Properties

Label 1682.2
Level 1682
Weight 2
Dimension 29366
Nonzero newspaces 8
Sturm bound 353220
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(353220\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1682))\).

Total New Old
Modular forms 89509 29366 60143
Cusp forms 87102 29366 57736
Eisenstein series 2407 0 2407

Trace form

\( 29366 q + q^{2} + 4 q^{3} + q^{4} + 6 q^{5} + 4 q^{6} + 8 q^{7} + q^{8} + 13 q^{9} + 6 q^{10} + 12 q^{11} + 4 q^{12} + 14 q^{13} + 8 q^{14} + 24 q^{15} + q^{16} + 18 q^{17} + 13 q^{18} + 20 q^{19} - 8 q^{20}+ \cdots - 236 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1682))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1682.2.a \(\chi_{1682}(1, \cdot)\) 1682.2.a.a 1 1
1682.2.a.b 1
1682.2.a.c 1
1682.2.a.d 1
1682.2.a.e 1
1682.2.a.f 1
1682.2.a.g 1
1682.2.a.h 1
1682.2.a.i 1
1682.2.a.j 1
1682.2.a.k 2
1682.2.a.l 2
1682.2.a.m 3
1682.2.a.n 3
1682.2.a.o 4
1682.2.a.p 4
1682.2.a.q 6
1682.2.a.r 6
1682.2.a.s 6
1682.2.a.t 6
1682.2.a.u 8
1682.2.a.v 8
1682.2.b \(\chi_{1682}(1681, \cdot)\) 1682.2.b.a 2 1
1682.2.b.b 2
1682.2.b.c 2
1682.2.b.d 2
1682.2.b.e 2
1682.2.b.f 4
1682.2.b.g 6
1682.2.b.h 8
1682.2.b.i 12
1682.2.b.j 12
1682.2.b.k 16
1682.2.d \(\chi_{1682}(571, \cdot)\) n/a 402 6
1682.2.e \(\chi_{1682}(63, \cdot)\) n/a 408 6
1682.2.g \(\chi_{1682}(59, \cdot)\) n/a 2044 28
1682.2.h \(\chi_{1682}(57, \cdot)\) n/a 2016 28
1682.2.j \(\chi_{1682}(7, \cdot)\) n/a 12264 168
1682.2.k \(\chi_{1682}(5, \cdot)\) n/a 12096 168

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1682))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1682)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(29))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(58))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(841))\)\(^{\oplus 2}\)