Properties

Label 1682.2.b
Level $1682$
Weight $2$
Character orbit 1682.b
Rep. character $\chi_{1682}(1681,\cdot)$
Character field $\Q$
Dimension $68$
Newform subspaces $11$
Sturm bound $435$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 29 \)
Character field: \(\Q\)
Newform subspaces: \( 11 \)
Sturm bound: \(435\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1682, [\chi])\).

Total New Old
Modular forms 248 68 180
Cusp forms 188 68 120
Eisenstein series 60 0 60

Trace form

\( 68 q - 68 q^{4} - 2 q^{5} + 2 q^{6} + 4 q^{7} - 74 q^{9} + 2 q^{13} + 68 q^{16} + 2 q^{20} - 10 q^{22} + 12 q^{23} - 2 q^{24} + 78 q^{25} - 4 q^{28} - 4 q^{30} - 4 q^{33} - 4 q^{34} + 4 q^{35} + 74 q^{36}+ \cdots + 2 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1682, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1682.2.b.a 1682.b 29.b $2$ $13.431$ \(\Q(\sqrt{-1}) \) None 58.2.a.b \(0\) \(0\) \(-2\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}+i q^{3}-q^{4}-q^{5}+q^{6}+\cdots\)
1682.2.b.b 1682.b 29.b $2$ $13.431$ \(\Q(\sqrt{-1}) \) None 1682.2.a.b \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+2 i q^{3}-q^{4}-2 q^{6}-q^{7}+\cdots\)
1682.2.b.c 1682.b 29.b $2$ $13.431$ \(\Q(\sqrt{-1}) \) None 1682.2.a.e \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}+3 i q^{3}-q^{4}+3 q^{6}+4 q^{7}+\cdots\)
1682.2.b.d 1682.b 29.b $2$ $13.431$ \(\Q(\sqrt{-1}) \) None 1682.2.a.a \(0\) \(0\) \(4\) \(-10\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+2 i q^{3}-q^{4}+2 q^{5}-2 q^{6}+\cdots\)
1682.2.b.e 1682.b 29.b $2$ $13.431$ \(\Q(\sqrt{-1}) \) None 58.2.a.a \(0\) \(0\) \(6\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+3 i q^{3}-q^{4}+3 q^{5}-3 q^{6}+\cdots\)
1682.2.b.f 1682.b 29.b $4$ $13.431$ \(\Q(i, \sqrt{5})\) None 1682.2.a.k \(0\) \(0\) \(-8\) \(12\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{2}+\beta _{1}q^{3}-q^{4}-2q^{5}+\beta _{2}q^{6}+\cdots\)
1682.2.b.g 1682.b 29.b $6$ $13.431$ 6.0.153664.1 None 58.2.d.a \(0\) \(0\) \(-10\) \(2\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{2}+(\beta _{3}+\beta _{5})q^{3}-q^{4}+(-2+\cdots)q^{5}+\cdots\)
1682.2.b.h 1682.b 29.b $8$ $13.431$ 8.0.324000000.1 None 1682.2.a.o \(0\) \(0\) \(6\) \(-10\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{2}+(\beta _{1}+\beta _{3}+\beta _{5}+\beta _{7})q^{3}+\cdots\)
1682.2.b.i 1682.b 29.b $12$ $13.431$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 58.2.d.b \(0\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{6}q^{2}+\beta _{1}q^{3}-q^{4}+(\beta _{4}+\beta _{11})q^{5}+\cdots\)
1682.2.b.j 1682.b 29.b $12$ $13.431$ \(\Q(\zeta_{28})\) None 58.2.e.a \(0\) \(0\) \(12\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_1 q^{2}+(-\beta_{3}-\beta_1)q^{3}-q^{4}+\cdots\)
1682.2.b.k 1682.b 29.b $16$ $13.431$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 1682.2.a.u \(0\) \(0\) \(-10\) \(14\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{13}q^{2}+\beta _{1}q^{3}-q^{4}+(-1+\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1682, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1682, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(58, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(841, [\chi])\)\(^{\oplus 2}\)