Properties

Label 58.2.a.a
Level $58$
Weight $2$
Character orbit 58.a
Self dual yes
Analytic conductor $0.463$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [58,2,Mod(1,58)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(58, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("58.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 58 = 2 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 58.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.463132331723\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} - 3 q^{3} + q^{4} - 3 q^{5} + 3 q^{6} - 2 q^{7} - q^{8} + 6 q^{9} + 3 q^{10} - q^{11} - 3 q^{12} + 3 q^{13} + 2 q^{14} + 9 q^{15} + q^{16} - 4 q^{17} - 6 q^{18} - 8 q^{19} - 3 q^{20} + 6 q^{21}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 −3.00000 1.00000 −3.00000 3.00000 −2.00000 −1.00000 6.00000 3.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 58.2.a.a 1
3.b odd 2 1 522.2.a.k 1
4.b odd 2 1 464.2.a.f 1
5.b even 2 1 1450.2.a.i 1
5.c odd 4 2 1450.2.b.f 2
7.b odd 2 1 2842.2.a.d 1
8.b even 2 1 1856.2.a.p 1
8.d odd 2 1 1856.2.a.b 1
11.b odd 2 1 7018.2.a.c 1
12.b even 2 1 4176.2.a.bh 1
13.b even 2 1 9802.2.a.d 1
29.b even 2 1 1682.2.a.j 1
29.c odd 4 2 1682.2.b.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
58.2.a.a 1 1.a even 1 1 trivial
464.2.a.f 1 4.b odd 2 1
522.2.a.k 1 3.b odd 2 1
1450.2.a.i 1 5.b even 2 1
1450.2.b.f 2 5.c odd 4 2
1682.2.a.j 1 29.b even 2 1
1682.2.b.e 2 29.c odd 4 2
1856.2.a.b 1 8.d odd 2 1
1856.2.a.p 1 8.b even 2 1
2842.2.a.d 1 7.b odd 2 1
4176.2.a.bh 1 12.b even 2 1
7018.2.a.c 1 11.b odd 2 1
9802.2.a.d 1 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 3 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(58))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T + 3 \) Copy content Toggle raw display
$5$ \( T + 3 \) Copy content Toggle raw display
$7$ \( T + 2 \) Copy content Toggle raw display
$11$ \( T + 1 \) Copy content Toggle raw display
$13$ \( T - 3 \) Copy content Toggle raw display
$17$ \( T + 4 \) Copy content Toggle raw display
$19$ \( T + 8 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 1 \) Copy content Toggle raw display
$31$ \( T - 3 \) Copy content Toggle raw display
$37$ \( T + 8 \) Copy content Toggle raw display
$41$ \( T + 2 \) Copy content Toggle raw display
$43$ \( T - 7 \) Copy content Toggle raw display
$47$ \( T - 11 \) Copy content Toggle raw display
$53$ \( T - 1 \) Copy content Toggle raw display
$59$ \( T + 4 \) Copy content Toggle raw display
$61$ \( T - 4 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T + 2 \) Copy content Toggle raw display
$73$ \( T + 12 \) Copy content Toggle raw display
$79$ \( T + 7 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 6 \) Copy content Toggle raw display
$97$ \( T + 6 \) Copy content Toggle raw display
show more
show less