780 1.44943 0.724717 0.689047i \(-0.241970\pi\)
0.724717 + 0.689047i \(0.241970\pi\)
\(930\) 9.84041i 0.322680i
\(931\) − 17.2426i − 0.565102i
\(932\) 8.12368 0.266100
\(933\) 34.7810 1.13868
\(934\) −5.64252 −0.184629
\(935\) −5.20640 −0.170267
\(936\) − 27.6478i − 0.903696i
\(937\) −52.6808 −1.72101 −0.860503 0.509445i \(-0.829851\pi\)
−0.860503 + 0.509445i \(0.829851\pi\)
\(938\) − 3.77047i − 0.123110i
\(939\) 45.5960i 1.48797i
\(940\) 4.15288i 0.135452i
\(941\) −21.9249 −0.714733 −0.357366 0.933964i \(-0.616325\pi\)
−0.357366 + 0.933964i \(0.616325\pi\)
\(942\) − 0.463353i − 0.0150968i
\(943\) 13.5428i 0.441013i
\(944\) 2.95027 0.0960232
\(945\) 47.6847i 1.55118i
\(946\) − 3.59686i − 0.116944i
\(947\) − 6.64514i − 0.215938i −0.994154 0.107969i \(-0.965565\pi\)
0.994154 0.107969i \(-0.0344347\pi\)
\(948\) 31.5111 1.02343
\(949\) 11.9401i 0.387593i
\(950\) −8.79314 −0.285287
\(951\) −40.9209 −1.32695
\(952\) 2.58446 0.0837627
\(953\) 2.98044 0.0965461 0.0482730 0.998834i \(-0.484628\pi\)
0.0482730 + 0.998834i \(0.484628\pi\)
\(954\) 71.5928i 2.31790i
\(955\) − 23.4586i − 0.759101i
\(956\) 30.3139 0.980423
\(957\) 0 0
\(958\) −21.3948 −0.691235
\(959\) 9.83196i 0.317490i
\(960\) − 5.52091i − 0.178186i
\(961\) 27.8231 0.897519
\(962\) −22.5231 −0.726174
\(963\) 2.63844 0.0850226
\(964\) 4.57387 0.147315
\(965\) − 7.76289i − 0.249896i
\(966\) −13.9868 −0.450019
\(967\) 6.32629i 0.203440i 0.994813 + 0.101720i \(0.0324346\pi\)
−0.994813 + 0.101720i \(0.967565\pi\)
\(968\) 7.40314i 0.237946i
\(969\) 21.3644i 0.686322i
\(970\) −24.0837 −0.773281
\(971\) − 20.1311i − 0.646036i −0.946393 0.323018i \(-0.895303\pi\)
0.946393 0.323018i \(-0.104697\pi\)
\(972\) 79.4564i 2.54856i
\(973\) 21.6841 0.695159
\(974\) − 12.6886i − 0.406570i
\(975\) 26.0207i 0.833328i
\(976\) 7.74593i 0.247941i
\(977\) −27.6748 −0.885394 −0.442697 0.896671i \(-0.645978\pi\)
−0.442697 + 0.896671i \(0.645978\pi\)
\(978\) − 35.0410i − 1.12049i
\(979\) −30.2885 −0.968026
\(980\) −7.57163 −0.241867
\(981\) 78.3175 2.50049
\(982\) −12.3249 −0.393303
\(983\) − 5.92730i − 0.189052i −0.995522 0.0945258i \(-0.969867\pi\)
0.995522 0.0945258i \(-0.0301335\pi\)
\(984\) − 17.1986i − 0.548271i
\(985\) 24.5921 0.783569
\(986\) 0 0
\(987\) −13.3612 −0.425290
\(988\) − 11.7197i − 0.372852i
\(989\) − 5.10361i − 0.162285i
\(990\) −26.5911 −0.845121
\(991\) −61.6302 −1.95775 −0.978874 0.204464i \(-0.934455\pi\)
−0.978874 + 0.204464i \(0.934455\pi\)
\(992\) 1.78239 0.0565909
\(993\) −79.9517 −2.53719
\(994\) − 9.22993i − 0.292756i
\(995\) 19.6986 0.624488
\(996\) − 18.8750i − 0.598077i
\(997\) − 48.6851i − 1.54187i −0.636911 0.770937i \(-0.719788\pi\)
0.636911 0.770937i \(-0.280212\pi\)
\(998\) − 3.86155i − 0.122235i
\(999\) 137.215 4.34129
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.2.b.i.1681.1 12
29.8 odd 28 58.2.d.b.23.1 12
29.12 odd 4 1682.2.a.t.1.6 6
29.17 odd 4 1682.2.a.q.1.1 6
29.18 odd 28 58.2.d.b.53.1 yes 12
29.28 even 2 inner 1682.2.b.i.1681.12 12
87.8 even 28 522.2.k.h.487.1 12
87.47 even 28 522.2.k.h.343.1 12
116.47 even 28 464.2.u.h.401.2 12
116.95 even 28 464.2.u.h.81.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.d.b.23.1 12 29.8 odd 28
58.2.d.b.53.1 yes 12 29.18 odd 28
464.2.u.h.81.2 12 116.95 even 28
464.2.u.h.401.2 12 116.47 even 28
522.2.k.h.343.1 12 87.47 even 28
522.2.k.h.487.1 12 87.8 even 28
1682.2.a.q.1.1 6 29.17 odd 4
1682.2.a.t.1.6 6 29.12 odd 4
1682.2.b.i.1681.1 12 1.1 even 1 trivial
1682.2.b.i.1681.12 12 29.28 even 2 inner