Properties

Label 1682.2.a.t.1.4
Level $1682$
Weight $2$
Character 1682.1
Self dual yes
Analytic conductor $13.431$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1682,2,Mod(1,1682)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1682.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1682, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,6,2,6,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4308376200\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.13716913.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 13x^{4} + 17x^{3} + 52x^{2} - 32x - 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.63883\) of defining polynomial
Character \(\chi\) \(=\) 1682.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.63883 q^{3} +1.00000 q^{4} +1.19379 q^{5} +1.63883 q^{6} +2.04359 q^{7} +1.00000 q^{8} -0.314239 q^{9} +1.19379 q^{10} +3.68242 q^{11} +1.63883 q^{12} +2.15646 q^{13} +2.04359 q^{14} +1.95641 q^{15} +1.00000 q^{16} -6.53517 q^{17} -0.314239 q^{18} +5.31424 q^{19} +1.19379 q^{20} +3.34909 q^{21} +3.68242 q^{22} -5.89351 q^{23} +1.63883 q^{24} -3.57487 q^{25} +2.15646 q^{26} -5.43147 q^{27} +2.04359 q^{28} +1.95641 q^{30} +8.99665 q^{31} +1.00000 q^{32} +6.03485 q^{33} -6.53517 q^{34} +2.43961 q^{35} -0.314239 q^{36} +1.82798 q^{37} +5.31424 q^{38} +3.53407 q^{39} +1.19379 q^{40} -8.32895 q^{41} +3.34909 q^{42} -3.68242 q^{43} +3.68242 q^{44} -0.375134 q^{45} -5.89351 q^{46} -0.992767 q^{47} +1.63883 q^{48} -2.82375 q^{49} -3.57487 q^{50} -10.7100 q^{51} +2.15646 q^{52} -5.66449 q^{53} -5.43147 q^{54} +4.39602 q^{55} +2.04359 q^{56} +8.70913 q^{57} +2.94918 q^{59} +1.95641 q^{60} -1.80894 q^{61} +8.99665 q^{62} -0.642174 q^{63} +1.00000 q^{64} +2.57436 q^{65} +6.03485 q^{66} +6.04359 q^{67} -6.53517 q^{68} -9.65846 q^{69} +2.43961 q^{70} +3.75696 q^{71} -0.314239 q^{72} +12.7248 q^{73} +1.82798 q^{74} -5.85860 q^{75} +5.31424 q^{76} +7.52534 q^{77} +3.53407 q^{78} +14.1329 q^{79} +1.19379 q^{80} -7.95854 q^{81} -8.32895 q^{82} +2.05232 q^{83} +3.34909 q^{84} -7.80161 q^{85} -3.68242 q^{86} +3.68242 q^{88} -16.5120 q^{89} -0.375134 q^{90} +4.40692 q^{91} -5.89351 q^{92} +14.7440 q^{93} -0.992767 q^{94} +6.34407 q^{95} +1.63883 q^{96} -4.59626 q^{97} -2.82375 q^{98} -1.15716 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} + 2 q^{3} + 6 q^{4} + 2 q^{6} - 3 q^{7} + 6 q^{8} + 12 q^{9} - q^{11} + 2 q^{12} - 3 q^{13} - 3 q^{14} + 27 q^{15} + 6 q^{16} - 6 q^{17} + 12 q^{18} + 18 q^{19} - 10 q^{21} - q^{22} - 14 q^{23}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.63883 0.946178 0.473089 0.881015i \(-0.343139\pi\)
0.473089 + 0.881015i \(0.343139\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.19379 0.533878 0.266939 0.963713i \(-0.413988\pi\)
0.266939 + 0.963713i \(0.413988\pi\)
\(6\) 1.63883 0.669049
\(7\) 2.04359 0.772403 0.386202 0.922414i \(-0.373787\pi\)
0.386202 + 0.922414i \(0.373787\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.314239 −0.104746
\(10\) 1.19379 0.377509
\(11\) 3.68242 1.11029 0.555145 0.831754i \(-0.312663\pi\)
0.555145 + 0.831754i \(0.312663\pi\)
\(12\) 1.63883 0.473089
\(13\) 2.15646 0.598095 0.299047 0.954238i \(-0.403331\pi\)
0.299047 + 0.954238i \(0.403331\pi\)
\(14\) 2.04359 0.546171
\(15\) 1.95641 0.505144
\(16\) 1.00000 0.250000
\(17\) −6.53517 −1.58501 −0.792506 0.609864i \(-0.791224\pi\)
−0.792506 + 0.609864i \(0.791224\pi\)
\(18\) −0.314239 −0.0740668
\(19\) 5.31424 1.21917 0.609585 0.792721i \(-0.291336\pi\)
0.609585 + 0.792721i \(0.291336\pi\)
\(20\) 1.19379 0.266939
\(21\) 3.34909 0.730831
\(22\) 3.68242 0.785094
\(23\) −5.89351 −1.22888 −0.614441 0.788963i \(-0.710618\pi\)
−0.614441 + 0.788963i \(0.710618\pi\)
\(24\) 1.63883 0.334525
\(25\) −3.57487 −0.714974
\(26\) 2.15646 0.422917
\(27\) −5.43147 −1.04529
\(28\) 2.04359 0.386202
\(29\) 0 0
\(30\) 1.95641 0.357191
\(31\) 8.99665 1.61585 0.807923 0.589287i \(-0.200591\pi\)
0.807923 + 0.589287i \(0.200591\pi\)
\(32\) 1.00000 0.176777
\(33\) 6.03485 1.05053
\(34\) −6.53517 −1.12077
\(35\) 2.43961 0.412369
\(36\) −0.314239 −0.0523732
\(37\) 1.82798 0.300519 0.150259 0.988647i \(-0.451989\pi\)
0.150259 + 0.988647i \(0.451989\pi\)
\(38\) 5.31424 0.862083
\(39\) 3.53407 0.565904
\(40\) 1.19379 0.188754
\(41\) −8.32895 −1.30076 −0.650382 0.759608i \(-0.725391\pi\)
−0.650382 + 0.759608i \(0.725391\pi\)
\(42\) 3.34909 0.516776
\(43\) −3.68242 −0.561563 −0.280782 0.959772i \(-0.590594\pi\)
−0.280782 + 0.959772i \(0.590594\pi\)
\(44\) 3.68242 0.555145
\(45\) −0.375134 −0.0559217
\(46\) −5.89351 −0.868951
\(47\) −0.992767 −0.144810 −0.0724050 0.997375i \(-0.523067\pi\)
−0.0724050 + 0.997375i \(0.523067\pi\)
\(48\) 1.63883 0.236545
\(49\) −2.82375 −0.403393
\(50\) −3.57487 −0.505563
\(51\) −10.7100 −1.49970
\(52\) 2.15646 0.299047
\(53\) −5.66449 −0.778077 −0.389039 0.921221i \(-0.627193\pi\)
−0.389039 + 0.921221i \(0.627193\pi\)
\(54\) −5.43147 −0.739130
\(55\) 4.39602 0.592759
\(56\) 2.04359 0.273086
\(57\) 8.70913 1.15355
\(58\) 0 0
\(59\) 2.94918 0.383951 0.191975 0.981400i \(-0.438511\pi\)
0.191975 + 0.981400i \(0.438511\pi\)
\(60\) 1.95641 0.252572
\(61\) −1.80894 −0.231612 −0.115806 0.993272i \(-0.536945\pi\)
−0.115806 + 0.993272i \(0.536945\pi\)
\(62\) 8.99665 1.14258
\(63\) −0.642174 −0.0809064
\(64\) 1.00000 0.125000
\(65\) 2.57436 0.319310
\(66\) 6.03485 0.742839
\(67\) 6.04359 0.738342 0.369171 0.929362i \(-0.379642\pi\)
0.369171 + 0.929362i \(0.379642\pi\)
\(68\) −6.53517 −0.792506
\(69\) −9.65846 −1.16274
\(70\) 2.43961 0.291589
\(71\) 3.75696 0.445870 0.222935 0.974833i \(-0.428436\pi\)
0.222935 + 0.974833i \(0.428436\pi\)
\(72\) −0.314239 −0.0370334
\(73\) 12.7248 1.48933 0.744665 0.667438i \(-0.232609\pi\)
0.744665 + 0.667438i \(0.232609\pi\)
\(74\) 1.82798 0.212499
\(75\) −5.85860 −0.676493
\(76\) 5.31424 0.609585
\(77\) 7.52534 0.857592
\(78\) 3.53407 0.400155
\(79\) 14.1329 1.59008 0.795039 0.606559i \(-0.207450\pi\)
0.795039 + 0.606559i \(0.207450\pi\)
\(80\) 1.19379 0.133469
\(81\) −7.95854 −0.884282
\(82\) −8.32895 −0.919778
\(83\) 2.05232 0.225272 0.112636 0.993636i \(-0.464071\pi\)
0.112636 + 0.993636i \(0.464071\pi\)
\(84\) 3.34909 0.365416
\(85\) −7.80161 −0.846203
\(86\) −3.68242 −0.397085
\(87\) 0 0
\(88\) 3.68242 0.392547
\(89\) −16.5120 −1.75027 −0.875134 0.483880i \(-0.839227\pi\)
−0.875134 + 0.483880i \(0.839227\pi\)
\(90\) −0.375134 −0.0395426
\(91\) 4.40692 0.461970
\(92\) −5.89351 −0.614441
\(93\) 14.7440 1.52888
\(94\) −0.992767 −0.102396
\(95\) 6.34407 0.650888
\(96\) 1.63883 0.167262
\(97\) −4.59626 −0.466679 −0.233340 0.972395i \(-0.574965\pi\)
−0.233340 + 0.972395i \(0.574965\pi\)
\(98\) −2.82375 −0.285242
\(99\) −1.15716 −0.116299
\(100\) −3.57487 −0.357487
\(101\) 0.209757 0.0208716 0.0104358 0.999946i \(-0.496678\pi\)
0.0104358 + 0.999946i \(0.496678\pi\)
\(102\) −10.7100 −1.06045
\(103\) −11.1276 −1.09643 −0.548217 0.836336i \(-0.684693\pi\)
−0.548217 + 0.836336i \(0.684693\pi\)
\(104\) 2.15646 0.211458
\(105\) 3.99810 0.390175
\(106\) −5.66449 −0.550184
\(107\) −4.04580 −0.391122 −0.195561 0.980691i \(-0.562653\pi\)
−0.195561 + 0.980691i \(0.562653\pi\)
\(108\) −5.43147 −0.522644
\(109\) −15.6335 −1.49742 −0.748711 0.662896i \(-0.769327\pi\)
−0.748711 + 0.662896i \(0.769327\pi\)
\(110\) 4.39602 0.419144
\(111\) 2.99575 0.284344
\(112\) 2.04359 0.193101
\(113\) 18.4609 1.73665 0.868326 0.495994i \(-0.165196\pi\)
0.868326 + 0.495994i \(0.165196\pi\)
\(114\) 8.70913 0.815685
\(115\) −7.03560 −0.656073
\(116\) 0 0
\(117\) −0.677644 −0.0626482
\(118\) 2.94918 0.271494
\(119\) −13.3552 −1.22427
\(120\) 1.95641 0.178595
\(121\) 2.56019 0.232744
\(122\) −1.80894 −0.163774
\(123\) −13.6497 −1.23075
\(124\) 8.99665 0.807923
\(125\) −10.2366 −0.915587
\(126\) −0.642174 −0.0572095
\(127\) 18.8979 1.67692 0.838461 0.544962i \(-0.183456\pi\)
0.838461 + 0.544962i \(0.183456\pi\)
\(128\) 1.00000 0.0883883
\(129\) −6.03485 −0.531339
\(130\) 2.57436 0.225786
\(131\) 4.90775 0.428792 0.214396 0.976747i \(-0.431222\pi\)
0.214396 + 0.976747i \(0.431222\pi\)
\(132\) 6.03485 0.525266
\(133\) 10.8601 0.941691
\(134\) 6.04359 0.522086
\(135\) −6.48402 −0.558056
\(136\) −6.53517 −0.560386
\(137\) 3.81665 0.326078 0.163039 0.986620i \(-0.447870\pi\)
0.163039 + 0.986620i \(0.447870\pi\)
\(138\) −9.65846 −0.822183
\(139\) −12.1312 −1.02896 −0.514479 0.857503i \(-0.672015\pi\)
−0.514479 + 0.857503i \(0.672015\pi\)
\(140\) 2.43961 0.206184
\(141\) −1.62697 −0.137016
\(142\) 3.75696 0.315277
\(143\) 7.94099 0.664059
\(144\) −0.314239 −0.0261866
\(145\) 0 0
\(146\) 12.7248 1.05312
\(147\) −4.62765 −0.381682
\(148\) 1.82798 0.150259
\(149\) −7.19773 −0.589661 −0.294831 0.955550i \(-0.595263\pi\)
−0.294831 + 0.955550i \(0.595263\pi\)
\(150\) −5.85860 −0.478353
\(151\) −9.28245 −0.755395 −0.377698 0.925929i \(-0.623284\pi\)
−0.377698 + 0.925929i \(0.623284\pi\)
\(152\) 5.31424 0.431042
\(153\) 2.05361 0.166024
\(154\) 7.52534 0.606409
\(155\) 10.7401 0.862665
\(156\) 3.53407 0.282952
\(157\) −1.99480 −0.159202 −0.0796011 0.996827i \(-0.525365\pi\)
−0.0796011 + 0.996827i \(0.525365\pi\)
\(158\) 14.1329 1.12435
\(159\) −9.28313 −0.736200
\(160\) 1.19379 0.0943772
\(161\) −12.0439 −0.949192
\(162\) −7.95854 −0.625282
\(163\) −4.09106 −0.320437 −0.160218 0.987082i \(-0.551220\pi\)
−0.160218 + 0.987082i \(0.551220\pi\)
\(164\) −8.32895 −0.650382
\(165\) 7.20433 0.560856
\(166\) 2.05232 0.159291
\(167\) 7.36310 0.569774 0.284887 0.958561i \(-0.408044\pi\)
0.284887 + 0.958561i \(0.408044\pi\)
\(168\) 3.34909 0.258388
\(169\) −8.34968 −0.642283
\(170\) −7.80161 −0.598356
\(171\) −1.66994 −0.127704
\(172\) −3.68242 −0.280782
\(173\) −9.85163 −0.749005 −0.374503 0.927226i \(-0.622187\pi\)
−0.374503 + 0.927226i \(0.622187\pi\)
\(174\) 0 0
\(175\) −7.30556 −0.552248
\(176\) 3.68242 0.277573
\(177\) 4.83320 0.363286
\(178\) −16.5120 −1.23763
\(179\) −12.2877 −0.918425 −0.459213 0.888326i \(-0.651868\pi\)
−0.459213 + 0.888326i \(0.651868\pi\)
\(180\) −0.375134 −0.0279609
\(181\) 13.7840 1.02455 0.512277 0.858821i \(-0.328802\pi\)
0.512277 + 0.858821i \(0.328802\pi\)
\(182\) 4.40692 0.326662
\(183\) −2.96455 −0.219146
\(184\) −5.89351 −0.434475
\(185\) 2.18222 0.160440
\(186\) 14.7440 1.08108
\(187\) −24.0652 −1.75982
\(188\) −0.992767 −0.0724050
\(189\) −11.0997 −0.807383
\(190\) 6.34407 0.460247
\(191\) 15.8384 1.14603 0.573015 0.819545i \(-0.305774\pi\)
0.573015 + 0.819545i \(0.305774\pi\)
\(192\) 1.63883 0.118272
\(193\) 16.4251 1.18230 0.591151 0.806561i \(-0.298674\pi\)
0.591151 + 0.806561i \(0.298674\pi\)
\(194\) −4.59626 −0.329992
\(195\) 4.21893 0.302124
\(196\) −2.82375 −0.201697
\(197\) 14.6400 1.04306 0.521530 0.853233i \(-0.325362\pi\)
0.521530 + 0.853233i \(0.325362\pi\)
\(198\) −1.15716 −0.0822357
\(199\) 1.41885 0.100579 0.0502897 0.998735i \(-0.483986\pi\)
0.0502897 + 0.998735i \(0.483986\pi\)
\(200\) −3.57487 −0.252782
\(201\) 9.90441 0.698603
\(202\) 0.209757 0.0147584
\(203\) 0 0
\(204\) −10.7100 −0.749852
\(205\) −9.94299 −0.694449
\(206\) −11.1276 −0.775295
\(207\) 1.85197 0.128721
\(208\) 2.15646 0.149524
\(209\) 19.5692 1.35363
\(210\) 3.99810 0.275895
\(211\) −25.7685 −1.77398 −0.886988 0.461793i \(-0.847206\pi\)
−0.886988 + 0.461793i \(0.847206\pi\)
\(212\) −5.66449 −0.389039
\(213\) 6.15702 0.421872
\(214\) −4.04580 −0.276565
\(215\) −4.39602 −0.299806
\(216\) −5.43147 −0.369565
\(217\) 18.3854 1.24809
\(218\) −15.6335 −1.05884
\(219\) 20.8538 1.40917
\(220\) 4.39602 0.296380
\(221\) −14.0928 −0.947988
\(222\) 2.99575 0.201062
\(223\) −2.37303 −0.158910 −0.0794548 0.996838i \(-0.525318\pi\)
−0.0794548 + 0.996838i \(0.525318\pi\)
\(224\) 2.04359 0.136543
\(225\) 1.12336 0.0748909
\(226\) 18.4609 1.22800
\(227\) 12.9823 0.861666 0.430833 0.902432i \(-0.358220\pi\)
0.430833 + 0.902432i \(0.358220\pi\)
\(228\) 8.70913 0.576776
\(229\) −25.7082 −1.69884 −0.849422 0.527714i \(-0.823049\pi\)
−0.849422 + 0.527714i \(0.823049\pi\)
\(230\) −7.03560 −0.463914
\(231\) 12.3327 0.811435
\(232\) 0 0
\(233\) −7.05047 −0.461891 −0.230946 0.972967i \(-0.574182\pi\)
−0.230946 + 0.972967i \(0.574182\pi\)
\(234\) −0.677644 −0.0442990
\(235\) −1.18515 −0.0773108
\(236\) 2.94918 0.191975
\(237\) 23.1614 1.50450
\(238\) −13.3552 −0.865689
\(239\) −3.52639 −0.228103 −0.114052 0.993475i \(-0.536383\pi\)
−0.114052 + 0.993475i \(0.536383\pi\)
\(240\) 1.95641 0.126286
\(241\) 11.8721 0.764746 0.382373 0.924008i \(-0.375107\pi\)
0.382373 + 0.924008i \(0.375107\pi\)
\(242\) 2.56019 0.164575
\(243\) 3.25173 0.208599
\(244\) −1.80894 −0.115806
\(245\) −3.37096 −0.215363
\(246\) −13.6497 −0.870275
\(247\) 11.4599 0.729179
\(248\) 8.99665 0.571288
\(249\) 3.36341 0.213147
\(250\) −10.2366 −0.647418
\(251\) −9.31251 −0.587800 −0.293900 0.955836i \(-0.594953\pi\)
−0.293900 + 0.955836i \(0.594953\pi\)
\(252\) −0.642174 −0.0404532
\(253\) −21.7024 −1.36442
\(254\) 18.8979 1.18576
\(255\) −12.7855 −0.800659
\(256\) 1.00000 0.0625000
\(257\) −11.5210 −0.718660 −0.359330 0.933211i \(-0.616995\pi\)
−0.359330 + 0.933211i \(0.616995\pi\)
\(258\) −6.03485 −0.375713
\(259\) 3.73564 0.232121
\(260\) 2.57436 0.159655
\(261\) 0 0
\(262\) 4.90775 0.303202
\(263\) 10.0654 0.620658 0.310329 0.950629i \(-0.399561\pi\)
0.310329 + 0.950629i \(0.399561\pi\)
\(264\) 6.03485 0.371419
\(265\) −6.76219 −0.415398
\(266\) 10.8601 0.665876
\(267\) −27.0603 −1.65607
\(268\) 6.04359 0.369171
\(269\) −8.40756 −0.512618 −0.256309 0.966595i \(-0.582506\pi\)
−0.256309 + 0.966595i \(0.582506\pi\)
\(270\) −6.48402 −0.394605
\(271\) 8.66180 0.526167 0.263084 0.964773i \(-0.415261\pi\)
0.263084 + 0.964773i \(0.415261\pi\)
\(272\) −6.53517 −0.396253
\(273\) 7.22218 0.437106
\(274\) 3.81665 0.230572
\(275\) −13.1642 −0.793829
\(276\) −9.65846 −0.581371
\(277\) −19.3500 −1.16263 −0.581313 0.813680i \(-0.697461\pi\)
−0.581313 + 0.813680i \(0.697461\pi\)
\(278\) −12.1312 −0.727584
\(279\) −2.82710 −0.169254
\(280\) 2.43961 0.145794
\(281\) −15.1993 −0.906715 −0.453358 0.891329i \(-0.649774\pi\)
−0.453358 + 0.891329i \(0.649774\pi\)
\(282\) −1.62697 −0.0968850
\(283\) 15.0356 0.893774 0.446887 0.894591i \(-0.352533\pi\)
0.446887 + 0.894591i \(0.352533\pi\)
\(284\) 3.75696 0.222935
\(285\) 10.3968 0.615856
\(286\) 7.94099 0.469560
\(287\) −17.0209 −1.00471
\(288\) −0.314239 −0.0185167
\(289\) 25.7085 1.51226
\(290\) 0 0
\(291\) −7.53248 −0.441562
\(292\) 12.7248 0.744665
\(293\) 29.4644 1.72133 0.860665 0.509171i \(-0.170048\pi\)
0.860665 + 0.509171i \(0.170048\pi\)
\(294\) −4.62765 −0.269890
\(295\) 3.52069 0.204983
\(296\) 1.82798 0.106249
\(297\) −20.0009 −1.16057
\(298\) −7.19773 −0.416953
\(299\) −12.7091 −0.734988
\(300\) −5.85860 −0.338247
\(301\) −7.52534 −0.433753
\(302\) −9.28245 −0.534145
\(303\) 0.343756 0.0197482
\(304\) 5.31424 0.304793
\(305\) −2.15949 −0.123652
\(306\) 2.05361 0.117397
\(307\) −5.88515 −0.335883 −0.167942 0.985797i \(-0.553712\pi\)
−0.167942 + 0.985797i \(0.553712\pi\)
\(308\) 7.52534 0.428796
\(309\) −18.2362 −1.03742
\(310\) 10.7401 0.609996
\(311\) −22.9969 −1.30404 −0.652018 0.758203i \(-0.726077\pi\)
−0.652018 + 0.758203i \(0.726077\pi\)
\(312\) 3.53407 0.200077
\(313\) 20.5485 1.16147 0.580735 0.814093i \(-0.302765\pi\)
0.580735 + 0.814093i \(0.302765\pi\)
\(314\) −1.99480 −0.112573
\(315\) −0.766620 −0.0431941
\(316\) 14.1329 0.795039
\(317\) 7.04928 0.395927 0.197964 0.980209i \(-0.436567\pi\)
0.197964 + 0.980209i \(0.436567\pi\)
\(318\) −9.28313 −0.520572
\(319\) 0 0
\(320\) 1.19379 0.0667347
\(321\) −6.63038 −0.370072
\(322\) −12.0439 −0.671180
\(323\) −34.7295 −1.93240
\(324\) −7.95854 −0.442141
\(325\) −7.70907 −0.427622
\(326\) −4.09106 −0.226583
\(327\) −25.6207 −1.41683
\(328\) −8.32895 −0.459889
\(329\) −2.02880 −0.111852
\(330\) 7.20433 0.396585
\(331\) 20.4930 1.12640 0.563200 0.826321i \(-0.309570\pi\)
0.563200 + 0.826321i \(0.309570\pi\)
\(332\) 2.05232 0.112636
\(333\) −0.574423 −0.0314782
\(334\) 7.36310 0.402891
\(335\) 7.21476 0.394184
\(336\) 3.34909 0.182708
\(337\) −7.42412 −0.404418 −0.202209 0.979342i \(-0.564812\pi\)
−0.202209 + 0.979342i \(0.564812\pi\)
\(338\) −8.34968 −0.454162
\(339\) 30.2542 1.64318
\(340\) −7.80161 −0.423102
\(341\) 33.1294 1.79406
\(342\) −1.66994 −0.0903001
\(343\) −20.0757 −1.08399
\(344\) −3.68242 −0.198543
\(345\) −11.5301 −0.620762
\(346\) −9.85163 −0.529627
\(347\) −20.9493 −1.12462 −0.562308 0.826928i \(-0.690087\pi\)
−0.562308 + 0.826928i \(0.690087\pi\)
\(348\) 0 0
\(349\) −13.5931 −0.727620 −0.363810 0.931473i \(-0.618524\pi\)
−0.363810 + 0.931473i \(0.618524\pi\)
\(350\) −7.30556 −0.390499
\(351\) −11.7128 −0.625181
\(352\) 3.68242 0.196273
\(353\) 18.2706 0.972445 0.486222 0.873835i \(-0.338375\pi\)
0.486222 + 0.873835i \(0.338375\pi\)
\(354\) 4.83320 0.256882
\(355\) 4.48502 0.238040
\(356\) −16.5120 −0.875134
\(357\) −21.8869 −1.15838
\(358\) −12.2877 −0.649425
\(359\) −8.73615 −0.461076 −0.230538 0.973063i \(-0.574049\pi\)
−0.230538 + 0.973063i \(0.574049\pi\)
\(360\) −0.375134 −0.0197713
\(361\) 9.24114 0.486376
\(362\) 13.7840 0.724469
\(363\) 4.19571 0.220217
\(364\) 4.40692 0.230985
\(365\) 15.1908 0.795121
\(366\) −2.96455 −0.154959
\(367\) −14.9484 −0.780299 −0.390150 0.920751i \(-0.627577\pi\)
−0.390150 + 0.920751i \(0.627577\pi\)
\(368\) −5.89351 −0.307221
\(369\) 2.61728 0.136250
\(370\) 2.18222 0.113448
\(371\) −11.5759 −0.600989
\(372\) 14.7440 0.764440
\(373\) 35.0947 1.81713 0.908567 0.417738i \(-0.137177\pi\)
0.908567 + 0.417738i \(0.137177\pi\)
\(374\) −24.0652 −1.24438
\(375\) −16.7760 −0.866309
\(376\) −0.992767 −0.0511980
\(377\) 0 0
\(378\) −11.0997 −0.570906
\(379\) 33.0878 1.69961 0.849804 0.527098i \(-0.176720\pi\)
0.849804 + 0.527098i \(0.176720\pi\)
\(380\) 6.34407 0.325444
\(381\) 30.9705 1.58667
\(382\) 15.8384 0.810365
\(383\) −8.55301 −0.437038 −0.218519 0.975833i \(-0.570123\pi\)
−0.218519 + 0.975833i \(0.570123\pi\)
\(384\) 1.63883 0.0836312
\(385\) 8.98365 0.457849
\(386\) 16.4251 0.836013
\(387\) 1.15716 0.0588217
\(388\) −4.59626 −0.233340
\(389\) −25.7864 −1.30742 −0.653710 0.756745i \(-0.726788\pi\)
−0.653710 + 0.756745i \(0.726788\pi\)
\(390\) 4.21893 0.213634
\(391\) 38.5151 1.94779
\(392\) −2.82375 −0.142621
\(393\) 8.04297 0.405714
\(394\) 14.6400 0.737555
\(395\) 16.8717 0.848907
\(396\) −1.15716 −0.0581494
\(397\) 8.52545 0.427880 0.213940 0.976847i \(-0.431370\pi\)
0.213940 + 0.976847i \(0.431370\pi\)
\(398\) 1.41885 0.0711204
\(399\) 17.7979 0.891007
\(400\) −3.57487 −0.178744
\(401\) 15.7621 0.787122 0.393561 0.919298i \(-0.371243\pi\)
0.393561 + 0.919298i \(0.371243\pi\)
\(402\) 9.90441 0.493987
\(403\) 19.4009 0.966429
\(404\) 0.209757 0.0104358
\(405\) −9.50080 −0.472099
\(406\) 0 0
\(407\) 6.73139 0.333663
\(408\) −10.7100 −0.530226
\(409\) 22.8654 1.13062 0.565311 0.824878i \(-0.308756\pi\)
0.565311 + 0.824878i \(0.308756\pi\)
\(410\) −9.94299 −0.491049
\(411\) 6.25483 0.308528
\(412\) −11.1276 −0.548217
\(413\) 6.02690 0.296565
\(414\) 1.85197 0.0910194
\(415\) 2.45004 0.120268
\(416\) 2.15646 0.105729
\(417\) −19.8810 −0.973579
\(418\) 19.5692 0.957163
\(419\) 20.3457 0.993950 0.496975 0.867765i \(-0.334444\pi\)
0.496975 + 0.867765i \(0.334444\pi\)
\(420\) 3.99810 0.195087
\(421\) −19.3581 −0.943458 −0.471729 0.881744i \(-0.656370\pi\)
−0.471729 + 0.881744i \(0.656370\pi\)
\(422\) −25.7685 −1.25439
\(423\) 0.311966 0.0151683
\(424\) −5.66449 −0.275092
\(425\) 23.3624 1.13324
\(426\) 6.15702 0.298309
\(427\) −3.69673 −0.178897
\(428\) −4.04580 −0.195561
\(429\) 13.0139 0.628318
\(430\) −4.39602 −0.211995
\(431\) 4.55906 0.219602 0.109801 0.993954i \(-0.464979\pi\)
0.109801 + 0.993954i \(0.464979\pi\)
\(432\) −5.43147 −0.261322
\(433\) −18.3691 −0.882760 −0.441380 0.897320i \(-0.645511\pi\)
−0.441380 + 0.897320i \(0.645511\pi\)
\(434\) 18.3854 0.882529
\(435\) 0 0
\(436\) −15.6335 −0.748711
\(437\) −31.3195 −1.49822
\(438\) 20.8538 0.996435
\(439\) −19.1652 −0.914707 −0.457353 0.889285i \(-0.651203\pi\)
−0.457353 + 0.889285i \(0.651203\pi\)
\(440\) 4.39602 0.209572
\(441\) 0.887334 0.0422540
\(442\) −14.0928 −0.670328
\(443\) 2.26565 0.107644 0.0538222 0.998551i \(-0.482860\pi\)
0.0538222 + 0.998551i \(0.482860\pi\)
\(444\) 2.99575 0.142172
\(445\) −19.7118 −0.934430
\(446\) −2.37303 −0.112366
\(447\) −11.7959 −0.557925
\(448\) 2.04359 0.0965504
\(449\) −24.3823 −1.15067 −0.575336 0.817917i \(-0.695129\pi\)
−0.575336 + 0.817917i \(0.695129\pi\)
\(450\) 1.12336 0.0529559
\(451\) −30.6706 −1.44422
\(452\) 18.4609 0.868326
\(453\) −15.2123 −0.714738
\(454\) 12.9823 0.609290
\(455\) 5.26092 0.246636
\(456\) 8.70913 0.407842
\(457\) −26.0136 −1.21687 −0.608433 0.793605i \(-0.708202\pi\)
−0.608433 + 0.793605i \(0.708202\pi\)
\(458\) −25.7082 −1.20126
\(459\) 35.4956 1.65679
\(460\) −7.03560 −0.328037
\(461\) −26.1593 −1.21836 −0.609181 0.793031i \(-0.708502\pi\)
−0.609181 + 0.793031i \(0.708502\pi\)
\(462\) 12.3327 0.573771
\(463\) −28.3236 −1.31631 −0.658155 0.752882i \(-0.728663\pi\)
−0.658155 + 0.752882i \(0.728663\pi\)
\(464\) 0 0
\(465\) 17.6012 0.816235
\(466\) −7.05047 −0.326607
\(467\) −0.164856 −0.00762865 −0.00381432 0.999993i \(-0.501214\pi\)
−0.00381432 + 0.999993i \(0.501214\pi\)
\(468\) −0.677644 −0.0313241
\(469\) 12.3506 0.570297
\(470\) −1.18515 −0.0546670
\(471\) −3.26913 −0.150634
\(472\) 2.94918 0.135747
\(473\) −13.5602 −0.623498
\(474\) 23.1614 1.06384
\(475\) −18.9977 −0.871675
\(476\) −13.3552 −0.612134
\(477\) 1.78000 0.0815007
\(478\) −3.52639 −0.161293
\(479\) −11.4544 −0.523363 −0.261682 0.965154i \(-0.584277\pi\)
−0.261682 + 0.965154i \(0.584277\pi\)
\(480\) 1.95641 0.0892976
\(481\) 3.94197 0.179739
\(482\) 11.8721 0.540757
\(483\) −19.7379 −0.898105
\(484\) 2.56019 0.116372
\(485\) −5.48695 −0.249150
\(486\) 3.25173 0.147502
\(487\) 23.2025 1.05141 0.525703 0.850668i \(-0.323802\pi\)
0.525703 + 0.850668i \(0.323802\pi\)
\(488\) −1.80894 −0.0818870
\(489\) −6.70455 −0.303190
\(490\) −3.37096 −0.152285
\(491\) 14.1185 0.637158 0.318579 0.947896i \(-0.396794\pi\)
0.318579 + 0.947896i \(0.396794\pi\)
\(492\) −13.6497 −0.615377
\(493\) 0 0
\(494\) 11.4599 0.515608
\(495\) −1.38140 −0.0620894
\(496\) 8.99665 0.403962
\(497\) 7.67768 0.344391
\(498\) 3.36341 0.150718
\(499\) −7.59719 −0.340097 −0.170049 0.985436i \(-0.554392\pi\)
−0.170049 + 0.985436i \(0.554392\pi\)
\(500\) −10.2366 −0.457793
\(501\) 12.0669 0.539108
\(502\) −9.31251 −0.415638
\(503\) −1.68662 −0.0752028 −0.0376014 0.999293i \(-0.511972\pi\)
−0.0376014 + 0.999293i \(0.511972\pi\)
\(504\) −0.642174 −0.0286047
\(505\) 0.250405 0.0111429
\(506\) −21.7024 −0.964788
\(507\) −13.6837 −0.607714
\(508\) 18.8979 0.838461
\(509\) 41.3978 1.83492 0.917462 0.397823i \(-0.130234\pi\)
0.917462 + 0.397823i \(0.130234\pi\)
\(510\) −12.7855 −0.566152
\(511\) 26.0043 1.15036
\(512\) 1.00000 0.0441942
\(513\) −28.8641 −1.27438
\(514\) −11.5210 −0.508169
\(515\) −13.2840 −0.585362
\(516\) −6.03485 −0.265669
\(517\) −3.65578 −0.160781
\(518\) 3.73564 0.164135
\(519\) −16.1451 −0.708693
\(520\) 2.57436 0.112893
\(521\) −5.78621 −0.253498 −0.126749 0.991935i \(-0.540454\pi\)
−0.126749 + 0.991935i \(0.540454\pi\)
\(522\) 0 0
\(523\) −14.4968 −0.633899 −0.316949 0.948442i \(-0.602659\pi\)
−0.316949 + 0.948442i \(0.602659\pi\)
\(524\) 4.90775 0.214396
\(525\) −11.9726 −0.522526
\(526\) 10.0654 0.438871
\(527\) −58.7947 −2.56114
\(528\) 6.03485 0.262633
\(529\) 11.7335 0.510151
\(530\) −6.76219 −0.293731
\(531\) −0.926747 −0.0402174
\(532\) 10.8601 0.470845
\(533\) −17.9611 −0.777980
\(534\) −27.0603 −1.17102
\(535\) −4.82983 −0.208812
\(536\) 6.04359 0.261043
\(537\) −20.1374 −0.868994
\(538\) −8.40756 −0.362476
\(539\) −10.3982 −0.447884
\(540\) −6.48402 −0.279028
\(541\) −2.23993 −0.0963022 −0.0481511 0.998840i \(-0.515333\pi\)
−0.0481511 + 0.998840i \(0.515333\pi\)
\(542\) 8.66180 0.372056
\(543\) 22.5895 0.969410
\(544\) −6.53517 −0.280193
\(545\) −18.6631 −0.799441
\(546\) 7.22218 0.309081
\(547\) 41.7431 1.78481 0.892403 0.451239i \(-0.149018\pi\)
0.892403 + 0.451239i \(0.149018\pi\)
\(548\) 3.81665 0.163039
\(549\) 0.568441 0.0242605
\(550\) −13.1642 −0.561322
\(551\) 0 0
\(552\) −9.65846 −0.411091
\(553\) 28.8818 1.22818
\(554\) −19.3500 −0.822101
\(555\) 3.57629 0.151805
\(556\) −12.1312 −0.514479
\(557\) −20.5159 −0.869287 −0.434644 0.900603i \(-0.643126\pi\)
−0.434644 + 0.900603i \(0.643126\pi\)
\(558\) −2.82710 −0.119681
\(559\) −7.94099 −0.335868
\(560\) 2.43961 0.103092
\(561\) −39.4388 −1.66511
\(562\) −15.1993 −0.641144
\(563\) 19.9670 0.841511 0.420755 0.907174i \(-0.361765\pi\)
0.420755 + 0.907174i \(0.361765\pi\)
\(564\) −1.62697 −0.0685080
\(565\) 22.0383 0.927160
\(566\) 15.0356 0.631993
\(567\) −16.2640 −0.683022
\(568\) 3.75696 0.157639
\(569\) −6.11008 −0.256148 −0.128074 0.991765i \(-0.540879\pi\)
−0.128074 + 0.991765i \(0.540879\pi\)
\(570\) 10.3968 0.435476
\(571\) 21.5427 0.901534 0.450767 0.892642i \(-0.351150\pi\)
0.450767 + 0.892642i \(0.351150\pi\)
\(572\) 7.94099 0.332029
\(573\) 25.9565 1.08435
\(574\) −17.0209 −0.710440
\(575\) 21.0686 0.878619
\(576\) −0.314239 −0.0130933
\(577\) 13.5261 0.563101 0.281550 0.959546i \(-0.409151\pi\)
0.281550 + 0.959546i \(0.409151\pi\)
\(578\) 25.7085 1.06933
\(579\) 26.9179 1.11867
\(580\) 0 0
\(581\) 4.19410 0.174001
\(582\) −7.53248 −0.312231
\(583\) −20.8590 −0.863891
\(584\) 12.7248 0.526558
\(585\) −0.808963 −0.0334465
\(586\) 29.4644 1.21716
\(587\) −5.75838 −0.237674 −0.118837 0.992914i \(-0.537917\pi\)
−0.118837 + 0.992914i \(0.537917\pi\)
\(588\) −4.62765 −0.190841
\(589\) 47.8104 1.96999
\(590\) 3.52069 0.144945
\(591\) 23.9925 0.986921
\(592\) 1.82798 0.0751296
\(593\) 18.6393 0.765426 0.382713 0.923867i \(-0.374990\pi\)
0.382713 + 0.923867i \(0.374990\pi\)
\(594\) −20.0009 −0.820648
\(595\) −15.9433 −0.653610
\(596\) −7.19773 −0.294831
\(597\) 2.32525 0.0951661
\(598\) −12.7091 −0.519715
\(599\) 6.79409 0.277599 0.138799 0.990321i \(-0.455676\pi\)
0.138799 + 0.990321i \(0.455676\pi\)
\(600\) −5.85860 −0.239177
\(601\) 32.1799 1.31265 0.656324 0.754480i \(-0.272111\pi\)
0.656324 + 0.754480i \(0.272111\pi\)
\(602\) −7.52534 −0.306710
\(603\) −1.89913 −0.0773386
\(604\) −9.28245 −0.377698
\(605\) 3.05632 0.124257
\(606\) 0.343756 0.0139641
\(607\) −7.82054 −0.317426 −0.158713 0.987325i \(-0.550734\pi\)
−0.158713 + 0.987325i \(0.550734\pi\)
\(608\) 5.31424 0.215521
\(609\) 0 0
\(610\) −2.15949 −0.0874354
\(611\) −2.14086 −0.0866100
\(612\) 2.05361 0.0830121
\(613\) −12.9346 −0.522423 −0.261212 0.965282i \(-0.584122\pi\)
−0.261212 + 0.965282i \(0.584122\pi\)
\(614\) −5.88515 −0.237505
\(615\) −16.2949 −0.657072
\(616\) 7.52534 0.303204
\(617\) 39.8389 1.60385 0.801927 0.597422i \(-0.203808\pi\)
0.801927 + 0.597422i \(0.203808\pi\)
\(618\) −18.2362 −0.733568
\(619\) 5.35941 0.215413 0.107706 0.994183i \(-0.465649\pi\)
0.107706 + 0.994183i \(0.465649\pi\)
\(620\) 10.7401 0.431332
\(621\) 32.0104 1.28453
\(622\) −22.9969 −0.922093
\(623\) −33.7437 −1.35191
\(624\) 3.53407 0.141476
\(625\) 5.65407 0.226163
\(626\) 20.5485 0.821283
\(627\) 32.0706 1.28078
\(628\) −1.99480 −0.0796011
\(629\) −11.9462 −0.476326
\(630\) −0.766620 −0.0305429
\(631\) −22.2190 −0.884526 −0.442263 0.896885i \(-0.645824\pi\)
−0.442263 + 0.896885i \(0.645824\pi\)
\(632\) 14.1329 0.562177
\(633\) −42.2301 −1.67850
\(634\) 7.04928 0.279963
\(635\) 22.5601 0.895271
\(636\) −9.28313 −0.368100
\(637\) −6.08932 −0.241267
\(638\) 0 0
\(639\) −1.18058 −0.0467032
\(640\) 1.19379 0.0471886
\(641\) −18.8545 −0.744710 −0.372355 0.928090i \(-0.621450\pi\)
−0.372355 + 0.928090i \(0.621450\pi\)
\(642\) −6.63038 −0.261680
\(643\) −7.54108 −0.297391 −0.148696 0.988883i \(-0.547507\pi\)
−0.148696 + 0.988883i \(0.547507\pi\)
\(644\) −12.0439 −0.474596
\(645\) −7.20433 −0.283670
\(646\) −34.7295 −1.36641
\(647\) 34.2334 1.34585 0.672927 0.739709i \(-0.265037\pi\)
0.672927 + 0.739709i \(0.265037\pi\)
\(648\) −7.95854 −0.312641
\(649\) 10.8601 0.426296
\(650\) −7.70907 −0.302375
\(651\) 30.1306 1.18091
\(652\) −4.09106 −0.160218
\(653\) 26.5709 1.03980 0.519900 0.854227i \(-0.325969\pi\)
0.519900 + 0.854227i \(0.325969\pi\)
\(654\) −25.6207 −1.00185
\(655\) 5.85881 0.228923
\(656\) −8.32895 −0.325191
\(657\) −3.99864 −0.156002
\(658\) −2.02880 −0.0790910
\(659\) −18.6729 −0.727394 −0.363697 0.931517i \(-0.618486\pi\)
−0.363697 + 0.931517i \(0.618486\pi\)
\(660\) 7.20433 0.280428
\(661\) 22.3030 0.867486 0.433743 0.901037i \(-0.357193\pi\)
0.433743 + 0.901037i \(0.357193\pi\)
\(662\) 20.4930 0.796484
\(663\) −23.0958 −0.896965
\(664\) 2.05232 0.0796456
\(665\) 12.9647 0.502748
\(666\) −0.574423 −0.0222585
\(667\) 0 0
\(668\) 7.36310 0.284887
\(669\) −3.88898 −0.150357
\(670\) 7.21476 0.278730
\(671\) −6.66128 −0.257156
\(672\) 3.34909 0.129194
\(673\) 31.0215 1.19579 0.597896 0.801574i \(-0.296004\pi\)
0.597896 + 0.801574i \(0.296004\pi\)
\(674\) −7.42412 −0.285967
\(675\) 19.4168 0.747354
\(676\) −8.34968 −0.321141
\(677\) 12.8063 0.492186 0.246093 0.969246i \(-0.420853\pi\)
0.246093 + 0.969246i \(0.420853\pi\)
\(678\) 30.2542 1.16191
\(679\) −9.39285 −0.360464
\(680\) −7.80161 −0.299178
\(681\) 21.2758 0.815289
\(682\) 33.1294 1.26859
\(683\) 43.0174 1.64602 0.823008 0.568029i \(-0.192294\pi\)
0.823008 + 0.568029i \(0.192294\pi\)
\(684\) −1.66994 −0.0638518
\(685\) 4.55626 0.174086
\(686\) −20.0757 −0.766493
\(687\) −42.1313 −1.60741
\(688\) −3.68242 −0.140391
\(689\) −12.2152 −0.465364
\(690\) −11.5301 −0.438945
\(691\) −42.9824 −1.63513 −0.817565 0.575837i \(-0.804676\pi\)
−0.817565 + 0.575837i \(0.804676\pi\)
\(692\) −9.85163 −0.374503
\(693\) −2.36475 −0.0898296
\(694\) −20.9493 −0.795224
\(695\) −14.4821 −0.549338
\(696\) 0 0
\(697\) 54.4311 2.06173
\(698\) −13.5931 −0.514505
\(699\) −11.5545 −0.437032
\(700\) −7.30556 −0.276124
\(701\) 40.5781 1.53261 0.766307 0.642475i \(-0.222092\pi\)
0.766307 + 0.642475i \(0.222092\pi\)
\(702\) −11.7128 −0.442070
\(703\) 9.71434 0.366383
\(704\) 3.68242 0.138786
\(705\) −1.94226 −0.0731498
\(706\) 18.2706 0.687622
\(707\) 0.428656 0.0161213
\(708\) 4.83320 0.181643
\(709\) −34.5861 −1.29891 −0.649453 0.760401i \(-0.725002\pi\)
−0.649453 + 0.760401i \(0.725002\pi\)
\(710\) 4.48502 0.168320
\(711\) −4.44111 −0.166555
\(712\) −16.5120 −0.618813
\(713\) −53.0219 −1.98569
\(714\) −21.8869 −0.819096
\(715\) 9.47985 0.354526
\(716\) −12.2877 −0.459213
\(717\) −5.77915 −0.215826
\(718\) −8.73615 −0.326030
\(719\) 6.19210 0.230926 0.115463 0.993312i \(-0.463165\pi\)
0.115463 + 0.993312i \(0.463165\pi\)
\(720\) −0.375134 −0.0139804
\(721\) −22.7402 −0.846889
\(722\) 9.24114 0.343919
\(723\) 19.4563 0.723587
\(724\) 13.7840 0.512277
\(725\) 0 0
\(726\) 4.19571 0.155717
\(727\) 20.1213 0.746259 0.373129 0.927779i \(-0.378285\pi\)
0.373129 + 0.927779i \(0.378285\pi\)
\(728\) 4.40692 0.163331
\(729\) 29.2046 1.08165
\(730\) 15.1908 0.562235
\(731\) 24.0652 0.890084
\(732\) −2.96455 −0.109573
\(733\) −14.7072 −0.543224 −0.271612 0.962407i \(-0.587557\pi\)
−0.271612 + 0.962407i \(0.587557\pi\)
\(734\) −14.9484 −0.551755
\(735\) −5.52443 −0.203772
\(736\) −5.89351 −0.217238
\(737\) 22.2550 0.819773
\(738\) 2.61728 0.0963434
\(739\) −14.1566 −0.520759 −0.260379 0.965506i \(-0.583848\pi\)
−0.260379 + 0.965506i \(0.583848\pi\)
\(740\) 2.18222 0.0802201
\(741\) 18.7809 0.689934
\(742\) −11.5759 −0.424964
\(743\) −26.5698 −0.974752 −0.487376 0.873192i \(-0.662046\pi\)
−0.487376 + 0.873192i \(0.662046\pi\)
\(744\) 14.7440 0.540541
\(745\) −8.59256 −0.314807
\(746\) 35.0947 1.28491
\(747\) −0.644920 −0.0235964
\(748\) −24.0652 −0.879912
\(749\) −8.26795 −0.302104
\(750\) −16.7760 −0.612573
\(751\) 37.2142 1.35797 0.678983 0.734154i \(-0.262421\pi\)
0.678983 + 0.734154i \(0.262421\pi\)
\(752\) −0.992767 −0.0362025
\(753\) −15.2616 −0.556164
\(754\) 0 0
\(755\) −11.0813 −0.403289
\(756\) −11.0997 −0.403692
\(757\) 22.9244 0.833201 0.416601 0.909090i \(-0.363221\pi\)
0.416601 + 0.909090i \(0.363221\pi\)
\(758\) 33.0878 1.20180
\(759\) −35.5665 −1.29098
\(760\) 6.34407 0.230124
\(761\) 30.8221 1.11730 0.558651 0.829403i \(-0.311319\pi\)
0.558651 + 0.829403i \(0.311319\pi\)
\(762\) 30.9705 1.12194
\(763\) −31.9485 −1.15661
\(764\) 15.8384 0.573015
\(765\) 2.45157 0.0886367
\(766\) −8.55301 −0.309033
\(767\) 6.35979 0.229639
\(768\) 1.63883 0.0591362
\(769\) −13.1631 −0.474674 −0.237337 0.971427i \(-0.576275\pi\)
−0.237337 + 0.971427i \(0.576275\pi\)
\(770\) 8.98365 0.323748
\(771\) −18.8809 −0.679980
\(772\) 16.4251 0.591151
\(773\) −1.05704 −0.0380192 −0.0190096 0.999819i \(-0.506051\pi\)
−0.0190096 + 0.999819i \(0.506051\pi\)
\(774\) 1.15716 0.0415932
\(775\) −32.1619 −1.15529
\(776\) −4.59626 −0.164996
\(777\) 6.12208 0.219628
\(778\) −25.7864 −0.924486
\(779\) −44.2620 −1.58585
\(780\) 4.21893 0.151062
\(781\) 13.8347 0.495045
\(782\) 38.5151 1.37730
\(783\) 0 0
\(784\) −2.82375 −0.100848
\(785\) −2.38136 −0.0849946
\(786\) 8.04297 0.286883
\(787\) 21.1399 0.753558 0.376779 0.926303i \(-0.377032\pi\)
0.376779 + 0.926303i \(0.377032\pi\)
\(788\) 14.6400 0.521530
\(789\) 16.4954 0.587253
\(790\) 16.8717 0.600268
\(791\) 37.7264 1.34140
\(792\) −1.15716 −0.0411178
\(793\) −3.90092 −0.138526
\(794\) 8.52545 0.302557
\(795\) −11.0821 −0.393041
\(796\) 1.41885 0.0502897
\(797\) 28.2846 1.00189 0.500945 0.865479i \(-0.332986\pi\)
0.500945 + 0.865479i \(0.332986\pi\)
\(798\) 17.7979 0.630037
\(799\) 6.48790 0.229525
\(800\) −3.57487 −0.126391
\(801\) 5.18871 0.183334
\(802\) 15.7621 0.556580
\(803\) 46.8582 1.65359
\(804\) 9.90441 0.349301
\(805\) −14.3779 −0.506753
\(806\) 19.4009 0.683369
\(807\) −13.7786 −0.485028
\(808\) 0.209757 0.00737922
\(809\) 14.7831 0.519745 0.259873 0.965643i \(-0.416319\pi\)
0.259873 + 0.965643i \(0.416319\pi\)
\(810\) −9.50080 −0.333824
\(811\) 36.6892 1.28833 0.644166 0.764886i \(-0.277205\pi\)
0.644166 + 0.764886i \(0.277205\pi\)
\(812\) 0 0
\(813\) 14.1952 0.497848
\(814\) 6.73139 0.235935
\(815\) −4.88386 −0.171074
\(816\) −10.7100 −0.374926
\(817\) −19.5692 −0.684641
\(818\) 22.8654 0.799471
\(819\) −1.38482 −0.0483897
\(820\) −9.94299 −0.347224
\(821\) −11.3932 −0.397625 −0.198813 0.980038i \(-0.563709\pi\)
−0.198813 + 0.980038i \(0.563709\pi\)
\(822\) 6.25483 0.218162
\(823\) 40.8530 1.42405 0.712023 0.702156i \(-0.247779\pi\)
0.712023 + 0.702156i \(0.247779\pi\)
\(824\) −11.1276 −0.387648
\(825\) −21.5738 −0.751104
\(826\) 6.02690 0.209703
\(827\) −36.0491 −1.25355 −0.626775 0.779200i \(-0.715625\pi\)
−0.626775 + 0.779200i \(0.715625\pi\)
\(828\) 1.85197 0.0643604
\(829\) 23.8361 0.827862 0.413931 0.910308i \(-0.364155\pi\)
0.413931 + 0.910308i \(0.364155\pi\)
\(830\) 2.45004 0.0850420
\(831\) −31.7113 −1.10005
\(832\) 2.15646 0.0747618
\(833\) 18.4537 0.639384
\(834\) −19.8810 −0.688424
\(835\) 8.78998 0.304190
\(836\) 19.5692 0.676816
\(837\) −48.8651 −1.68902
\(838\) 20.3457 0.702829
\(839\) −41.7136 −1.44011 −0.720056 0.693916i \(-0.755884\pi\)
−0.720056 + 0.693916i \(0.755884\pi\)
\(840\) 3.99810 0.137948
\(841\) 0 0
\(842\) −19.3581 −0.667126
\(843\) −24.9091 −0.857914
\(844\) −25.7685 −0.886988
\(845\) −9.96774 −0.342901
\(846\) 0.311966 0.0107256
\(847\) 5.23196 0.179772
\(848\) −5.66449 −0.194519
\(849\) 24.6408 0.845669
\(850\) 23.3624 0.801324
\(851\) −10.7732 −0.369302
\(852\) 6.15702 0.210936
\(853\) 46.4024 1.58879 0.794395 0.607402i \(-0.207788\pi\)
0.794395 + 0.607402i \(0.207788\pi\)
\(854\) −3.69673 −0.126500
\(855\) −1.99355 −0.0681781
\(856\) −4.04580 −0.138283
\(857\) 20.1932 0.689788 0.344894 0.938642i \(-0.387915\pi\)
0.344894 + 0.938642i \(0.387915\pi\)
\(858\) 13.0139 0.444288
\(859\) 10.7622 0.367202 0.183601 0.983001i \(-0.441224\pi\)
0.183601 + 0.983001i \(0.441224\pi\)
\(860\) −4.39602 −0.149903
\(861\) −27.8944 −0.950638
\(862\) 4.55906 0.155282
\(863\) 21.0643 0.717039 0.358519 0.933522i \(-0.383282\pi\)
0.358519 + 0.933522i \(0.383282\pi\)
\(864\) −5.43147 −0.184782
\(865\) −11.7607 −0.399877
\(866\) −18.3691 −0.624206
\(867\) 42.1318 1.43087
\(868\) 18.3854 0.624043
\(869\) 52.0433 1.76545
\(870\) 0 0
\(871\) 13.0328 0.441598
\(872\) −15.6335 −0.529419
\(873\) 1.44432 0.0488829
\(874\) −31.3195 −1.05940
\(875\) −20.9193 −0.707202
\(876\) 20.8538 0.704586
\(877\) 19.0046 0.641741 0.320871 0.947123i \(-0.396025\pi\)
0.320871 + 0.947123i \(0.396025\pi\)
\(878\) −19.1652 −0.646795
\(879\) 48.2872 1.62869
\(880\) 4.39602 0.148190
\(881\) 32.2859 1.08774 0.543870 0.839170i \(-0.316959\pi\)
0.543870 + 0.839170i \(0.316959\pi\)
\(882\) 0.887334 0.0298781
\(883\) 23.1577 0.779317 0.389659 0.920959i \(-0.372593\pi\)
0.389659 + 0.920959i \(0.372593\pi\)
\(884\) −14.0928 −0.473994
\(885\) 5.76982 0.193950
\(886\) 2.26565 0.0761160
\(887\) −46.3944 −1.55777 −0.778886 0.627165i \(-0.784215\pi\)
−0.778886 + 0.627165i \(0.784215\pi\)
\(888\) 2.99575 0.100531
\(889\) 38.6196 1.29526
\(890\) −19.7118 −0.660741
\(891\) −29.3066 −0.981809
\(892\) −2.37303 −0.0794548
\(893\) −5.27580 −0.176548
\(894\) −11.7959 −0.394512
\(895\) −14.6689 −0.490327
\(896\) 2.04359 0.0682714
\(897\) −20.8281 −0.695430
\(898\) −24.3823 −0.813648
\(899\) 0 0
\(900\) 1.12336 0.0374455
\(901\) 37.0184 1.23326
\(902\) −30.6706 −1.02122
\(903\) −12.3327 −0.410408
\(904\) 18.4609 0.613999
\(905\) 16.4551 0.546986
\(906\) −15.2123 −0.505396
\(907\) −21.7273 −0.721444 −0.360722 0.932673i \(-0.617470\pi\)
−0.360722 + 0.932673i \(0.617470\pi\)
\(908\) 12.9823 0.430833
\(909\) −0.0659138 −0.00218622
\(910\) 5.26092 0.174398
\(911\) −28.1482 −0.932591 −0.466295 0.884629i \(-0.654412\pi\)
−0.466295 + 0.884629i \(0.654412\pi\)
\(912\) 8.70913 0.288388
\(913\) 7.55751 0.250117
\(914\) −26.0136 −0.860455
\(915\) −3.53904 −0.116997
\(916\) −25.7082 −0.849422
\(917\) 10.0294 0.331200
\(918\) 35.4956 1.17153
\(919\) 47.3273 1.56119 0.780593 0.625040i \(-0.214917\pi\)
0.780593 + 0.625040i \(0.214917\pi\)
\(920\) −7.03560 −0.231957
\(921\) −9.64475 −0.317805
\(922\) −26.1593 −0.861512
\(923\) 8.10175 0.266672
\(924\) 12.3327 0.405717
\(925\) −6.53480 −0.214863
\(926\) −28.3236 −0.930772
\(927\) 3.49672 0.114847
\(928\) 0 0
\(929\) −14.6578 −0.480908 −0.240454 0.970661i \(-0.577296\pi\)
−0.240454 + 0.970661i \(0.577296\pi\)
\(930\) 17.6012 0.577165
\(931\) −15.0061 −0.491805
\(932\) −7.05047 −0.230946
\(933\) −37.6880 −1.23385
\(934\) −0.164856 −0.00539427
\(935\) −28.7288 −0.939531
\(936\) −0.677644 −0.0221495
\(937\) 14.9637 0.488843 0.244421 0.969669i \(-0.421402\pi\)
0.244421 + 0.969669i \(0.421402\pi\)
\(938\) 12.3506 0.403261
\(939\) 33.6755 1.09896
\(940\) −1.18515 −0.0386554
\(941\) 6.43177 0.209670 0.104835 0.994490i \(-0.466569\pi\)
0.104835 + 0.994490i \(0.466569\pi\)
\(942\) −3.26913 −0.106514
\(943\) 49.0868 1.59848
\(944\) 2.94918 0.0959876
\(945\) −13.2507 −0.431044
\(946\) −13.5602 −0.440880
\(947\) 7.34323 0.238623 0.119311 0.992857i \(-0.461931\pi\)
0.119311 + 0.992857i \(0.461931\pi\)
\(948\) 23.1614 0.752249
\(949\) 27.4406 0.890761
\(950\) −18.9977 −0.616368
\(951\) 11.5526 0.374618
\(952\) −13.3552 −0.432844
\(953\) 15.9585 0.516946 0.258473 0.966018i \(-0.416781\pi\)
0.258473 + 0.966018i \(0.416781\pi\)
\(954\) 1.78000 0.0576297
\(955\) 18.9077 0.611840
\(956\) −3.52639 −0.114052
\(957\) 0 0
\(958\) −11.4544 −0.370074
\(959\) 7.79965 0.251864
\(960\) 1.95641 0.0631430
\(961\) 49.9398 1.61096
\(962\) 3.94197 0.127094
\(963\) 1.27135 0.0409686
\(964\) 11.8721 0.382373
\(965\) 19.6080 0.631205
\(966\) −19.7379 −0.635056
\(967\) 16.0536 0.516249 0.258124 0.966112i \(-0.416896\pi\)
0.258124 + 0.966112i \(0.416896\pi\)
\(968\) 2.56019 0.0822875
\(969\) −56.9157 −1.82839
\(970\) −5.48695 −0.176175
\(971\) −33.5504 −1.07668 −0.538342 0.842726i \(-0.680949\pi\)
−0.538342 + 0.842726i \(0.680949\pi\)
\(972\) 3.25173 0.104299
\(973\) −24.7912 −0.794771
\(974\) 23.2025 0.743456
\(975\) −12.6339 −0.404607
\(976\) −1.80894 −0.0579029
\(977\) −7.98092 −0.255332 −0.127666 0.991817i \(-0.540749\pi\)
−0.127666 + 0.991817i \(0.540749\pi\)
\(978\) −6.70455 −0.214388
\(979\) −60.8040 −1.94331
\(980\) −3.37096 −0.107681
\(981\) 4.91267 0.156849
\(982\) 14.1185 0.450539
\(983\) 54.2687 1.73090 0.865452 0.500992i \(-0.167031\pi\)
0.865452 + 0.500992i \(0.167031\pi\)
\(984\) −13.6497 −0.435137
\(985\) 17.4771 0.556867
\(986\) 0 0
\(987\) −3.32486 −0.105832
\(988\) 11.4599 0.364590
\(989\) 21.7024 0.690095
\(990\) −1.38140 −0.0439038
\(991\) 3.49201 0.110927 0.0554636 0.998461i \(-0.482336\pi\)
0.0554636 + 0.998461i \(0.482336\pi\)
\(992\) 8.99665 0.285644
\(993\) 33.5846 1.06577
\(994\) 7.67768 0.243521
\(995\) 1.69380 0.0536971
\(996\) 3.36341 0.106574
\(997\) −13.2368 −0.419214 −0.209607 0.977786i \(-0.567218\pi\)
−0.209607 + 0.977786i \(0.567218\pi\)
\(998\) −7.59719 −0.240485
\(999\) −9.92864 −0.314128
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1682.2.a.t.1.4 6
29.7 even 7 58.2.d.b.49.2 yes 12
29.12 odd 4 1682.2.b.i.1681.10 12
29.17 odd 4 1682.2.b.i.1681.3 12
29.25 even 7 58.2.d.b.45.2 12
29.28 even 2 1682.2.a.q.1.3 6
87.65 odd 14 522.2.k.h.397.2 12
87.83 odd 14 522.2.k.h.451.2 12
116.7 odd 14 464.2.u.h.49.1 12
116.83 odd 14 464.2.u.h.161.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.d.b.45.2 12 29.25 even 7
58.2.d.b.49.2 yes 12 29.7 even 7
464.2.u.h.49.1 12 116.7 odd 14
464.2.u.h.161.1 12 116.83 odd 14
522.2.k.h.397.2 12 87.65 odd 14
522.2.k.h.451.2 12 87.83 odd 14
1682.2.a.q.1.3 6 29.28 even 2
1682.2.a.t.1.4 6 1.1 even 1 trivial
1682.2.b.i.1681.3 12 29.17 odd 4
1682.2.b.i.1681.10 12 29.12 odd 4