Properties

Label 522.2.k.h.343.1
Level $522$
Weight $2$
Character 522.343
Analytic conductor $4.168$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [522,2,Mod(181,522)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("522.181"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(522, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 522 = 2 \cdot 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 522.k (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,2,0,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.16819098551\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 13 x^{10} - 9 x^{9} - 5 x^{8} + 35 x^{7} + 197 x^{6} - 140 x^{5} - 80 x^{4} + \cdots + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 343.1
Root \(-0.260453 + 1.14112i\) of defining polynomial
Character \(\chi\) \(=\) 522.343
Dual form 522.2.k.h.487.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.623490 - 0.781831i) q^{2} +(-0.222521 + 0.974928i) q^{4} +(-1.00725 - 1.26305i) q^{5} +(0.338433 + 1.48277i) q^{7} +(0.900969 - 0.433884i) q^{8} +(-0.359484 + 1.57500i) q^{10} +(1.70872 + 0.822877i) q^{11} +(2.87014 + 1.38219i) q^{13} +(0.948269 - 1.18909i) q^{14} +(-0.900969 - 0.433884i) q^{16} +1.69929 q^{17} +(0.818639 - 3.58669i) q^{19} +(1.45552 - 0.700942i) q^{20} +(-0.422020 - 1.84899i) q^{22} +(1.67782 - 2.10392i) q^{23} +(0.531856 - 2.33021i) q^{25} +(-0.708867 - 3.10575i) q^{26} -1.52091 q^{28} +(4.31703 + 3.21920i) q^{29} +(-1.11130 - 1.39353i) q^{31} +(0.222521 + 0.974928i) q^{32} +(-1.05949 - 1.32856i) q^{34} +(1.53194 - 1.92099i) q^{35} +(6.37006 - 3.06766i) q^{37} +(-3.31460 + 1.59623i) q^{38} +(-1.45552 - 0.700942i) q^{40} +5.03259 q^{41} +(-1.18247 + 1.48277i) q^{43} +(-1.18247 + 1.48277i) q^{44} -2.69101 q^{46} +(2.31606 + 1.11536i) q^{47} +(4.22270 - 2.03355i) q^{49} +(-2.15344 + 1.03704i) q^{50} +(-1.98620 + 2.49062i) q^{52} +(-5.14319 - 6.44936i) q^{53} +(-0.681776 - 2.98705i) q^{55} +(0.948269 + 1.18909i) q^{56} +(-0.174748 - 5.38233i) q^{58} -2.95027 q^{59} +(1.72363 + 7.55173i) q^{61} +(-0.396619 + 1.73770i) q^{62} +(0.623490 - 0.781831i) q^{64} +(-1.14518 - 5.01736i) q^{65} +(-2.23359 + 1.07564i) q^{67} +(-0.378127 + 1.65668i) q^{68} -2.45703 q^{70} +(5.46771 + 2.63311i) q^{71} +(2.33692 - 2.93041i) q^{73} +(-6.37006 - 3.06766i) q^{74} +(3.31460 + 1.59623i) q^{76} +(-0.641852 + 2.81214i) q^{77} +(-8.30753 + 4.00069i) q^{79} +(0.359484 + 1.57500i) q^{80} +(-3.13777 - 3.93464i) q^{82} +(-1.22901 + 5.38465i) q^{83} +(-1.71161 - 2.14629i) q^{85} +1.89654 q^{86} +1.89654 q^{88} +(-9.95740 - 12.4862i) q^{89} +(-1.07812 + 4.72355i) q^{91} +(1.67782 + 2.10392i) q^{92} +(-0.572020 - 2.50618i) q^{94} +(-5.35476 + 2.57872i) q^{95} +(-3.31730 + 14.5341i) q^{97} +(-4.22270 - 2.03355i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} - 2 q^{4} + q^{7} + 2 q^{8} - 7 q^{10} + 2 q^{11} + q^{13} - q^{14} - 2 q^{16} + 12 q^{17} - 6 q^{19} - 7 q^{20} - 2 q^{22} - 35 q^{23} - 6 q^{25} - 8 q^{26} - 6 q^{28} + 14 q^{29} - 8 q^{31}+ \cdots - 37 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/522\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(e\left(\frac{2}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.623490 0.781831i −0.440874 0.552838i
\(3\) 0 0
\(4\) −0.222521 + 0.974928i −0.111260 + 0.487464i
\(5\) −1.00725 1.26305i −0.450457 0.564855i 0.503809 0.863815i \(-0.331932\pi\)
−0.954266 + 0.298960i \(0.903360\pi\)
\(6\) 0 0
\(7\) 0.338433 + 1.48277i 0.127916 + 0.560436i 0.997747 + 0.0670866i \(0.0213704\pi\)
−0.869831 + 0.493349i \(0.835772\pi\)
\(8\) 0.900969 0.433884i 0.318541 0.153401i
\(9\) 0 0
\(10\) −0.359484 + 1.57500i −0.113679 + 0.498060i
\(11\) 1.70872 + 0.822877i 0.515199 + 0.248107i 0.673371 0.739305i \(-0.264846\pi\)
−0.158172 + 0.987412i \(0.550560\pi\)
\(12\) 0 0
\(13\) 2.87014 + 1.38219i 0.796035 + 0.383350i 0.787268 0.616611i \(-0.211495\pi\)
0.00876713 + 0.999962i \(0.497209\pi\)
\(14\) 0.948269 1.18909i 0.253436 0.317798i
\(15\) 0 0
\(16\) −0.900969 0.433884i −0.225242 0.108471i
\(17\) 1.69929 0.412138 0.206069 0.978537i \(-0.433933\pi\)
0.206069 + 0.978537i \(0.433933\pi\)
\(18\) 0 0
\(19\) 0.818639 3.58669i 0.187809 0.822843i −0.789960 0.613158i \(-0.789899\pi\)
0.977769 0.209685i \(-0.0672439\pi\)
\(20\) 1.45552 0.700942i 0.325465 0.156735i
\(21\) 0 0
\(22\) −0.422020 1.84899i −0.0899749 0.394206i
\(23\) 1.67782 2.10392i 0.349849 0.438697i −0.575506 0.817797i \(-0.695195\pi\)
0.925356 + 0.379100i \(0.123766\pi\)
\(24\) 0 0
\(25\) 0.531856 2.33021i 0.106371 0.466042i
\(26\) −0.708867 3.10575i −0.139020 0.609088i
\(27\) 0 0
\(28\) −1.52091 −0.287424
\(29\) 4.31703 + 3.21920i 0.801652 + 0.597791i
\(30\) 0 0
\(31\) −1.11130 1.39353i −0.199596 0.250285i 0.671953 0.740594i \(-0.265456\pi\)
−0.871549 + 0.490308i \(0.836884\pi\)
\(32\) 0.222521 + 0.974928i 0.0393365 + 0.172345i
\(33\) 0 0
\(34\) −1.05949 1.32856i −0.181701 0.227846i
\(35\) 1.53194 1.92099i 0.258944 0.324706i
\(36\) 0 0
\(37\) 6.37006 3.06766i 1.04723 0.504320i 0.170529 0.985353i \(-0.445452\pi\)
0.876703 + 0.481032i \(0.159738\pi\)
\(38\) −3.31460 + 1.59623i −0.537699 + 0.258942i
\(39\) 0 0
\(40\) −1.45552 0.700942i −0.230138 0.110829i
\(41\) 5.03259 0.785959 0.392979 0.919547i \(-0.371444\pi\)
0.392979 + 0.919547i \(0.371444\pi\)
\(42\) 0 0
\(43\) −1.18247 + 1.48277i −0.180325 + 0.226121i −0.863776 0.503876i \(-0.831907\pi\)
0.683451 + 0.729997i \(0.260478\pi\)
\(44\) −1.18247 + 1.48277i −0.178264 + 0.223537i
\(45\) 0 0
\(46\) −2.69101 −0.396768
\(47\) 2.31606 + 1.11536i 0.337832 + 0.162691i 0.595106 0.803647i \(-0.297110\pi\)
−0.257274 + 0.966339i \(0.582824\pi\)
\(48\) 0 0
\(49\) 4.22270 2.03355i 0.603243 0.290507i
\(50\) −2.15344 + 1.03704i −0.304542 + 0.146660i
\(51\) 0 0
\(52\) −1.98620 + 2.49062i −0.275437 + 0.345387i
\(53\) −5.14319 6.44936i −0.706472 0.885888i 0.291016 0.956718i \(-0.406007\pi\)
−0.997488 + 0.0708303i \(0.977435\pi\)
\(54\) 0 0
\(55\) −0.681776 2.98705i −0.0919306 0.402774i
\(56\) 0.948269 + 1.18909i 0.126718 + 0.158899i
\(57\) 0 0
\(58\) −0.174748 5.38233i −0.0229456 0.706734i
\(59\) −2.95027 −0.384093 −0.192046 0.981386i \(-0.561512\pi\)
−0.192046 + 0.981386i \(0.561512\pi\)
\(60\) 0 0
\(61\) 1.72363 + 7.55173i 0.220688 + 0.966899i 0.956962 + 0.290215i \(0.0937268\pi\)
−0.736273 + 0.676685i \(0.763416\pi\)
\(62\) −0.396619 + 1.73770i −0.0503707 + 0.220688i
\(63\) 0 0
\(64\) 0.623490 0.781831i 0.0779362 0.0977289i
\(65\) −1.14518 5.01736i −0.142042 0.622327i
\(66\) 0 0
\(67\) −2.23359 + 1.07564i −0.272876 + 0.131410i −0.565318 0.824873i \(-0.691246\pi\)
0.292442 + 0.956283i \(0.405532\pi\)
\(68\) −0.378127 + 1.65668i −0.0458546 + 0.200902i
\(69\) 0 0
\(70\) −2.45703 −0.293672
\(71\) 5.46771 + 2.63311i 0.648898 + 0.312493i 0.729223 0.684276i \(-0.239882\pi\)
−0.0803250 + 0.996769i \(0.525596\pi\)
\(72\) 0 0
\(73\) 2.33692 2.93041i 0.273516 0.342978i −0.626034 0.779796i \(-0.715323\pi\)
0.899550 + 0.436817i \(0.143894\pi\)
\(74\) −6.37006 3.06766i −0.740505 0.356608i
\(75\) 0 0
\(76\) 3.31460 + 1.59623i 0.380211 + 0.183100i
\(77\) −0.641852 + 2.81214i −0.0731458 + 0.320473i
\(78\) 0 0
\(79\) −8.30753 + 4.00069i −0.934670 + 0.450113i −0.838286 0.545231i \(-0.816442\pi\)
−0.0963841 + 0.995344i \(0.530728\pi\)
\(80\) 0.359484 + 1.57500i 0.0401915 + 0.176091i
\(81\) 0 0
\(82\) −3.13777 3.93464i −0.346509 0.434508i
\(83\) −1.22901 + 5.38465i −0.134902 + 0.591042i 0.861609 + 0.507573i \(0.169457\pi\)
−0.996510 + 0.0834694i \(0.973400\pi\)
\(84\) 0 0
\(85\) −1.71161 2.14629i −0.185650 0.232798i
\(86\) 1.89654 0.204509
\(87\) 0 0
\(88\) 1.89654 0.202172
\(89\) −9.95740 12.4862i −1.05548 1.32353i −0.944065 0.329759i \(-0.893032\pi\)
−0.111417 0.993774i \(-0.535539\pi\)
\(90\) 0 0
\(91\) −1.07812 + 4.72355i −0.113018 + 0.495163i
\(92\) 1.67782 + 2.10392i 0.174925 + 0.219348i
\(93\) 0 0
\(94\) −0.572020 2.50618i −0.0589994 0.258493i
\(95\) −5.35476 + 2.57872i −0.549387 + 0.264571i
\(96\) 0 0
\(97\) −3.31730 + 14.5341i −0.336821 + 1.47571i 0.468814 + 0.883297i \(0.344682\pi\)
−0.805635 + 0.592412i \(0.798176\pi\)
\(98\) −4.22270 2.03355i −0.426557 0.205419i
\(99\) 0 0
\(100\) 2.15344 + 1.03704i 0.215344 + 0.103704i
\(101\) −0.114672 + 0.143794i −0.0114102 + 0.0143080i −0.787504 0.616310i \(-0.788627\pi\)
0.776094 + 0.630618i \(0.217198\pi\)
\(102\) 0 0
\(103\) 13.5567 + 6.52856i 1.33578 + 0.643279i 0.959101 0.283065i \(-0.0913511\pi\)
0.376681 + 0.926343i \(0.377065\pi\)
\(104\) 3.18562 0.312376
\(105\) 0 0
\(106\) −1.83558 + 8.04222i −0.178288 + 0.781130i
\(107\) −0.273899 + 0.131903i −0.0264789 + 0.0127515i −0.447076 0.894496i \(-0.647535\pi\)
0.420597 + 0.907247i \(0.361820\pi\)
\(108\) 0 0
\(109\) −2.00800 8.79762i −0.192332 0.842660i −0.975350 0.220662i \(-0.929178\pi\)
0.783019 0.621998i \(-0.213679\pi\)
\(110\) −1.91029 + 2.39543i −0.182139 + 0.228395i
\(111\) 0 0
\(112\) 0.338433 1.48277i 0.0319790 0.140109i
\(113\) 1.80183 + 7.89435i 0.169502 + 0.742638i 0.986198 + 0.165570i \(0.0529463\pi\)
−0.816696 + 0.577069i \(0.804197\pi\)
\(114\) 0 0
\(115\) −4.34735 −0.405392
\(116\) −4.09912 + 3.49245i −0.380594 + 0.324266i
\(117\) 0 0
\(118\) 1.83946 + 2.30662i 0.169336 + 0.212341i
\(119\) 0.575096 + 2.51966i 0.0527189 + 0.230977i
\(120\) 0 0
\(121\) −4.61578 5.78801i −0.419617 0.526183i
\(122\) 4.82951 6.05601i 0.437243 0.548286i
\(123\) 0 0
\(124\) 1.60588 0.773350i 0.144212 0.0694489i
\(125\) −10.7565 + 5.18006i −0.962091 + 0.463319i
\(126\) 0 0
\(127\) 8.57262 + 4.12836i 0.760697 + 0.366332i 0.773674 0.633583i \(-0.218417\pi\)
−0.0129773 + 0.999916i \(0.504131\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −3.20872 + 4.02361i −0.281424 + 0.352894i
\(131\) −8.88757 + 11.1447i −0.776511 + 0.973714i −1.00000 0.000992917i \(-0.999684\pi\)
0.223489 + 0.974706i \(0.428255\pi\)
\(132\) 0 0
\(133\) 5.59530 0.485174
\(134\) 2.23359 + 1.07564i 0.192952 + 0.0929210i
\(135\) 0 0
\(136\) 1.53101 0.737293i 0.131283 0.0632224i
\(137\) 5.82435 2.80486i 0.497608 0.239635i −0.168208 0.985752i \(-0.553798\pi\)
0.665816 + 0.746116i \(0.268084\pi\)
\(138\) 0 0
\(139\) −8.88930 + 11.1468i −0.753980 + 0.945462i −0.999715 0.0238756i \(-0.992399\pi\)
0.245734 + 0.969337i \(0.420971\pi\)
\(140\) 1.53194 + 1.92099i 0.129472 + 0.162353i
\(141\) 0 0
\(142\) −1.35041 5.91655i −0.113324 0.496506i
\(143\) 3.76691 + 4.72355i 0.315005 + 0.395003i
\(144\) 0 0
\(145\) −0.282307 8.69519i −0.0234443 0.722096i
\(146\) −3.74813 −0.310198
\(147\) 0 0
\(148\) 1.57328 + 6.89297i 0.129322 + 0.566599i
\(149\) −1.83339 + 8.03260i −0.150197 + 0.658056i 0.842630 + 0.538493i \(0.181006\pi\)
−0.992827 + 0.119563i \(0.961851\pi\)
\(150\) 0 0
\(151\) −13.7186 + 17.2026i −1.11640 + 1.39992i −0.209900 + 0.977723i \(0.567314\pi\)
−0.906502 + 0.422201i \(0.861258\pi\)
\(152\) −0.818639 3.58669i −0.0664004 0.290919i
\(153\) 0 0
\(154\) 2.59881 1.25152i 0.209418 0.100850i
\(155\) −0.640741 + 2.80727i −0.0514655 + 0.225485i
\(156\) 0 0
\(157\) 0.135585 0.0108208 0.00541041 0.999985i \(-0.498278\pi\)
0.00541041 + 0.999985i \(0.498278\pi\)
\(158\) 8.30753 + 4.00069i 0.660911 + 0.318278i
\(159\) 0 0
\(160\) 1.00725 1.26305i 0.0796303 0.0998532i
\(161\) 3.68746 + 1.77579i 0.290613 + 0.139952i
\(162\) 0 0
\(163\) −9.23815 4.44886i −0.723587 0.348461i 0.0355711 0.999367i \(-0.488675\pi\)
−0.759158 + 0.650906i \(0.774389\pi\)
\(164\) −1.11986 + 4.90641i −0.0874461 + 0.383127i
\(165\) 0 0
\(166\) 4.97617 2.39640i 0.386225 0.185996i
\(167\) 3.73573 + 16.3673i 0.289079 + 1.26654i 0.885791 + 0.464084i \(0.153616\pi\)
−0.596712 + 0.802456i \(0.703526\pi\)
\(168\) 0 0
\(169\) −1.77808 2.22965i −0.136776 0.171511i
\(170\) −0.610867 + 2.67638i −0.0468513 + 0.205269i
\(171\) 0 0
\(172\) −1.18247 1.48277i −0.0901627 0.113060i
\(173\) −4.15473 −0.315878 −0.157939 0.987449i \(-0.550485\pi\)
−0.157939 + 0.987449i \(0.550485\pi\)
\(174\) 0 0
\(175\) 3.63517 0.274793
\(176\) −1.18247 1.48277i −0.0891322 0.111768i
\(177\) 0 0
\(178\) −3.55376 + 15.5700i −0.266365 + 1.16702i
\(179\) −6.60922 8.28770i −0.493996 0.619452i 0.470867 0.882204i \(-0.343941\pi\)
−0.964863 + 0.262753i \(0.915370\pi\)
\(180\) 0 0
\(181\) −4.84352 21.2209i −0.360016 1.57733i −0.753147 0.657852i \(-0.771465\pi\)
0.393131 0.919483i \(-0.371392\pi\)
\(182\) 4.36522 2.10218i 0.323572 0.155824i
\(183\) 0 0
\(184\) 0.598806 2.62354i 0.0441446 0.193410i
\(185\) −10.2909 4.95583i −0.756601 0.364360i
\(186\) 0 0
\(187\) 2.90361 + 1.39831i 0.212333 + 0.102254i
\(188\) −1.60276 + 2.00980i −0.116894 + 0.146580i
\(189\) 0 0
\(190\) 5.35476 + 2.57872i 0.388475 + 0.187080i
\(191\) 14.5209 1.05069 0.525346 0.850888i \(-0.323936\pi\)
0.525346 + 0.850888i \(0.323936\pi\)
\(192\) 0 0
\(193\) 1.06926 4.68476i 0.0769674 0.337216i −0.921754 0.387776i \(-0.873243\pi\)
0.998721 + 0.0505599i \(0.0161006\pi\)
\(194\) 13.4315 6.46826i 0.964324 0.464394i
\(195\) 0 0
\(196\) 1.04292 + 4.56934i 0.0744944 + 0.326381i
\(197\) 9.49108 11.9014i 0.676212 0.847943i −0.318787 0.947826i \(-0.603276\pi\)
0.994999 + 0.0998835i \(0.0318470\pi\)
\(198\) 0 0
\(199\) 2.71330 11.8877i 0.192341 0.842699i −0.783005 0.622015i \(-0.786314\pi\)
0.975345 0.220683i \(-0.0708288\pi\)
\(200\) −0.531856 2.33021i −0.0376079 0.164771i
\(201\) 0 0
\(202\) 0.183919 0.0129405
\(203\) −3.31232 + 7.49066i −0.232480 + 0.525741i
\(204\) 0 0
\(205\) −5.06909 6.35644i −0.354040 0.443953i
\(206\) −3.34823 14.6696i −0.233282 1.02208i
\(207\) 0 0
\(208\) −1.98620 2.49062i −0.137718 0.172693i
\(209\) 4.35023 5.45502i 0.300912 0.377332i
\(210\) 0 0
\(211\) −12.9606 + 6.24151i −0.892246 + 0.429683i −0.823082 0.567922i \(-0.807747\pi\)
−0.0691638 + 0.997605i \(0.522033\pi\)
\(212\) 7.43213 3.57912i 0.510441 0.245815i
\(213\) 0 0
\(214\) 0.273899 + 0.131903i 0.0187234 + 0.00901670i
\(215\) 3.06387 0.208954
\(216\) 0 0
\(217\) 1.69019 2.11943i 0.114737 0.143876i
\(218\) −5.62629 + 7.05515i −0.381061 + 0.477835i
\(219\) 0 0
\(220\) 3.06387 0.206566
\(221\) 4.87720 + 2.34874i 0.328076 + 0.157993i
\(222\) 0 0
\(223\) 11.5189 5.54720i 0.771362 0.371468i −0.00643891 0.999979i \(-0.502050\pi\)
0.777801 + 0.628511i \(0.216335\pi\)
\(224\) −1.37029 + 0.659896i −0.0915563 + 0.0440912i
\(225\) 0 0
\(226\) 5.04863 6.33078i 0.335830 0.421117i
\(227\) −16.4768 20.6612i −1.09360 1.37133i −0.922462 0.386088i \(-0.873826\pi\)
−0.171141 0.985246i \(-0.554745\pi\)
\(228\) 0 0
\(229\) −4.27284 18.7206i −0.282358 1.23709i −0.894762 0.446544i \(-0.852655\pi\)
0.612404 0.790545i \(-0.290203\pi\)
\(230\) 2.71053 + 3.39889i 0.178727 + 0.224116i
\(231\) 0 0
\(232\) 5.28627 + 1.02731i 0.347060 + 0.0674464i
\(233\) 8.12368 0.532200 0.266100 0.963945i \(-0.414265\pi\)
0.266100 + 0.963945i \(0.414265\pi\)
\(234\) 0 0
\(235\) −0.924102 4.04876i −0.0602818 0.264112i
\(236\) 0.656497 2.87630i 0.0427343 0.187231i
\(237\) 0 0
\(238\) 1.61138 2.02061i 0.104450 0.130977i
\(239\) −6.74549 29.5539i −0.436329 1.91168i −0.410131 0.912027i \(-0.634517\pi\)
−0.0261983 0.999657i \(-0.508340\pi\)
\(240\) 0 0
\(241\) −4.12092 + 1.98453i −0.265452 + 0.127835i −0.561876 0.827222i \(-0.689920\pi\)
0.296424 + 0.955056i \(0.404206\pi\)
\(242\) −1.64735 + 7.21753i −0.105896 + 0.463960i
\(243\) 0 0
\(244\) −7.74593 −0.495883
\(245\) −6.82180 3.28521i −0.435829 0.209884i
\(246\) 0 0
\(247\) 7.30709 9.16281i 0.464939 0.583015i
\(248\) −1.60588 0.773350i −0.101973 0.0491078i
\(249\) 0 0
\(250\) 10.7565 + 5.18006i 0.680301 + 0.327616i
\(251\) −2.96313 + 12.9823i −0.187031 + 0.819438i 0.791139 + 0.611636i \(0.209488\pi\)
−0.978171 + 0.207802i \(0.933369\pi\)
\(252\) 0 0
\(253\) 4.59819 2.21437i 0.289086 0.139216i
\(254\) −2.11726 9.27633i −0.132849 0.582049i
\(255\) 0 0
\(256\) 0.623490 + 0.781831i 0.0389681 + 0.0488645i
\(257\) 4.33421 18.9894i 0.270360 1.18453i −0.639228 0.769017i \(-0.720746\pi\)
0.909589 0.415510i \(-0.136397\pi\)
\(258\) 0 0
\(259\) 6.70449 + 8.40716i 0.416597 + 0.522396i
\(260\) 5.14639 0.319166
\(261\) 0 0
\(262\) 14.2546 0.880649
\(263\) −6.26071 7.85069i −0.386052 0.484094i 0.550394 0.834905i \(-0.314477\pi\)
−0.936446 + 0.350811i \(0.885906\pi\)
\(264\) 0 0
\(265\) −2.96540 + 12.9923i −0.182163 + 0.798108i
\(266\) −3.48862 4.37459i −0.213901 0.268223i
\(267\) 0 0
\(268\) −0.551650 2.41694i −0.0336974 0.147638i
\(269\) −5.34815 + 2.57553i −0.326083 + 0.157033i −0.589762 0.807577i \(-0.700778\pi\)
0.263679 + 0.964610i \(0.415064\pi\)
\(270\) 0 0
\(271\) −4.22317 + 18.5029i −0.256540 + 1.12397i 0.668383 + 0.743817i \(0.266987\pi\)
−0.924922 + 0.380156i \(0.875870\pi\)
\(272\) −1.53101 0.737293i −0.0928308 0.0447050i
\(273\) 0 0
\(274\) −5.82435 2.80486i −0.351862 0.169448i
\(275\) 2.82627 3.54403i 0.170431 0.213713i
\(276\) 0 0
\(277\) 23.2546 + 11.1988i 1.39723 + 0.672872i 0.972598 0.232494i \(-0.0746884\pi\)
0.424634 + 0.905365i \(0.360403\pi\)
\(278\) 14.2573 0.855098
\(279\) 0 0
\(280\) 0.546742 2.39543i 0.0326741 0.143154i
\(281\) 22.7311 10.9467i 1.35602 0.653027i 0.392278 0.919847i \(-0.371687\pi\)
0.963747 + 0.266820i \(0.0859728\pi\)
\(282\) 0 0
\(283\) −2.74754 12.0378i −0.163324 0.715571i −0.988566 0.150791i \(-0.951818\pi\)
0.825241 0.564780i \(-0.191039\pi\)
\(284\) −3.78378 + 4.74470i −0.224526 + 0.281546i
\(285\) 0 0
\(286\) 1.34439 5.89017i 0.0794957 0.348293i
\(287\) 1.70320 + 7.46219i 0.100537 + 0.440479i
\(288\) 0 0
\(289\) −14.1124 −0.830142
\(290\) −6.62216 + 5.64208i −0.388866 + 0.331314i
\(291\) 0 0
\(292\) 2.33692 + 2.93041i 0.136758 + 0.171489i
\(293\) 2.74795 + 12.0396i 0.160537 + 0.703359i 0.989557 + 0.144140i \(0.0460416\pi\)
−0.829020 + 0.559219i \(0.811101\pi\)
\(294\) 0 0
\(295\) 2.97167 + 3.72635i 0.173017 + 0.216957i
\(296\) 4.40822 5.52773i 0.256223 0.321293i
\(297\) 0 0
\(298\) 7.42324 3.57484i 0.430016 0.207085i
\(299\) 7.72359 3.71948i 0.446667 0.215103i
\(300\) 0 0
\(301\) −2.59881 1.25152i −0.149793 0.0721364i
\(302\) 22.0029 1.26612
\(303\) 0 0
\(304\) −2.29377 + 2.87630i −0.131557 + 0.164967i
\(305\) 7.80211 9.78353i 0.446747 0.560203i
\(306\) 0 0
\(307\) 11.8371 0.675579 0.337790 0.941222i \(-0.390321\pi\)
0.337790 + 0.941222i \(0.390321\pi\)
\(308\) −2.59881 1.25152i −0.148081 0.0713119i
\(309\) 0 0
\(310\) 2.59431 1.24935i 0.147347 0.0709584i
\(311\) −9.16959 + 4.41584i −0.519960 + 0.250400i −0.675408 0.737445i \(-0.736032\pi\)
0.155448 + 0.987844i \(0.450318\pi\)
\(312\) 0 0
\(313\) −8.31868 + 10.4313i −0.470200 + 0.589612i −0.959220 0.282661i \(-0.908783\pi\)
0.489020 + 0.872272i \(0.337354\pi\)
\(314\) −0.0845356 0.106004i −0.00477062 0.00598217i
\(315\) 0 0
\(316\) −2.05179 8.98948i −0.115422 0.505698i
\(317\) 7.46575 + 9.36176i 0.419318 + 0.525809i 0.945962 0.324278i \(-0.105121\pi\)
−0.526644 + 0.850086i \(0.676550\pi\)
\(318\) 0 0
\(319\) 4.72759 + 9.05311i 0.264694 + 0.506877i
\(320\) −1.61551 −0.0903096
\(321\) 0 0
\(322\) −0.910728 3.99016i −0.0507529 0.222363i
\(323\) 1.39110 6.09482i 0.0774030 0.339125i
\(324\) 0 0
\(325\) 4.74729 5.95292i 0.263332 0.330208i
\(326\) 2.28163 + 9.99649i 0.126368 + 0.553654i
\(327\) 0 0
\(328\) 4.53421 2.18356i 0.250360 0.120567i
\(329\) −0.869989 + 3.81167i −0.0479640 + 0.210144i
\(330\) 0 0
\(331\) −23.3952 −1.28592 −0.642958 0.765902i \(-0.722293\pi\)
−0.642958 + 0.765902i \(0.722293\pi\)
\(332\) −4.97617 2.39640i −0.273103 0.131519i
\(333\) 0 0
\(334\) 10.4673 13.1256i 0.572744 0.718198i
\(335\) 3.60837 + 1.73770i 0.197147 + 0.0949408i
\(336\) 0 0
\(337\) −20.5917 9.91642i −1.12170 0.540182i −0.221282 0.975210i \(-0.571024\pi\)
−0.900417 + 0.435028i \(0.856738\pi\)
\(338\) −0.634591 + 2.78033i −0.0345172 + 0.151230i
\(339\) 0 0
\(340\) 2.47335 1.19110i 0.134136 0.0645966i
\(341\) −0.752203 3.29562i −0.0407341 0.178468i
\(342\) 0 0
\(343\) 11.0823 + 13.8967i 0.598387 + 0.750353i
\(344\) −0.422020 + 1.84899i −0.0227538 + 0.0996908i
\(345\) 0 0
\(346\) 2.59043 + 3.24830i 0.139262 + 0.174630i
\(347\) −6.48177 −0.347960 −0.173980 0.984749i \(-0.555663\pi\)
−0.173980 + 0.984749i \(0.555663\pi\)
\(348\) 0 0
\(349\) −11.7835 −0.630754 −0.315377 0.948966i \(-0.602131\pi\)
−0.315377 + 0.948966i \(0.602131\pi\)
\(350\) −2.26649 2.84209i −0.121149 0.151916i
\(351\) 0 0
\(352\) −0.422020 + 1.84899i −0.0224937 + 0.0985514i
\(353\) 11.9204 + 14.9477i 0.634457 + 0.795584i 0.990298 0.138963i \(-0.0443768\pi\)
−0.355841 + 0.934547i \(0.615805\pi\)
\(354\) 0 0
\(355\) −2.18160 9.55823i −0.115787 0.507298i
\(356\) 14.3889 6.92931i 0.762608 0.367253i
\(357\) 0 0
\(358\) −2.35880 + 10.3346i −0.124667 + 0.546200i
\(359\) −7.46972 3.59723i −0.394237 0.189854i 0.226254 0.974068i \(-0.427352\pi\)
−0.620490 + 0.784214i \(0.713066\pi\)
\(360\) 0 0
\(361\) 4.92423 + 2.37138i 0.259170 + 0.124810i
\(362\) −13.5713 + 17.0178i −0.713289 + 0.894437i
\(363\) 0 0
\(364\) −4.36522 2.10218i −0.228800 0.110184i
\(365\) −6.05514 −0.316940
\(366\) 0 0
\(367\) −6.42229 + 28.1379i −0.335241 + 1.46879i 0.473590 + 0.880746i \(0.342958\pi\)
−0.808831 + 0.588041i \(0.799899\pi\)
\(368\) −2.42452 + 1.16759i −0.126387 + 0.0608646i
\(369\) 0 0
\(370\) 2.54164 + 11.1356i 0.132133 + 0.578915i
\(371\) 7.82231 9.80887i 0.406114 0.509251i
\(372\) 0 0
\(373\) 4.97759 21.8082i 0.257730 1.12919i −0.665942 0.746004i \(-0.731970\pi\)
0.923672 0.383185i \(-0.125173\pi\)
\(374\) −0.717133 3.14196i −0.0370820 0.162467i
\(375\) 0 0
\(376\) 2.57063 0.132570
\(377\) 7.94095 + 15.2065i 0.408980 + 0.783176i
\(378\) 0 0
\(379\) −9.28671 11.6452i −0.477026 0.598172i 0.483850 0.875151i \(-0.339238\pi\)
−0.960876 + 0.276979i \(0.910667\pi\)
\(380\) −1.32252 5.79432i −0.0678437 0.297243i
\(381\) 0 0
\(382\) −9.05361 11.3529i −0.463223 0.580863i
\(383\) −6.81614 + 8.54717i −0.348289 + 0.436740i −0.924861 0.380306i \(-0.875819\pi\)
0.576572 + 0.817046i \(0.304390\pi\)
\(384\) 0 0
\(385\) 4.19839 2.02184i 0.213970 0.103042i
\(386\) −4.32937 + 2.08491i −0.220359 + 0.106119i
\(387\) 0 0
\(388\) −13.4315 6.46826i −0.681880 0.328376i
\(389\) −15.6282 −0.792380 −0.396190 0.918169i \(-0.629668\pi\)
−0.396190 + 0.918169i \(0.629668\pi\)
\(390\) 0 0
\(391\) 2.85109 3.57516i 0.144186 0.180804i
\(392\) 2.92220 3.66432i 0.147593 0.185076i
\(393\) 0 0
\(394\) −15.2225 −0.766899
\(395\) 13.4209 + 6.46315i 0.675277 + 0.325196i
\(396\) 0 0
\(397\) 6.90371 3.32465i 0.346487 0.166859i −0.252543 0.967586i \(-0.581267\pi\)
0.599031 + 0.800726i \(0.295553\pi\)
\(398\) −10.9859 + 5.29054i −0.550674 + 0.265191i
\(399\) 0 0
\(400\) −1.49023 + 1.86868i −0.0745113 + 0.0934342i
\(401\) −2.93903 3.68543i −0.146768 0.184042i 0.703013 0.711177i \(-0.251838\pi\)
−0.849781 + 0.527135i \(0.823266\pi\)
\(402\) 0 0
\(403\) −1.26348 5.53566i −0.0629383 0.275751i
\(404\) −0.114672 0.143794i −0.00570512 0.00715400i
\(405\) 0 0
\(406\) 7.92163 2.08067i 0.393144 0.103262i
\(407\) 13.4090 0.664658
\(408\) 0 0
\(409\) 1.71367 + 7.50807i 0.0847354 + 0.371250i 0.999461 0.0328253i \(-0.0104505\pi\)
−0.914726 + 0.404075i \(0.867593\pi\)
\(410\) −1.80914 + 7.92635i −0.0893469 + 0.391454i
\(411\) 0 0
\(412\) −9.38153 + 11.7641i −0.462195 + 0.579574i
\(413\) −0.998471 4.37459i −0.0491315 0.215259i
\(414\) 0 0
\(415\) 8.03903 3.87139i 0.394621 0.190039i
\(416\) −0.708867 + 3.10575i −0.0347551 + 0.152272i
\(417\) 0 0
\(418\) −6.97723 −0.341268
\(419\) −23.2064 11.1756i −1.13370 0.545963i −0.229605 0.973284i \(-0.573743\pi\)
−0.904100 + 0.427321i \(0.859458\pi\)
\(420\) 0 0
\(421\) 3.59860 4.51250i 0.175385 0.219926i −0.686367 0.727255i \(-0.740796\pi\)
0.861752 + 0.507329i \(0.169367\pi\)
\(422\) 12.9606 + 6.24151i 0.630913 + 0.303832i
\(423\) 0 0
\(424\) −7.43213 3.57912i −0.360936 0.173818i
\(425\) 0.903775 3.95970i 0.0438395 0.192074i
\(426\) 0 0
\(427\) −10.6142 + 5.11151i −0.513655 + 0.247363i
\(428\) −0.0676476 0.296383i −0.00326987 0.0143262i
\(429\) 0 0
\(430\) −1.91029 2.39543i −0.0921225 0.115518i
\(431\) −3.64058 + 15.9504i −0.175361 + 0.768305i 0.808373 + 0.588671i \(0.200349\pi\)
−0.983733 + 0.179634i \(0.942509\pi\)
\(432\) 0 0
\(433\) 15.7575 + 19.7592i 0.757255 + 0.949568i 0.999788 0.0205753i \(-0.00654978\pi\)
−0.242533 + 0.970143i \(0.577978\pi\)
\(434\) −2.71085 −0.130125
\(435\) 0 0
\(436\) 9.02387 0.432165
\(437\) −6.17257 7.74016i −0.295274 0.370262i
\(438\) 0 0
\(439\) −1.44144 + 6.31536i −0.0687961 + 0.301415i −0.997607 0.0691384i \(-0.977975\pi\)
0.928811 + 0.370554i \(0.120832\pi\)
\(440\) −1.91029 2.39543i −0.0910696 0.114198i
\(441\) 0 0
\(442\) −1.20457 5.27756i −0.0572955 0.251028i
\(443\) −23.3182 + 11.2295i −1.10788 + 0.533528i −0.896128 0.443795i \(-0.853632\pi\)
−0.211754 + 0.977323i \(0.567918\pi\)
\(444\) 0 0
\(445\) −5.74112 + 25.1535i −0.272155 + 1.19239i
\(446\) −11.5189 5.54720i −0.545435 0.262668i
\(447\) 0 0
\(448\) 1.37029 + 0.659896i 0.0647401 + 0.0311772i
\(449\) −5.52744 + 6.93120i −0.260856 + 0.327103i −0.894962 0.446143i \(-0.852797\pi\)
0.634105 + 0.773247i \(0.281369\pi\)
\(450\) 0 0
\(451\) 8.59930 + 4.14120i 0.404925 + 0.195002i
\(452\) −8.09737 −0.380868
\(453\) 0 0
\(454\) −5.88050 + 25.7641i −0.275985 + 1.20917i
\(455\) 7.05204 3.39608i 0.330605 0.159211i
\(456\) 0 0
\(457\) −4.93294 21.6126i −0.230753 1.01100i −0.949017 0.315225i \(-0.897920\pi\)
0.718263 0.695771i \(-0.244937\pi\)
\(458\) −11.9722 + 15.0127i −0.559426 + 0.701498i
\(459\) 0 0
\(460\) 0.967375 4.23835i 0.0451041 0.197614i
\(461\) 8.58503 + 37.6135i 0.399845 + 1.75183i 0.628003 + 0.778211i \(0.283872\pi\)
−0.228159 + 0.973624i \(0.573270\pi\)
\(462\) 0 0
\(463\) 30.1073 1.39921 0.699603 0.714531i \(-0.253360\pi\)
0.699603 + 0.714531i \(0.253360\pi\)
\(464\) −2.49275 4.77349i −0.115723 0.221604i
\(465\) 0 0
\(466\) −5.06503 6.35135i −0.234633 0.294220i
\(467\) 1.25558 + 5.50105i 0.0581012 + 0.254558i 0.995635 0.0933375i \(-0.0297535\pi\)
−0.937533 + 0.347895i \(0.886896\pi\)
\(468\) 0 0
\(469\) −2.35085 2.94787i −0.108552 0.136120i
\(470\) −2.58928 + 3.24685i −0.119434 + 0.149766i
\(471\) 0 0
\(472\) −2.65810 + 1.28007i −0.122349 + 0.0589202i
\(473\) −3.24066 + 1.56062i −0.149006 + 0.0717573i
\(474\) 0 0
\(475\) −7.92235 3.81520i −0.363502 0.175053i
\(476\) −2.58446 −0.118458
\(477\) 0 0
\(478\) −18.9004 + 23.7004i −0.864486 + 1.08403i
\(479\) 13.3395 16.7271i 0.609495 0.764283i −0.377329 0.926079i \(-0.623157\pi\)
0.986824 + 0.161797i \(0.0517288\pi\)
\(480\) 0 0
\(481\) 22.5231 1.02696
\(482\) 4.12092 + 1.98453i 0.187703 + 0.0903928i
\(483\) 0 0
\(484\) 6.67000 3.21210i 0.303182 0.146005i
\(485\) 21.6987 10.4495i 0.985285 0.474488i
\(486\) 0 0
\(487\) 7.91124 9.92038i 0.358492 0.449535i −0.569580 0.821936i \(-0.692894\pi\)
0.928072 + 0.372401i \(0.121465\pi\)
\(488\) 4.82951 + 6.05601i 0.218622 + 0.274143i
\(489\) 0 0
\(490\) 1.68485 + 7.38179i 0.0761136 + 0.333475i
\(491\) 7.68443 + 9.63597i 0.346794 + 0.434865i 0.924385 0.381460i \(-0.124579\pi\)
−0.577592 + 0.816326i \(0.696007\pi\)
\(492\) 0 0
\(493\) 7.33587 + 5.47035i 0.330391 + 0.246372i
\(494\) −11.7197 −0.527293
\(495\) 0 0
\(496\) 0.396619 + 1.73770i 0.0178087 + 0.0780251i
\(497\) −2.05385 + 8.99852i −0.0921279 + 0.403639i
\(498\) 0 0
\(499\) −2.40764 + 3.01909i −0.107781 + 0.135153i −0.832796 0.553580i \(-0.813261\pi\)
0.725015 + 0.688733i \(0.241833\pi\)
\(500\) −2.65664 11.6395i −0.118808 0.520534i
\(501\) 0 0
\(502\) 11.9975 5.77769i 0.535474 0.257871i
\(503\) −8.65503 + 37.9202i −0.385909 + 1.69078i 0.292642 + 0.956222i \(0.405466\pi\)
−0.678550 + 0.734554i \(0.737391\pi\)
\(504\) 0 0
\(505\) 0.297122 0.0132218
\(506\) −4.59819 2.21437i −0.204414 0.0984408i
\(507\) 0 0
\(508\) −5.93244 + 7.43904i −0.263209 + 0.330054i
\(509\) −29.1230 14.0249i −1.29085 0.621642i −0.342697 0.939446i \(-0.611340\pi\)
−0.948156 + 0.317804i \(0.897055\pi\)
\(510\) 0 0
\(511\) 5.13603 + 2.47338i 0.227204 + 0.109416i
\(512\) 0.222521 0.974928i 0.00983413 0.0430861i
\(513\) 0 0
\(514\) −17.5489 + 8.45108i −0.774047 + 0.372761i
\(515\) −5.40909 23.6988i −0.238353 1.04429i
\(516\) 0 0
\(517\) 3.03970 + 3.81167i 0.133686 + 0.167637i
\(518\) 2.39280 10.4836i 0.105134 0.460621i
\(519\) 0 0
\(520\) −3.20872 4.02361i −0.140712 0.176447i
\(521\) −7.79081 −0.341321 −0.170661 0.985330i \(-0.554590\pi\)
−0.170661 + 0.985330i \(0.554590\pi\)
\(522\) 0 0
\(523\) −34.8524 −1.52399 −0.761995 0.647582i \(-0.775780\pi\)
−0.761995 + 0.647582i \(0.775780\pi\)
\(524\) −8.88757 11.1447i −0.388255 0.486857i
\(525\) 0 0
\(526\) −2.23442 + 9.78965i −0.0974255 + 0.426849i
\(527\) −1.88842 2.36801i −0.0822609 0.103152i
\(528\) 0 0
\(529\) 3.50659 + 15.3634i 0.152460 + 0.667972i
\(530\) 12.0067 5.78210i 0.521536 0.251158i
\(531\) 0 0
\(532\) −1.24507 + 5.45502i −0.0539807 + 0.236505i
\(533\) 14.4443 + 6.95599i 0.625650 + 0.301297i
\(534\) 0 0
\(535\) 0.442486 + 0.213090i 0.0191304 + 0.00921269i
\(536\) −1.54569 + 1.93823i −0.0667636 + 0.0837189i
\(537\) 0 0
\(538\) 5.34815 + 2.57553i 0.230575 + 0.111039i
\(539\) 8.88878 0.382867
\(540\) 0 0
\(541\) −2.73274 + 11.9729i −0.117490 + 0.514757i 0.881596 + 0.472005i \(0.156470\pi\)
−0.999086 + 0.0427517i \(0.986388\pi\)
\(542\) 17.0993 8.23458i 0.734477 0.353705i
\(543\) 0 0
\(544\) 0.378127 + 1.65668i 0.0162121 + 0.0710297i
\(545\) −9.08931 + 11.3976i −0.389343 + 0.488221i
\(546\) 0 0
\(547\) −0.742753 + 3.25421i −0.0317578 + 0.139140i −0.988321 0.152384i \(-0.951305\pi\)
0.956564 + 0.291524i \(0.0941622\pi\)
\(548\) 1.43850 + 6.30246i 0.0614495 + 0.269228i
\(549\) 0 0
\(550\) −4.53299 −0.193287
\(551\) 15.0804 12.8485i 0.642445 0.547364i
\(552\) 0 0
\(553\) −8.74367 10.9642i −0.371819 0.466246i
\(554\) −5.74341 25.1635i −0.244014 1.06909i
\(555\) 0 0
\(556\) −8.88930 11.1468i −0.376990 0.472731i
\(557\) −5.15315 + 6.46185i −0.218346 + 0.273797i −0.878926 0.476959i \(-0.841739\pi\)
0.660580 + 0.750756i \(0.270311\pi\)
\(558\) 0 0
\(559\) −5.44334 + 2.62137i −0.230229 + 0.110872i
\(560\) −2.21371 + 1.06607i −0.0935464 + 0.0450496i
\(561\) 0 0
\(562\) −22.7311 10.9467i −0.958854 0.461760i
\(563\) −16.4004 −0.691193 −0.345596 0.938383i \(-0.612323\pi\)
−0.345596 + 0.938383i \(0.612323\pi\)
\(564\) 0 0
\(565\) 8.15610 10.2274i 0.343130 0.430271i
\(566\) −7.69844 + 9.65354i −0.323590 + 0.405769i
\(567\) 0 0
\(568\) 6.06870 0.254637
\(569\) −16.8135 8.09698i −0.704861 0.339443i 0.0468812 0.998900i \(-0.485072\pi\)
−0.751742 + 0.659457i \(0.770786\pi\)
\(570\) 0 0
\(571\) 35.3010 17.0001i 1.47730 0.711430i 0.490211 0.871604i \(-0.336920\pi\)
0.987089 + 0.160174i \(0.0512055\pi\)
\(572\) −5.44334 + 2.62137i −0.227597 + 0.109605i
\(573\) 0 0
\(574\) 4.77225 5.98421i 0.199190 0.249776i
\(575\) −4.01021 5.02865i −0.167237 0.209709i
\(576\) 0 0
\(577\) −1.73944 7.62100i −0.0724140 0.317266i 0.925729 0.378189i \(-0.123453\pi\)
−0.998143 + 0.0609223i \(0.980596\pi\)
\(578\) 8.79895 + 11.0335i 0.365988 + 0.458935i
\(579\) 0 0
\(580\) 8.54000 + 1.65963i 0.354604 + 0.0689125i
\(581\) −8.40016 −0.348497
\(582\) 0 0
\(583\) −3.48126 15.2524i −0.144179 0.631689i
\(584\) 0.834038 3.65416i 0.0345127 0.151210i
\(585\) 0 0
\(586\) 7.69959 9.65498i 0.318067 0.398844i
\(587\) −1.70127 7.45375i −0.0702189 0.307649i 0.927607 0.373558i \(-0.121862\pi\)
−0.997826 + 0.0659091i \(0.979005\pi\)
\(588\) 0 0
\(589\) −5.90791 + 2.84510i −0.243431 + 0.117230i
\(590\) 1.06058 4.64669i 0.0436632 0.191301i
\(591\) 0 0
\(592\) −7.07024 −0.290585
\(593\) 8.78740 + 4.23179i 0.360855 + 0.173779i 0.605522 0.795828i \(-0.292964\pi\)
−0.244667 + 0.969607i \(0.578679\pi\)
\(594\) 0 0
\(595\) 2.60320 3.26431i 0.106721 0.133824i
\(596\) −7.42324 3.57484i −0.304068 0.146431i
\(597\) 0 0
\(598\) −7.72359 3.71948i −0.315841 0.152101i
\(599\) −4.77068 + 20.9017i −0.194925 + 0.854022i 0.778977 + 0.627052i \(0.215739\pi\)
−0.973902 + 0.226969i \(0.927118\pi\)
\(600\) 0 0
\(601\) −24.6258 + 11.8592i −1.00451 + 0.483745i −0.862465 0.506116i \(-0.831081\pi\)
−0.142041 + 0.989861i \(0.545367\pi\)
\(602\) 0.641852 + 2.81214i 0.0261599 + 0.114614i
\(603\) 0 0
\(604\) −13.7186 17.2026i −0.558201 0.699962i
\(605\) −2.66131 + 11.6600i −0.108198 + 0.474045i
\(606\) 0 0
\(607\) 20.7591 + 26.0310i 0.842584 + 1.05657i 0.997640 + 0.0686611i \(0.0218727\pi\)
−0.155056 + 0.987906i \(0.549556\pi\)
\(608\) 3.67893 0.149200
\(609\) 0 0
\(610\) −12.5136 −0.506661
\(611\) 5.10580 + 6.40247i 0.206558 + 0.259016i
\(612\) 0 0
\(613\) −6.67444 + 29.2426i −0.269578 + 1.18110i 0.640928 + 0.767601i \(0.278550\pi\)
−0.910506 + 0.413497i \(0.864307\pi\)
\(614\) −7.38031 9.25462i −0.297845 0.373486i
\(615\) 0 0
\(616\) 0.641852 + 2.81214i 0.0258610 + 0.113304i
\(617\) −17.1426 + 8.25544i −0.690135 + 0.332352i −0.745868 0.666094i \(-0.767965\pi\)
0.0557324 + 0.998446i \(0.482251\pi\)
\(618\) 0 0
\(619\) 9.12639 39.9853i 0.366820 1.60715i −0.368636 0.929574i \(-0.620175\pi\)
0.735457 0.677572i \(-0.236968\pi\)
\(620\) −2.59431 1.24935i −0.104190 0.0501752i
\(621\) 0 0
\(622\) 9.16959 + 4.41584i 0.367667 + 0.177059i
\(623\) 15.1443 18.9903i 0.606742 0.760831i
\(624\) 0 0
\(625\) 6.61001 + 3.18321i 0.264400 + 0.127329i
\(626\) 13.3421 0.533259
\(627\) 0 0
\(628\) −0.0301704 + 0.132185i −0.00120393 + 0.00527476i
\(629\) 10.8246 5.21284i 0.431604 0.207849i
\(630\) 0 0
\(631\) −6.01242 26.3421i −0.239350 1.04866i −0.941600 0.336732i \(-0.890678\pi\)
0.702250 0.711931i \(-0.252179\pi\)
\(632\) −5.74899 + 7.20900i −0.228682 + 0.286759i
\(633\) 0 0
\(634\) 2.66450 11.6739i 0.105821 0.463631i
\(635\) −3.42045 14.9860i −0.135737 0.594701i
\(636\) 0 0
\(637\) 14.9305 0.591568
\(638\) 4.13040 9.34070i 0.163524 0.369802i
\(639\) 0 0
\(640\) 1.00725 + 1.26305i 0.0398151 + 0.0499266i
\(641\) 6.88451 + 30.1630i 0.271922 + 1.19137i 0.907742 + 0.419529i \(0.137805\pi\)
−0.635820 + 0.771837i \(0.719338\pi\)
\(642\) 0 0
\(643\) −1.31321 1.64672i −0.0517881 0.0649403i 0.755263 0.655422i \(-0.227509\pi\)
−0.807051 + 0.590482i \(0.798938\pi\)
\(644\) −2.55180 + 3.19986i −0.100555 + 0.126092i
\(645\) 0 0
\(646\) −5.63246 + 2.71245i −0.221606 + 0.106720i
\(647\) −14.0227 + 6.75299i −0.551291 + 0.265488i −0.688724 0.725023i \(-0.741829\pi\)
0.137434 + 0.990511i \(0.456115\pi\)
\(648\) 0 0
\(649\) −5.04120 2.42771i −0.197884 0.0952960i
\(650\) −7.61407 −0.298648
\(651\) 0 0
\(652\) 6.39299 8.01656i 0.250369 0.313953i
\(653\) 28.0153 35.1301i 1.09633 1.37475i 0.175634 0.984455i \(-0.443802\pi\)
0.920691 0.390293i \(-0.127626\pi\)
\(654\) 0 0
\(655\) 23.0283 0.899792
\(656\) −4.53421 2.18356i −0.177031 0.0852537i
\(657\) 0 0
\(658\) 3.52251 1.69635i 0.137322 0.0661307i
\(659\) 7.73847 3.72665i 0.301448 0.145170i −0.277045 0.960857i \(-0.589355\pi\)
0.578493 + 0.815687i \(0.303641\pi\)
\(660\) 0 0
\(661\) −1.97142 + 2.47208i −0.0766794 + 0.0961529i −0.818692 0.574233i \(-0.805300\pi\)
0.742012 + 0.670386i \(0.233872\pi\)
\(662\) 14.5867 + 18.2911i 0.566927 + 0.710903i
\(663\) 0 0
\(664\) 1.22901 + 5.38465i 0.0476949 + 0.208965i
\(665\) −5.63588 7.06717i −0.218550 0.274053i
\(666\) 0 0
\(667\) 14.0161 3.68143i 0.542706 0.142546i
\(668\) −16.7882 −0.649555
\(669\) 0 0
\(670\) −0.891195 3.90458i −0.0344299 0.150847i
\(671\) −3.26894 + 14.3221i −0.126196 + 0.552900i
\(672\) 0 0
\(673\) 10.9959 13.7885i 0.423862 0.531506i −0.523349 0.852119i \(-0.675317\pi\)
0.947210 + 0.320613i \(0.103889\pi\)
\(674\) 5.08572 + 22.2820i 0.195895 + 0.858270i
\(675\) 0 0
\(676\) 2.56941 1.23736i 0.0988233 0.0475908i
\(677\) −0.959235 + 4.20268i −0.0368664 + 0.161522i −0.990010 0.140995i \(-0.954970\pi\)
0.953144 + 0.302517i \(0.0978270\pi\)
\(678\) 0 0
\(679\) −22.6734 −0.870125
\(680\) −2.47335 1.19110i −0.0948486 0.0456767i
\(681\) 0 0
\(682\) −2.10763 + 2.64288i −0.0807052 + 0.101201i
\(683\) 35.8251 + 17.2525i 1.37081 + 0.660148i 0.967019 0.254703i \(-0.0819778\pi\)
0.403791 + 0.914851i \(0.367692\pi\)
\(684\) 0 0
\(685\) −9.40928 4.53127i −0.359510 0.173131i
\(686\) 3.95522 17.3289i 0.151011 0.661622i
\(687\) 0 0
\(688\) 1.70872 0.822877i 0.0651444 0.0313719i
\(689\) −5.84747 25.6195i −0.222771 0.976024i
\(690\) 0 0
\(691\) −11.5115 14.4349i −0.437916 0.549130i 0.513076 0.858343i \(-0.328506\pi\)
−0.950993 + 0.309213i \(0.899934\pi\)
\(692\) 0.924514 4.05056i 0.0351448 0.153979i
\(693\) 0 0
\(694\) 4.04132 + 5.06765i 0.153406 + 0.192365i
\(695\) 23.0328 0.873684
\(696\) 0 0
\(697\) 8.55182 0.323923
\(698\) 7.34687 + 9.21268i 0.278083 + 0.348705i
\(699\) 0 0
\(700\) −0.808902 + 3.54403i −0.0305736 + 0.133952i
\(701\) −12.1339 15.2154i −0.458291 0.574679i 0.497970 0.867195i \(-0.334079\pi\)
−0.956261 + 0.292515i \(0.905508\pi\)
\(702\) 0 0
\(703\) −5.78797 25.3588i −0.218297 0.956423i
\(704\) 1.70872 0.822877i 0.0643999 0.0310134i
\(705\) 0 0
\(706\) 4.25433 18.6394i 0.160114 0.701504i
\(707\) −0.252022 0.121367i −0.00947826 0.00456449i
\(708\) 0 0
\(709\) −5.96289 2.87158i −0.223941 0.107844i 0.318549 0.947906i \(-0.396804\pi\)
−0.542491 + 0.840062i \(0.682519\pi\)
\(710\) −6.11272 + 7.66510i −0.229406 + 0.287666i
\(711\) 0 0
\(712\) −14.3889 6.92931i −0.539245 0.259687i
\(713\) −4.79643 −0.179628
\(714\) 0 0
\(715\) 2.17188 9.51562i 0.0812236 0.355864i
\(716\) 9.55060 4.59933i 0.356923 0.171885i
\(717\) 0 0
\(718\) 1.84487 + 8.08289i 0.0688498 + 0.301651i
\(719\) 11.3027 14.1732i 0.421521 0.528571i −0.525047 0.851073i \(-0.675952\pi\)
0.946569 + 0.322502i \(0.104524\pi\)
\(720\) 0 0
\(721\) −5.09234 + 22.3110i −0.189649 + 0.830905i
\(722\) −1.21618 5.32845i −0.0452617 0.198304i
\(723\) 0 0
\(724\) 21.7666 0.808949
\(725\) 9.79746 8.34744i 0.363868 0.310016i
\(726\) 0 0
\(727\) −8.87894 11.1338i −0.329302 0.412931i 0.589426 0.807822i \(-0.299354\pi\)
−0.918728 + 0.394891i \(0.870782\pi\)
\(728\) 1.07812 + 4.72355i 0.0399578 + 0.175067i
\(729\) 0 0
\(730\) 3.77532 + 4.73410i 0.139731 + 0.175217i
\(731\) −2.00936 + 2.51966i −0.0743189 + 0.0931929i
\(732\) 0 0
\(733\) −17.0908 + 8.23048i −0.631262 + 0.304000i −0.722019 0.691873i \(-0.756786\pi\)
0.0907571 + 0.995873i \(0.471071\pi\)
\(734\) 26.0033 12.5225i 0.959801 0.462216i
\(735\) 0 0
\(736\) 2.42452 + 1.16759i 0.0893689 + 0.0430378i
\(737\) −4.70170 −0.173189
\(738\) 0 0
\(739\) −27.5316 + 34.5236i −1.01277 + 1.26997i −0.0502534 + 0.998737i \(0.516003\pi\)
−0.962514 + 0.271233i \(0.912569\pi\)
\(740\) 7.12151 8.93009i 0.261792 0.328277i
\(741\) 0 0
\(742\) −12.5460 −0.460579
\(743\) 29.1694 + 14.0473i 1.07012 + 0.515344i 0.884146 0.467210i \(-0.154741\pi\)
0.185977 + 0.982554i \(0.440455\pi\)
\(744\) 0 0
\(745\) 11.9923 5.77518i 0.439363 0.211586i
\(746\) −20.1538 + 9.70558i −0.737885 + 0.355347i
\(747\) 0 0
\(748\) −2.00936 + 2.51966i −0.0734695 + 0.0921278i
\(749\) −0.288279 0.361490i −0.0105335 0.0132086i
\(750\) 0 0
\(751\) 6.02269 + 26.3871i 0.219771 + 0.962881i 0.957647 + 0.287944i \(0.0929718\pi\)
−0.737876 + 0.674936i \(0.764171\pi\)
\(752\) −1.60276 2.00980i −0.0584468 0.0732900i
\(753\) 0 0
\(754\) 6.93784 15.6896i 0.252661 0.571381i
\(755\) 35.5458 1.29364
\(756\) 0 0
\(757\) 11.1140 + 48.6936i 0.403945 + 1.76980i 0.611162 + 0.791505i \(0.290702\pi\)
−0.207217 + 0.978295i \(0.566441\pi\)
\(758\) −3.31439 + 14.5213i −0.120384 + 0.527437i
\(759\) 0 0
\(760\) −3.70561 + 4.64669i −0.134417 + 0.168553i
\(761\) −1.94753 8.53268i −0.0705979 0.309309i 0.927284 0.374358i \(-0.122137\pi\)
−0.997882 + 0.0650486i \(0.979280\pi\)
\(762\) 0 0
\(763\) 12.3653 5.95482i 0.447654 0.215579i
\(764\) −3.23120 + 14.1568i −0.116901 + 0.512175i
\(765\) 0 0
\(766\) 10.9322 0.394998
\(767\) −8.46771 4.07783i −0.305751 0.147242i
\(768\) 0 0
\(769\) 13.7625 17.2576i 0.496287 0.622325i −0.469100 0.883145i \(-0.655422\pi\)
0.965387 + 0.260820i \(0.0839931\pi\)
\(770\) −4.19839 2.02184i −0.151299 0.0728620i
\(771\) 0 0
\(772\) 4.32937 + 2.08491i 0.155817 + 0.0750376i
\(773\) 2.56666 11.2453i 0.0923162 0.404464i −0.907564 0.419913i \(-0.862061\pi\)
0.999881 + 0.0154490i \(0.00491777\pi\)
\(774\) 0 0
\(775\) −3.83827 + 1.84841i −0.137875 + 0.0663969i
\(776\) 3.31730 + 14.5341i 0.119084 + 0.521742i
\(777\) 0 0
\(778\) 9.74401 + 12.2186i 0.349340 + 0.438058i
\(779\) 4.11987 18.0503i 0.147610 0.646721i
\(780\) 0 0
\(781\) 7.17608 + 8.99852i 0.256780 + 0.321992i
\(782\) −4.57280 −0.163523
\(783\) 0 0
\(784\) −4.68684 −0.167387
\(785\) −0.136568 0.171251i −0.00487432 0.00611220i
\(786\) 0 0
\(787\) −1.09728 + 4.80749i −0.0391137 + 0.171368i −0.990712 0.135976i \(-0.956583\pi\)
0.951598 + 0.307344i \(0.0994402\pi\)
\(788\) 9.49108 + 11.9014i 0.338106 + 0.423971i
\(789\) 0 0
\(790\) −3.31468 14.5226i −0.117931 0.516690i
\(791\) −11.0957 + 5.34343i −0.394519 + 0.189990i
\(792\) 0 0
\(793\) −5.49084 + 24.0569i −0.194985 + 0.854287i
\(794\) −6.90371 3.32465i −0.245003 0.117987i
\(795\) 0 0
\(796\) 10.9859 + 5.29054i 0.389385 + 0.187518i
\(797\) −14.5094 + 18.1942i −0.513950 + 0.644473i −0.969312 0.245833i \(-0.920938\pi\)
0.455362 + 0.890306i \(0.349510\pi\)
\(798\) 0 0
\(799\) 3.93565 + 1.89531i 0.139233 + 0.0670513i
\(800\) 2.39014 0.0845041
\(801\) 0 0
\(802\) −1.04893 + 4.59566i −0.0370389 + 0.162278i
\(803\) 6.40452 3.08425i 0.226011 0.108841i
\(804\) 0 0
\(805\) −1.47129 6.44613i −0.0518561 0.227196i
\(806\) −3.54019 + 4.43925i −0.124698 + 0.156366i
\(807\) 0 0
\(808\) −0.0409258 + 0.179308i −0.00143976 + 0.00630802i
\(809\) −7.86490 34.4584i −0.276515 1.21149i −0.902166 0.431389i \(-0.858024\pi\)
0.625651 0.780103i \(-0.284833\pi\)
\(810\) 0 0
\(811\) −9.47070 −0.332561 −0.166281 0.986078i \(-0.553176\pi\)
−0.166281 + 0.986078i \(0.553176\pi\)
\(812\) −6.56579 4.89611i −0.230414 0.171820i
\(813\) 0 0
\(814\) −8.36036 10.4836i −0.293031 0.367449i
\(815\) 3.68599 + 16.1494i 0.129115 + 0.565689i
\(816\) 0 0
\(817\) 4.35023 + 5.45502i 0.152195 + 0.190847i
\(818\) 4.80159 6.02100i 0.167884 0.210519i
\(819\) 0 0
\(820\) 7.32504 3.52756i 0.255802 0.123188i
\(821\) 26.5108 12.7669i 0.925234 0.445569i 0.0902971 0.995915i \(-0.471218\pi\)
0.834937 + 0.550346i \(0.185504\pi\)
\(822\) 0 0
\(823\) −26.5320 12.7772i −0.924849 0.445384i −0.0900492 0.995937i \(-0.528702\pi\)
−0.834800 + 0.550553i \(0.814417\pi\)
\(824\) 15.0468 0.524180
\(825\) 0 0
\(826\) −2.79765 + 3.50815i −0.0973428 + 0.122064i
\(827\) 9.42602 11.8199i 0.327775 0.411017i −0.590451 0.807073i \(-0.701050\pi\)
0.918226 + 0.396057i \(0.129622\pi\)
\(828\) 0 0
\(829\) 44.2208 1.53585 0.767925 0.640539i \(-0.221289\pi\)
0.767925 + 0.640539i \(0.221289\pi\)
\(830\) −8.03903 3.87139i −0.279039 0.134378i
\(831\) 0 0
\(832\) 2.87014 1.38219i 0.0995043 0.0479188i
\(833\) 7.17558 3.45558i 0.248619 0.119729i
\(834\) 0 0
\(835\) 16.9100 21.2044i 0.585193 0.733809i
\(836\) 4.35023 + 5.45502i 0.150456 + 0.188666i
\(837\) 0 0
\(838\) 5.73150 + 25.1113i 0.197991 + 0.867456i
\(839\) −2.97931 3.73593i −0.102857 0.128979i 0.727739 0.685854i \(-0.240571\pi\)
−0.830596 + 0.556876i \(0.812000\pi\)
\(840\) 0 0
\(841\) 8.27346 + 27.7948i 0.285292 + 0.958441i
\(842\) −5.77170 −0.198906
\(843\) 0 0
\(844\) −3.20101 14.0245i −0.110183 0.482744i
\(845\) −1.02519 + 4.49164i −0.0352675 + 0.154517i
\(846\) 0 0
\(847\) 7.02017 8.80302i 0.241216 0.302475i
\(848\) 1.83558 + 8.04222i 0.0630342 + 0.276171i
\(849\) 0 0
\(850\) −3.65931 + 1.76223i −0.125513 + 0.0604441i
\(851\) 4.23370 18.5491i 0.145129 0.635854i
\(852\) 0 0
\(853\) 7.44372 0.254868 0.127434 0.991847i \(-0.459326\pi\)
0.127434 + 0.991847i \(0.459326\pi\)
\(854\) 10.6142 + 5.11151i 0.363209 + 0.174912i
\(855\) 0 0
\(856\) −0.189544 + 0.237681i −0.00647849 + 0.00812377i
\(857\) 11.4490 + 5.51356i 0.391092 + 0.188340i 0.619087 0.785322i \(-0.287503\pi\)
−0.227995 + 0.973662i \(0.573217\pi\)
\(858\) 0 0
\(859\) −15.5600 7.49332i −0.530902 0.255669i 0.149174 0.988811i \(-0.452339\pi\)
−0.680075 + 0.733142i \(0.738053\pi\)
\(860\) −0.681776 + 2.98705i −0.0232484 + 0.101858i
\(861\) 0 0
\(862\) 14.7404 7.09861i 0.502060 0.241780i
\(863\) −8.10854 35.5258i −0.276018 1.20931i −0.902780 0.430103i \(-0.858477\pi\)
0.626762 0.779211i \(-0.284380\pi\)
\(864\) 0 0
\(865\) 4.18486 + 5.24765i 0.142290 + 0.178425i
\(866\) 5.62377 24.6394i 0.191104 0.837279i
\(867\) 0 0
\(868\) 1.69019 + 2.11943i 0.0573686 + 0.0719380i
\(869\) −17.4873 −0.593217
\(870\) 0 0
\(871\) −7.89745 −0.267595
\(872\) −5.62629 7.05515i −0.190530 0.238917i
\(873\) 0 0
\(874\) −2.20296 + 9.65182i −0.0745164 + 0.326478i
\(875\) −11.3212 14.1964i −0.382727 0.479924i
\(876\) 0 0
\(877\) −1.92576 8.43729i −0.0650282 0.284907i 0.931950 0.362586i \(-0.118106\pi\)
−0.996978 + 0.0776791i \(0.975249\pi\)
\(878\) 5.83627 2.81060i 0.196964 0.0948531i
\(879\) 0 0
\(880\) −0.681776 + 2.98705i −0.0229827 + 0.100694i
\(881\) 6.87863 + 3.31257i 0.231747 + 0.111603i 0.546154 0.837685i \(-0.316091\pi\)
−0.314407 + 0.949288i \(0.601806\pi\)
\(882\) 0 0
\(883\) 0.556272 + 0.267887i 0.0187201 + 0.00901510i 0.443220 0.896413i \(-0.353836\pi\)
−0.424500 + 0.905428i \(0.639550\pi\)
\(884\) −3.37513 + 4.23228i −0.113518 + 0.142347i
\(885\) 0 0
\(886\) 23.3182 + 11.2295i 0.783391 + 0.377261i
\(887\) 20.0952 0.674732 0.337366 0.941374i \(-0.390464\pi\)
0.337366 + 0.941374i \(0.390464\pi\)
\(888\) 0 0
\(889\) −3.22016 + 14.1084i −0.108001 + 0.473182i
\(890\) 23.2453 11.1944i 0.779185 0.375235i
\(891\) 0 0
\(892\) 2.84493 + 12.4645i 0.0952553 + 0.417341i
\(893\) 5.89646 7.39392i 0.197317 0.247428i
\(894\) 0 0
\(895\) −3.81066 + 16.6956i −0.127376 + 0.558073i
\(896\) −0.338433 1.48277i −0.0113063 0.0495360i
\(897\) 0 0
\(898\) 8.86533 0.295840
\(899\) −0.311470 9.59341i −0.0103881 0.319958i
\(900\) 0 0
\(901\) −8.73976 10.9593i −0.291164 0.365108i
\(902\) −2.12385 9.30520i −0.0707165 0.309829i
\(903\) 0 0
\(904\) 5.04863 + 6.33078i 0.167915 + 0.210559i
\(905\) −21.9245 + 27.4924i −0.728794 + 0.913878i
\(906\) 0 0
\(907\) −0.161465 + 0.0777573i −0.00536135 + 0.00258189i −0.436562 0.899674i \(-0.643804\pi\)
0.431201 + 0.902256i \(0.358090\pi\)
\(908\) 23.8097 11.4661i 0.790151 0.380517i
\(909\) 0 0
\(910\) −7.05204 3.39608i −0.233773 0.112579i
\(911\) −43.3911 −1.43761 −0.718806 0.695211i \(-0.755311\pi\)
−0.718806 + 0.695211i \(0.755311\pi\)
\(912\) 0 0
\(913\) −6.53095 + 8.18955i −0.216143 + 0.271035i
\(914\) −13.8218 + 17.3320i −0.457185 + 0.573291i
\(915\) 0 0
\(916\) 19.2020 0.634452
\(917\) −19.5329 9.40653i −0.645032 0.310631i
\(918\) 0 0
\(919\) 16.9880 8.18100i 0.560383 0.269866i −0.132177 0.991226i \(-0.542197\pi\)
0.692561 + 0.721360i \(0.256483\pi\)
\(920\) −3.91682 + 1.88624i −0.129134 + 0.0621876i
\(921\) 0 0
\(922\) 24.0547 30.1637i 0.792200 0.993388i
\(923\) 12.0537 + 15.1148i 0.396751 + 0.497511i
\(924\) 0 0
\(925\) −3.76034 16.4751i −0.123639 0.541700i
\(926\) −18.7716 23.5389i −0.616874 0.773535i
\(927\) 0 0
\(928\) −2.17786 + 4.92513i −0.0714918 + 0.161675i
\(929\) −44.1780 −1.44943 −0.724717 0.689047i \(-0.758030\pi\)
−0.724717 + 0.689047i \(0.758030\pi\)
\(930\) 0 0
\(931\) −3.83683 16.8103i −0.125747 0.550934i
\(932\) −1.80769 + 7.92000i −0.0592128 + 0.259428i
\(933\) 0 0
\(934\) 3.51805 4.41150i 0.115114 0.144349i
\(935\) −1.15853 5.07586i −0.0378881 0.165998i
\(936\) 0 0
\(937\) −47.4638 + 22.8573i −1.55057 + 0.746717i −0.996327 0.0856358i \(-0.972708\pi\)
−0.554247 + 0.832352i \(0.686994\pi\)
\(938\) −0.839008 + 3.67594i −0.0273946 + 0.120024i
\(939\) 0 0
\(940\) 4.15288 0.135452
\(941\) 19.7537 + 9.51288i 0.643952 + 0.310111i 0.727208 0.686417i \(-0.240818\pi\)
−0.0832559 + 0.996528i \(0.526532\pi\)
\(942\) 0 0
\(943\) 8.44377 10.5882i 0.274967 0.344798i
\(944\) 2.65810 + 1.28007i 0.0865139 + 0.0416629i
\(945\) 0 0
\(946\) 3.24066 + 1.56062i 0.105363 + 0.0507401i
\(947\) 1.47868 6.47853i 0.0480507 0.210524i −0.945203 0.326482i \(-0.894137\pi\)
0.993254 + 0.115958i \(0.0369938\pi\)
\(948\) 0 0
\(949\) 10.7577 5.18063i 0.349209 0.168170i
\(950\) 1.95666 + 8.57268i 0.0634824 + 0.278135i
\(951\) 0 0
\(952\) 1.61138 + 2.02061i 0.0522252 + 0.0654883i
\(953\) 0.663211 2.90572i 0.0214835 0.0941255i −0.963050 0.269324i \(-0.913200\pi\)
0.984533 + 0.175199i \(0.0560568\pi\)
\(954\) 0 0
\(955\) −14.6262 18.3406i −0.473292 0.593489i
\(956\) 30.3139 0.980423
\(957\) 0 0
\(958\) −21.3948 −0.691235
\(959\) 6.13013 + 7.68693i 0.197952 + 0.248224i
\(960\) 0 0
\(961\) 6.19122 27.1255i 0.199717 0.875016i
\(962\) −14.0429 17.6093i −0.452762 0.567745i
\(963\) 0 0
\(964\) −1.01778 4.45920i −0.0327806 0.143621i
\(965\) −6.99412 + 3.36819i −0.225149 + 0.108426i
\(966\) 0 0
\(967\) −1.40773 + 6.16768i −0.0452696 + 0.198339i −0.992506 0.122197i \(-0.961006\pi\)
0.947236 + 0.320536i \(0.103863\pi\)
\(968\) −6.67000 3.21210i −0.214382 0.103241i
\(969\) 0 0
\(970\) −21.6987 10.4495i −0.696702 0.335514i
\(971\) −12.5515 + 15.7391i −0.402797 + 0.505092i −0.941318 0.337520i \(-0.890412\pi\)
0.538521 + 0.842612i \(0.318983\pi\)
\(972\) 0 0
\(973\) −19.5367 9.40836i −0.626317 0.301618i
\(974\) −12.6886 −0.406570
\(975\) 0 0
\(976\) 1.72363 7.55173i 0.0551721 0.241725i
\(977\) −24.9341 + 12.0076i −0.797713 + 0.384158i −0.787907 0.615794i \(-0.788835\pi\)
−0.00980533 + 0.999952i \(0.503121\pi\)
\(978\) 0 0
\(979\) −6.73984 29.5291i −0.215406 0.943756i
\(980\) 4.72083 5.91974i 0.150802 0.189099i
\(981\) 0 0
\(982\) 2.74254 12.0159i 0.0875180 0.383442i
\(983\) −1.31895 5.77869i −0.0420679 0.184312i 0.949529 0.313680i \(-0.101562\pi\)
−0.991597 + 0.129369i \(0.958705\pi\)
\(984\) 0 0
\(985\) −24.5921 −0.783569
\(986\) −0.296948 9.14612i −0.00945675 0.291272i
\(987\) 0 0
\(988\) 7.30709 + 9.16281i 0.232470 + 0.291508i
\(989\) 1.13566 + 4.97565i 0.0361119 + 0.158216i
\(990\) 0 0
\(991\) 38.4258 + 48.1844i 1.22064 + 1.53063i 0.770175 + 0.637833i \(0.220169\pi\)
0.450461 + 0.892796i \(0.351259\pi\)
\(992\) 1.11130 1.39353i 0.0352839 0.0442446i
\(993\) 0 0
\(994\) 8.31588 4.00472i 0.263764 0.127022i
\(995\) −17.7478 + 8.54690i −0.562644 + 0.270955i
\(996\) 0 0
\(997\) −43.8638 21.1237i −1.38918 0.668994i −0.418245 0.908334i \(-0.637355\pi\)
−0.970936 + 0.239340i \(0.923069\pi\)
\(998\) 3.86155 0.122235
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 522.2.k.h.343.1 12
3.2 odd 2 58.2.d.b.53.1 yes 12
12.11 even 2 464.2.u.h.401.2 12
29.23 even 7 inner 522.2.k.h.487.1 12
87.8 even 28 1682.2.b.i.1681.12 12
87.20 odd 14 1682.2.a.t.1.6 6
87.23 odd 14 58.2.d.b.23.1 12
87.38 odd 14 1682.2.a.q.1.1 6
87.50 even 28 1682.2.b.i.1681.1 12
348.23 even 14 464.2.u.h.81.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.d.b.23.1 12 87.23 odd 14
58.2.d.b.53.1 yes 12 3.2 odd 2
464.2.u.h.81.2 12 348.23 even 14
464.2.u.h.401.2 12 12.11 even 2
522.2.k.h.343.1 12 1.1 even 1 trivial
522.2.k.h.487.1 12 29.23 even 7 inner
1682.2.a.q.1.1 6 87.38 odd 14
1682.2.a.t.1.6 6 87.20 odd 14
1682.2.b.i.1681.1 12 87.50 even 28
1682.2.b.i.1681.12 12 87.8 even 28