Properties

Label 1682.2.b.e
Level $1682$
Weight $2$
Character orbit 1682.b
Analytic conductor $13.431$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(13.4308376200\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} + 3 i q^{3} - q^{4} + 3 q^{5} - 3 q^{6} - 2 q^{7} - i q^{8} - 6 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + i q^{2} + 3 i q^{3} - q^{4} + 3 q^{5} - 3 q^{6} - 2 q^{7} - i q^{8} - 6 q^{9} + 3 i q^{10} + i q^{11} - 3 i q^{12} - 3 q^{13} - 2 i q^{14} + 9 i q^{15} + q^{16} + 4 i q^{17} - 6 i q^{18} + 8 i q^{19} - 3 q^{20} - 6 i q^{21} - q^{22} + 3 q^{24} + 4 q^{25} - 3 i q^{26} - 9 i q^{27} + 2 q^{28} - 9 q^{30} - 3 i q^{31} + i q^{32} - 3 q^{33} - 4 q^{34} - 6 q^{35} + 6 q^{36} - 8 i q^{37} - 8 q^{38} - 9 i q^{39} - 3 i q^{40} - 2 i q^{41} + 6 q^{42} - 7 i q^{43} - i q^{44} - 18 q^{45} + 11 i q^{47} + 3 i q^{48} - 3 q^{49} + 4 i q^{50} - 12 q^{51} + 3 q^{52} + q^{53} + 9 q^{54} + 3 i q^{55} + 2 i q^{56} - 24 q^{57} - 4 q^{59} - 9 i q^{60} - 4 i q^{61} + 3 q^{62} + 12 q^{63} - q^{64} - 9 q^{65} - 3 i q^{66} + 4 q^{67} - 4 i q^{68} - 6 i q^{70} + 2 q^{71} + 6 i q^{72} - 12 i q^{73} + 8 q^{74} + 12 i q^{75} - 8 i q^{76} - 2 i q^{77} + 9 q^{78} + 7 i q^{79} + 3 q^{80} + 9 q^{81} + 2 q^{82} + 6 i q^{84} + 12 i q^{85} + 7 q^{86} + q^{88} + 6 i q^{89} - 18 i q^{90} + 6 q^{91} + 9 q^{93} - 11 q^{94} + 24 i q^{95} - 3 q^{96} - 6 i q^{97} - 3 i q^{98} - 6 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 6 q^{5} - 6 q^{6} - 4 q^{7} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} + 6 q^{5} - 6 q^{6} - 4 q^{7} - 12 q^{9} - 6 q^{13} + 2 q^{16} - 6 q^{20} - 2 q^{22} + 6 q^{24} + 8 q^{25} + 4 q^{28} - 18 q^{30} - 6 q^{33} - 8 q^{34} - 12 q^{35} + 12 q^{36} - 16 q^{38} + 12 q^{42} - 36 q^{45} - 6 q^{49} - 24 q^{51} + 6 q^{52} + 2 q^{53} + 18 q^{54} - 48 q^{57} - 8 q^{59} + 6 q^{62} + 24 q^{63} - 2 q^{64} - 18 q^{65} + 8 q^{67} + 4 q^{71} + 16 q^{74} + 18 q^{78} + 6 q^{80} + 18 q^{81} + 4 q^{82} + 14 q^{86} + 2 q^{88} + 12 q^{91} + 18 q^{93} - 22 q^{94} - 6 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1682\mathbb{Z}\right)^\times\).

\(n\) \(843\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1681.1
1.00000i
1.00000i
1.00000i 3.00000i −1.00000 3.00000 −3.00000 −2.00000 1.00000i −6.00000 3.00000i
1681.2 1.00000i 3.00000i −1.00000 3.00000 −3.00000 −2.00000 1.00000i −6.00000 3.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1682.2.b.e 2
29.b even 2 1 inner 1682.2.b.e 2
29.c odd 4 1 58.2.a.a 1
29.c odd 4 1 1682.2.a.j 1
87.f even 4 1 522.2.a.k 1
116.e even 4 1 464.2.a.f 1
145.e even 4 1 1450.2.b.f 2
145.f odd 4 1 1450.2.a.i 1
145.j even 4 1 1450.2.b.f 2
203.g even 4 1 2842.2.a.d 1
232.k even 4 1 1856.2.a.b 1
232.l odd 4 1 1856.2.a.p 1
319.f even 4 1 7018.2.a.c 1
348.k odd 4 1 4176.2.a.bh 1
377.i odd 4 1 9802.2.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
58.2.a.a 1 29.c odd 4 1
464.2.a.f 1 116.e even 4 1
522.2.a.k 1 87.f even 4 1
1450.2.a.i 1 145.f odd 4 1
1450.2.b.f 2 145.e even 4 1
1450.2.b.f 2 145.j even 4 1
1682.2.a.j 1 29.c odd 4 1
1682.2.b.e 2 1.a even 1 1 trivial
1682.2.b.e 2 29.b even 2 1 inner
1856.2.a.b 1 232.k even 4 1
1856.2.a.p 1 232.l odd 4 1
2842.2.a.d 1 203.g even 4 1
4176.2.a.bh 1 348.k odd 4 1
7018.2.a.c 1 319.f even 4 1
9802.2.a.d 1 377.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1682, [\chi])\):

\( T_{3}^{2} + 9 \) Copy content Toggle raw display
\( T_{5} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} + 9 \) Copy content Toggle raw display
$5$ \( (T - 3)^{2} \) Copy content Toggle raw display
$7$ \( (T + 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 1 \) Copy content Toggle raw display
$13$ \( (T + 3)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 16 \) Copy content Toggle raw display
$19$ \( T^{2} + 64 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 9 \) Copy content Toggle raw display
$37$ \( T^{2} + 64 \) Copy content Toggle raw display
$41$ \( T^{2} + 4 \) Copy content Toggle raw display
$43$ \( T^{2} + 49 \) Copy content Toggle raw display
$47$ \( T^{2} + 121 \) Copy content Toggle raw display
$53$ \( (T - 1)^{2} \) Copy content Toggle raw display
$59$ \( (T + 4)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 16 \) Copy content Toggle raw display
$67$ \( (T - 4)^{2} \) Copy content Toggle raw display
$71$ \( (T - 2)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 144 \) Copy content Toggle raw display
$79$ \( T^{2} + 49 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 36 \) Copy content Toggle raw display
$97$ \( T^{2} + 36 \) Copy content Toggle raw display
show more
show less