Defining parameters
Level: | \( N \) | \(=\) | \( 1682 = 2 \cdot 29^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1682.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 22 \) | ||
Sturm bound: | \(435\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1682))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 247 | 68 | 179 |
Cusp forms | 188 | 68 | 120 |
Eisenstein series | 59 | 0 | 59 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(29\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(56\) | \(15\) | \(41\) | \(42\) | \(15\) | \(27\) | \(14\) | \(0\) | \(14\) | |||
\(+\) | \(-\) | \(-\) | \(67\) | \(19\) | \(48\) | \(52\) | \(19\) | \(33\) | \(15\) | \(0\) | \(15\) | |||
\(-\) | \(+\) | \(-\) | \(64\) | \(22\) | \(42\) | \(49\) | \(22\) | \(27\) | \(15\) | \(0\) | \(15\) | |||
\(-\) | \(-\) | \(+\) | \(60\) | \(12\) | \(48\) | \(45\) | \(12\) | \(33\) | \(15\) | \(0\) | \(15\) | |||
Plus space | \(+\) | \(116\) | \(27\) | \(89\) | \(87\) | \(27\) | \(60\) | \(29\) | \(0\) | \(29\) | ||||
Minus space | \(-\) | \(131\) | \(41\) | \(90\) | \(101\) | \(41\) | \(60\) | \(30\) | \(0\) | \(30\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1682))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1682))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1682)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(58))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(841))\)\(^{\oplus 2}\)