Properties

Label 1638.2.dt.c.1369.10
Level $1638$
Weight $2$
Character 1638.1369
Analytic conductor $13.079$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(1297,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.1297"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.dt (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,-20,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 46 x^{18} + 895 x^{16} + 9634 x^{14} + 62977 x^{12} + 257850 x^{10} + 656102 x^{8} + \cdots + 32041 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1369.10
Root \(-2.35757i\) of defining polynomial
Character \(\chi\) \(=\) 1638.1369
Dual form 1638.2.dt.c.1297.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +(2.89612 - 1.67208i) q^{5} +(0.268506 + 2.63209i) q^{7} -1.00000i q^{8} +(1.67208 + 2.89612i) q^{10} +(-4.36176 + 2.51826i) q^{11} +(-1.92804 + 3.04674i) q^{13} +(-2.63209 + 0.268506i) q^{14} +1.00000 q^{16} -3.73270 q^{17} +(-5.08703 - 2.93700i) q^{19} +(-2.89612 + 1.67208i) q^{20} +(-2.51826 - 4.36176i) q^{22} -3.78370 q^{23} +(3.09168 - 5.35494i) q^{25} +(-3.04674 - 1.92804i) q^{26} +(-0.268506 - 2.63209i) q^{28} +(-3.36143 + 5.82216i) q^{29} +(0.884906 + 0.510901i) q^{31} +1.00000i q^{32} -3.73270i q^{34} +(5.17868 + 7.17389i) q^{35} -0.428222i q^{37} +(2.93700 - 5.08703i) q^{38} +(-1.67208 - 2.89612i) q^{40} +(-0.917963 - 0.529986i) q^{41} +(1.65120 + 2.85996i) q^{43} +(4.36176 - 2.51826i) q^{44} -3.78370i q^{46} +(4.60157 - 2.65672i) q^{47} +(-6.85581 + 1.41346i) q^{49} +(5.35494 + 3.09168i) q^{50} +(1.92804 - 3.04674i) q^{52} +(1.15836 - 2.00634i) q^{53} +(-8.42146 + 14.5864i) q^{55} +(2.63209 - 0.268506i) q^{56} +(-5.82216 - 3.36143i) q^{58} +8.08665i q^{59} +(5.05050 - 8.74773i) q^{61} +(-0.510901 + 0.884906i) q^{62} -1.00000 q^{64} +(-0.489457 + 12.0476i) q^{65} +(-11.5166 + 6.64910i) q^{67} +3.73270 q^{68} +(-7.17389 + 5.17868i) q^{70} +(-2.35754 + 1.36113i) q^{71} +(6.88886 + 3.97728i) q^{73} +0.428222 q^{74} +(5.08703 + 2.93700i) q^{76} +(-7.79946 - 10.8044i) q^{77} +(7.07112 + 12.2475i) q^{79} +(2.89612 - 1.67208i) q^{80} +(0.529986 - 0.917963i) q^{82} +9.17859i q^{83} +(-10.8104 + 6.24136i) q^{85} +(-2.85996 + 1.65120i) q^{86} +(2.51826 + 4.36176i) q^{88} -5.41291i q^{89} +(-8.53700 - 4.25672i) q^{91} +3.78370 q^{92} +(2.65672 + 4.60157i) q^{94} -19.6435 q^{95} +(14.8742 - 8.58763i) q^{97} +(-1.41346 - 6.85581i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 20 q^{4} + 2 q^{7} - 4 q^{10} + 6 q^{11} + 6 q^{13} + 4 q^{14} + 20 q^{16} - 20 q^{17} - 24 q^{19} + 2 q^{22} + 18 q^{25} - 6 q^{26} - 2 q^{28} - 2 q^{29} - 6 q^{31} + 14 q^{38} + 4 q^{40} - 18 q^{41}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 2.89612 1.67208i 1.29518 0.747775i 0.315616 0.948887i \(-0.397789\pi\)
0.979568 + 0.201112i \(0.0644554\pi\)
\(6\) 0 0
\(7\) 0.268506 + 2.63209i 0.101486 + 0.994837i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 1.67208 + 2.89612i 0.528757 + 0.915834i
\(11\) −4.36176 + 2.51826i −1.31512 + 0.759285i −0.982939 0.183930i \(-0.941118\pi\)
−0.332182 + 0.943215i \(0.607785\pi\)
\(12\) 0 0
\(13\) −1.92804 + 3.04674i −0.534743 + 0.845015i
\(14\) −2.63209 + 0.268506i −0.703456 + 0.0717612i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −3.73270 −0.905313 −0.452657 0.891685i \(-0.649524\pi\)
−0.452657 + 0.891685i \(0.649524\pi\)
\(18\) 0 0
\(19\) −5.08703 2.93700i −1.16705 0.673794i −0.214063 0.976820i \(-0.568670\pi\)
−0.952982 + 0.303026i \(0.902003\pi\)
\(20\) −2.89612 + 1.67208i −0.647592 + 0.373888i
\(21\) 0 0
\(22\) −2.51826 4.36176i −0.536896 0.929931i
\(23\) −3.78370 −0.788957 −0.394478 0.918905i \(-0.629075\pi\)
−0.394478 + 0.918905i \(0.629075\pi\)
\(24\) 0 0
\(25\) 3.09168 5.35494i 0.618336 1.07099i
\(26\) −3.04674 1.92804i −0.597516 0.378120i
\(27\) 0 0
\(28\) −0.268506 2.63209i −0.0507428 0.497419i
\(29\) −3.36143 + 5.82216i −0.624201 + 1.08115i 0.364494 + 0.931206i \(0.381242\pi\)
−0.988695 + 0.149942i \(0.952091\pi\)
\(30\) 0 0
\(31\) 0.884906 + 0.510901i 0.158934 + 0.0917605i 0.577357 0.816491i \(-0.304084\pi\)
−0.418424 + 0.908252i \(0.637417\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 3.73270i 0.640153i
\(35\) 5.17868 + 7.17389i 0.875357 + 1.21261i
\(36\) 0 0
\(37\) 0.428222i 0.0703993i −0.999380 0.0351997i \(-0.988793\pi\)
0.999380 0.0351997i \(-0.0112067\pi\)
\(38\) 2.93700 5.08703i 0.476444 0.825226i
\(39\) 0 0
\(40\) −1.67208 2.89612i −0.264378 0.457917i
\(41\) −0.917963 0.529986i −0.143362 0.0827699i 0.426603 0.904439i \(-0.359710\pi\)
−0.569965 + 0.821669i \(0.693043\pi\)
\(42\) 0 0
\(43\) 1.65120 + 2.85996i 0.251805 + 0.436140i 0.964023 0.265819i \(-0.0856423\pi\)
−0.712217 + 0.701959i \(0.752309\pi\)
\(44\) 4.36176 2.51826i 0.657560 0.379643i
\(45\) 0 0
\(46\) 3.78370i 0.557877i
\(47\) 4.60157 2.65672i 0.671207 0.387522i −0.125327 0.992116i \(-0.539998\pi\)
0.796534 + 0.604594i \(0.206665\pi\)
\(48\) 0 0
\(49\) −6.85581 + 1.41346i −0.979401 + 0.201923i
\(50\) 5.35494 + 3.09168i 0.757303 + 0.437229i
\(51\) 0 0
\(52\) 1.92804 3.04674i 0.267371 0.422507i
\(53\) 1.15836 2.00634i 0.159113 0.275592i −0.775436 0.631426i \(-0.782470\pi\)
0.934549 + 0.355834i \(0.115803\pi\)
\(54\) 0 0
\(55\) −8.42146 + 14.5864i −1.13555 + 1.96683i
\(56\) 2.63209 0.268506i 0.351728 0.0358806i
\(57\) 0 0
\(58\) −5.82216 3.36143i −0.764487 0.441377i
\(59\) 8.08665i 1.05279i 0.850240 + 0.526396i \(0.176457\pi\)
−0.850240 + 0.526396i \(0.823543\pi\)
\(60\) 0 0
\(61\) 5.05050 8.74773i 0.646651 1.12003i −0.337267 0.941409i \(-0.609502\pi\)
0.983918 0.178623i \(-0.0571643\pi\)
\(62\) −0.510901 + 0.884906i −0.0648845 + 0.112383i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −0.489457 + 12.0476i −0.0607096 + 1.49432i
\(66\) 0 0
\(67\) −11.5166 + 6.64910i −1.40697 + 0.812317i −0.995095 0.0989215i \(-0.968461\pi\)
−0.411879 + 0.911239i \(0.635127\pi\)
\(68\) 3.73270 0.452657
\(69\) 0 0
\(70\) −7.17389 + 5.17868i −0.857444 + 0.618971i
\(71\) −2.35754 + 1.36113i −0.279788 + 0.161536i −0.633328 0.773884i \(-0.718311\pi\)
0.353539 + 0.935420i \(0.384978\pi\)
\(72\) 0 0
\(73\) 6.88886 + 3.97728i 0.806280 + 0.465506i 0.845662 0.533718i \(-0.179206\pi\)
−0.0393824 + 0.999224i \(0.512539\pi\)
\(74\) 0.428222 0.0497798
\(75\) 0 0
\(76\) 5.08703 + 2.93700i 0.583523 + 0.336897i
\(77\) −7.79946 10.8044i −0.888831 1.23127i
\(78\) 0 0
\(79\) 7.07112 + 12.2475i 0.795563 + 1.37796i 0.922481 + 0.386043i \(0.126158\pi\)
−0.126918 + 0.991913i \(0.540508\pi\)
\(80\) 2.89612 1.67208i 0.323796 0.186944i
\(81\) 0 0
\(82\) 0.529986 0.917963i 0.0585272 0.101372i
\(83\) 9.17859i 1.00748i 0.863855 + 0.503741i \(0.168043\pi\)
−0.863855 + 0.503741i \(0.831957\pi\)
\(84\) 0 0
\(85\) −10.8104 + 6.24136i −1.17255 + 0.676971i
\(86\) −2.85996 + 1.65120i −0.308397 + 0.178053i
\(87\) 0 0
\(88\) 2.51826 + 4.36176i 0.268448 + 0.464965i
\(89\) 5.41291i 0.573767i −0.957965 0.286884i \(-0.907381\pi\)
0.957965 0.286884i \(-0.0926193\pi\)
\(90\) 0 0
\(91\) −8.53700 4.25672i −0.894921 0.446225i
\(92\) 3.78370 0.394478
\(93\) 0 0
\(94\) 2.65672 + 4.60157i 0.274019 + 0.474615i
\(95\) −19.6435 −2.01539
\(96\) 0 0
\(97\) 14.8742 8.58763i 1.51025 0.871941i 0.510318 0.859986i \(-0.329528\pi\)
0.999929 0.0119557i \(-0.00380571\pi\)
\(98\) −1.41346 6.85581i −0.142781 0.692541i
\(99\) 0 0
\(100\) −3.09168 + 5.35494i −0.309168 + 0.535494i
\(101\) 1.22413 + 2.12026i 0.121806 + 0.210973i 0.920480 0.390790i \(-0.127798\pi\)
−0.798674 + 0.601764i \(0.794465\pi\)
\(102\) 0 0
\(103\) −8.96428 15.5266i −0.883277 1.52988i −0.847676 0.530514i \(-0.821999\pi\)
−0.0356010 0.999366i \(-0.511335\pi\)
\(104\) 3.04674 + 1.92804i 0.298758 + 0.189060i
\(105\) 0 0
\(106\) 2.00634 + 1.15836i 0.194873 + 0.112510i
\(107\) 9.90239 0.957300 0.478650 0.878006i \(-0.341126\pi\)
0.478650 + 0.878006i \(0.341126\pi\)
\(108\) 0 0
\(109\) −3.08121 1.77894i −0.295127 0.170391i 0.345125 0.938557i \(-0.387837\pi\)
−0.640252 + 0.768165i \(0.721170\pi\)
\(110\) −14.5864 8.42146i −1.39076 0.802955i
\(111\) 0 0
\(112\) 0.268506 + 2.63209i 0.0253714 + 0.248709i
\(113\) −2.44458 4.23414i −0.229967 0.398314i 0.727831 0.685756i \(-0.240528\pi\)
−0.957798 + 0.287442i \(0.907195\pi\)
\(114\) 0 0
\(115\) −10.9581 + 6.32664i −1.02184 + 0.589962i
\(116\) 3.36143 5.82216i 0.312101 0.540574i
\(117\) 0 0
\(118\) −8.08665 −0.744436
\(119\) −1.00225 9.82481i −0.0918762 0.900639i
\(120\) 0 0
\(121\) 7.18332 12.4419i 0.653029 1.13108i
\(122\) 8.74773 + 5.05050i 0.791982 + 0.457251i
\(123\) 0 0
\(124\) −0.884906 0.510901i −0.0794669 0.0458803i
\(125\) 3.95733i 0.353954i
\(126\) 0 0
\(127\) −4.14641 + 7.18180i −0.367935 + 0.637281i −0.989242 0.146285i \(-0.953268\pi\)
0.621308 + 0.783567i \(0.286602\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −12.0476 0.489457i −1.05664 0.0429282i
\(131\) 3.08084 + 5.33618i 0.269174 + 0.466224i 0.968649 0.248434i \(-0.0799158\pi\)
−0.699474 + 0.714658i \(0.746583\pi\)
\(132\) 0 0
\(133\) 6.36455 14.1781i 0.551877 1.22940i
\(134\) −6.64910 11.5166i −0.574395 0.994881i
\(135\) 0 0
\(136\) 3.73270i 0.320076i
\(137\) 7.43816i 0.635485i 0.948177 + 0.317742i \(0.102925\pi\)
−0.948177 + 0.317742i \(0.897075\pi\)
\(138\) 0 0
\(139\) 2.44199 + 4.22965i 0.207127 + 0.358754i 0.950808 0.309780i \(-0.100255\pi\)
−0.743682 + 0.668534i \(0.766922\pi\)
\(140\) −5.17868 7.17389i −0.437679 0.606305i
\(141\) 0 0
\(142\) −1.36113 2.35754i −0.114223 0.197840i
\(143\) 0.737156 18.1445i 0.0616441 1.51732i
\(144\) 0 0
\(145\) 22.4822i 1.86705i
\(146\) −3.97728 + 6.88886i −0.329162 + 0.570126i
\(147\) 0 0
\(148\) 0.428222i 0.0351997i
\(149\) 4.86592 + 2.80934i 0.398632 + 0.230150i 0.685894 0.727702i \(-0.259412\pi\)
−0.287262 + 0.957852i \(0.592745\pi\)
\(150\) 0 0
\(151\) −7.19648 4.15489i −0.585641 0.338120i 0.177731 0.984079i \(-0.443124\pi\)
−0.763372 + 0.645959i \(0.776458\pi\)
\(152\) −2.93700 + 5.08703i −0.238222 + 0.412613i
\(153\) 0 0
\(154\) 10.8044 7.79946i 0.870643 0.628498i
\(155\) 3.41706 0.274465
\(156\) 0 0
\(157\) −2.60751 + 4.51635i −0.208102 + 0.360444i −0.951117 0.308832i \(-0.900062\pi\)
0.743014 + 0.669275i \(0.233395\pi\)
\(158\) −12.2475 + 7.07112i −0.974362 + 0.562548i
\(159\) 0 0
\(160\) 1.67208 + 2.89612i 0.132189 + 0.228958i
\(161\) −1.01595 9.95905i −0.0800678 0.784883i
\(162\) 0 0
\(163\) −10.8077 6.23982i −0.846524 0.488741i 0.0129528 0.999916i \(-0.495877\pi\)
−0.859476 + 0.511176i \(0.829210\pi\)
\(164\) 0.917963 + 0.529986i 0.0716809 + 0.0413850i
\(165\) 0 0
\(166\) −9.17859 −0.712397
\(167\) 0.409946 + 0.236682i 0.0317226 + 0.0183150i 0.515777 0.856723i \(-0.327503\pi\)
−0.484055 + 0.875038i \(0.660836\pi\)
\(168\) 0 0
\(169\) −5.56530 11.7485i −0.428100 0.903731i
\(170\) −6.24136 10.8104i −0.478691 0.829116i
\(171\) 0 0
\(172\) −1.65120 2.85996i −0.125903 0.218070i
\(173\) 5.06601 8.77459i 0.385162 0.667120i −0.606630 0.794984i \(-0.707479\pi\)
0.991792 + 0.127865i \(0.0408123\pi\)
\(174\) 0 0
\(175\) 14.9248 + 6.69975i 1.12821 + 0.506453i
\(176\) −4.36176 + 2.51826i −0.328780 + 0.189821i
\(177\) 0 0
\(178\) 5.41291 0.405715
\(179\) 5.35710 + 9.27876i 0.400408 + 0.693527i 0.993775 0.111405i \(-0.0355350\pi\)
−0.593367 + 0.804932i \(0.702202\pi\)
\(180\) 0 0
\(181\) 1.56347 0.116212 0.0581058 0.998310i \(-0.481494\pi\)
0.0581058 + 0.998310i \(0.481494\pi\)
\(182\) 4.25672 8.53700i 0.315529 0.632805i
\(183\) 0 0
\(184\) 3.78370i 0.278938i
\(185\) −0.716021 1.24018i −0.0526429 0.0911801i
\(186\) 0 0
\(187\) 16.2812 9.39993i 1.19060 0.687391i
\(188\) −4.60157 + 2.65672i −0.335604 + 0.193761i
\(189\) 0 0
\(190\) 19.6435i 1.42509i
\(191\) −4.69659 + 8.13473i −0.339833 + 0.588608i −0.984401 0.175939i \(-0.943704\pi\)
0.644568 + 0.764547i \(0.277037\pi\)
\(192\) 0 0
\(193\) 7.93269 4.57994i 0.571008 0.329672i −0.186544 0.982447i \(-0.559729\pi\)
0.757552 + 0.652775i \(0.226395\pi\)
\(194\) 8.58763 + 14.8742i 0.616556 + 1.06791i
\(195\) 0 0
\(196\) 6.85581 1.41346i 0.489701 0.100962i
\(197\) −13.4152 7.74526i −0.955793 0.551827i −0.0609170 0.998143i \(-0.519402\pi\)
−0.894876 + 0.446316i \(0.852736\pi\)
\(198\) 0 0
\(199\) −5.48387 −0.388741 −0.194371 0.980928i \(-0.562266\pi\)
−0.194371 + 0.980928i \(0.562266\pi\)
\(200\) −5.35494 3.09168i −0.378652 0.218615i
\(201\) 0 0
\(202\) −2.12026 + 1.22413i −0.149181 + 0.0861295i
\(203\) −16.2270 7.28430i −1.13891 0.511257i
\(204\) 0 0
\(205\) −3.54471 −0.247573
\(206\) 15.5266 8.96428i 1.08179 0.624571i
\(207\) 0 0
\(208\) −1.92804 + 3.04674i −0.133686 + 0.211254i
\(209\) 29.5846 2.04641
\(210\) 0 0
\(211\) −2.54733 + 4.41210i −0.175365 + 0.303741i −0.940288 0.340381i \(-0.889444\pi\)
0.764922 + 0.644122i \(0.222777\pi\)
\(212\) −1.15836 + 2.00634i −0.0795567 + 0.137796i
\(213\) 0 0
\(214\) 9.90239i 0.676913i
\(215\) 9.56414 + 5.52186i 0.652269 + 0.376588i
\(216\) 0 0
\(217\) −1.10714 + 2.46633i −0.0751573 + 0.167426i
\(218\) 1.77894 3.08121i 0.120485 0.208686i
\(219\) 0 0
\(220\) 8.42146 14.5864i 0.567775 0.983415i
\(221\) 7.19681 11.3726i 0.484110 0.765003i
\(222\) 0 0
\(223\) −8.65366 4.99619i −0.579492 0.334570i 0.181440 0.983402i \(-0.441924\pi\)
−0.760931 + 0.648832i \(0.775258\pi\)
\(224\) −2.63209 + 0.268506i −0.175864 + 0.0179403i
\(225\) 0 0
\(226\) 4.23414 2.44458i 0.281651 0.162611i
\(227\) 13.2146i 0.877082i 0.898711 + 0.438541i \(0.144505\pi\)
−0.898711 + 0.438541i \(0.855495\pi\)
\(228\) 0 0
\(229\) −8.62549 + 4.97993i −0.569989 + 0.329083i −0.757145 0.653247i \(-0.773406\pi\)
0.187156 + 0.982330i \(0.440073\pi\)
\(230\) −6.32664 10.9581i −0.417166 0.722553i
\(231\) 0 0
\(232\) 5.82216 + 3.36143i 0.382244 + 0.220688i
\(233\) 4.29233 + 7.43454i 0.281200 + 0.487053i 0.971681 0.236298i \(-0.0759342\pi\)
−0.690480 + 0.723351i \(0.742601\pi\)
\(234\) 0 0
\(235\) 8.88446 15.3883i 0.579558 1.00382i
\(236\) 8.08665i 0.526396i
\(237\) 0 0
\(238\) 9.82481 1.00225i 0.636848 0.0649663i
\(239\) 1.17300i 0.0758748i −0.999280 0.0379374i \(-0.987921\pi\)
0.999280 0.0379374i \(-0.0120787\pi\)
\(240\) 0 0
\(241\) 24.3882i 1.57098i 0.618874 + 0.785490i \(0.287589\pi\)
−0.618874 + 0.785490i \(0.712411\pi\)
\(242\) 12.4419 + 7.18332i 0.799794 + 0.461761i
\(243\) 0 0
\(244\) −5.05050 + 8.74773i −0.323325 + 0.560016i
\(245\) −17.4918 + 15.5570i −1.11751 + 0.993900i
\(246\) 0 0
\(247\) 18.7563 9.83622i 1.19343 0.625864i
\(248\) 0.510901 0.884906i 0.0324422 0.0561916i
\(249\) 0 0
\(250\) 3.95733 0.250283
\(251\) 10.6649 + 18.4721i 0.673162 + 1.16595i 0.977002 + 0.213228i \(0.0683978\pi\)
−0.303840 + 0.952723i \(0.598269\pi\)
\(252\) 0 0
\(253\) 16.5036 9.52837i 1.03757 0.599043i
\(254\) −7.18180 4.14641i −0.450626 0.260169i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −12.8591 −0.802129 −0.401065 0.916050i \(-0.631360\pi\)
−0.401065 + 0.916050i \(0.631360\pi\)
\(258\) 0 0
\(259\) 1.12712 0.114980i 0.0700359 0.00714452i
\(260\) 0.489457 12.0476i 0.0303548 0.747159i
\(261\) 0 0
\(262\) −5.33618 + 3.08084i −0.329670 + 0.190335i
\(263\) 12.4300 + 21.5295i 0.766470 + 1.32756i 0.939466 + 0.342642i \(0.111322\pi\)
−0.172997 + 0.984922i \(0.555345\pi\)
\(264\) 0 0
\(265\) 7.74748i 0.475924i
\(266\) 14.1781 + 6.36455i 0.869317 + 0.390236i
\(267\) 0 0
\(268\) 11.5166 6.64910i 0.703487 0.406158i
\(269\) 20.6024 1.25615 0.628074 0.778154i \(-0.283844\pi\)
0.628074 + 0.778154i \(0.283844\pi\)
\(270\) 0 0
\(271\) 5.28145i 0.320825i −0.987050 0.160413i \(-0.948718\pi\)
0.987050 0.160413i \(-0.0512825\pi\)
\(272\) −3.73270 −0.226328
\(273\) 0 0
\(274\) −7.43816 −0.449355
\(275\) 31.1427i 1.87797i
\(276\) 0 0
\(277\) 5.25013 0.315450 0.157725 0.987483i \(-0.449584\pi\)
0.157725 + 0.987483i \(0.449584\pi\)
\(278\) −4.22965 + 2.44199i −0.253677 + 0.146461i
\(279\) 0 0
\(280\) 7.17389 5.17868i 0.428722 0.309485i
\(281\) 31.3151i 1.86810i −0.357141 0.934051i \(-0.616248\pi\)
0.357141 0.934051i \(-0.383752\pi\)
\(282\) 0 0
\(283\) −3.86020 6.68606i −0.229465 0.397445i 0.728185 0.685381i \(-0.240364\pi\)
−0.957650 + 0.287936i \(0.907031\pi\)
\(284\) 2.35754 1.36113i 0.139894 0.0807679i
\(285\) 0 0
\(286\) 18.1445 + 0.737156i 1.07291 + 0.0435890i
\(287\) 1.14849 2.55847i 0.0677934 0.151022i
\(288\) 0 0
\(289\) −3.06694 −0.180408
\(290\) −22.4822 −1.32020
\(291\) 0 0
\(292\) −6.88886 3.97728i −0.403140 0.232753i
\(293\) −18.3856 + 10.6150i −1.07410 + 0.620133i −0.929299 0.369328i \(-0.879588\pi\)
−0.144802 + 0.989461i \(0.546255\pi\)
\(294\) 0 0
\(295\) 13.5215 + 23.4199i 0.787252 + 1.36356i
\(296\) −0.428222 −0.0248899
\(297\) 0 0
\(298\) −2.80934 + 4.86592i −0.162741 + 0.281875i
\(299\) 7.29514 11.5280i 0.421889 0.666680i
\(300\) 0 0
\(301\) −7.08432 + 5.11402i −0.408333 + 0.294767i
\(302\) 4.15489 7.19648i 0.239087 0.414111i
\(303\) 0 0
\(304\) −5.08703 2.93700i −0.291761 0.168448i
\(305\) 33.7793i 1.93420i
\(306\) 0 0
\(307\) 33.9938i 1.94013i 0.242850 + 0.970064i \(0.421918\pi\)
−0.242850 + 0.970064i \(0.578082\pi\)
\(308\) 7.79946 + 10.8044i 0.444416 + 0.615637i
\(309\) 0 0
\(310\) 3.41706i 0.194076i
\(311\) 0.365883 0.633728i 0.0207473 0.0359354i −0.855465 0.517860i \(-0.826729\pi\)
0.876213 + 0.481925i \(0.160062\pi\)
\(312\) 0 0
\(313\) 3.68359 + 6.38016i 0.208209 + 0.360628i 0.951150 0.308728i \(-0.0999034\pi\)
−0.742942 + 0.669356i \(0.766570\pi\)
\(314\) −4.51635 2.60751i −0.254872 0.147150i
\(315\) 0 0
\(316\) −7.07112 12.2475i −0.397782 0.688978i
\(317\) 24.6012 14.2035i 1.38174 0.797748i 0.389375 0.921079i \(-0.372691\pi\)
0.992366 + 0.123331i \(0.0393577\pi\)
\(318\) 0 0
\(319\) 33.8598i 1.89579i
\(320\) −2.89612 + 1.67208i −0.161898 + 0.0934719i
\(321\) 0 0
\(322\) 9.95905 1.01595i 0.554996 0.0566165i
\(323\) 18.9884 + 10.9629i 1.05654 + 0.609994i
\(324\) 0 0
\(325\) 10.3543 + 19.7441i 0.574351 + 1.09521i
\(326\) 6.23982 10.8077i 0.345592 0.598583i
\(327\) 0 0
\(328\) −0.529986 + 0.917963i −0.0292636 + 0.0506860i
\(329\) 8.22826 + 11.3984i 0.453639 + 0.628414i
\(330\) 0 0
\(331\) 17.5783 + 10.1489i 0.966193 + 0.557832i 0.898073 0.439846i \(-0.144967\pi\)
0.0681192 + 0.997677i \(0.478300\pi\)
\(332\) 9.17859i 0.503741i
\(333\) 0 0
\(334\) −0.236682 + 0.409946i −0.0129507 + 0.0224312i
\(335\) −22.2356 + 38.5132i −1.21486 + 2.10420i
\(336\) 0 0
\(337\) −8.85616 −0.482426 −0.241213 0.970472i \(-0.577545\pi\)
−0.241213 + 0.970472i \(0.577545\pi\)
\(338\) 11.7485 5.56530i 0.639035 0.302712i
\(339\) 0 0
\(340\) 10.8104 6.24136i 0.586274 0.338485i
\(341\) −5.14634 −0.278690
\(342\) 0 0
\(343\) −5.56119 17.6656i −0.300276 0.953852i
\(344\) 2.85996 1.65120i 0.154199 0.0890267i
\(345\) 0 0
\(346\) 8.77459 + 5.06601i 0.471725 + 0.272350i
\(347\) −6.89722 −0.370262 −0.185131 0.982714i \(-0.559271\pi\)
−0.185131 + 0.982714i \(0.559271\pi\)
\(348\) 0 0
\(349\) −3.63303 2.09753i −0.194472 0.112278i 0.399602 0.916689i \(-0.369148\pi\)
−0.594074 + 0.804410i \(0.702482\pi\)
\(350\) −6.69975 + 14.9248i −0.358117 + 0.797766i
\(351\) 0 0
\(352\) −2.51826 4.36176i −0.134224 0.232483i
\(353\) −21.7100 + 12.5343i −1.15551 + 0.667132i −0.950223 0.311570i \(-0.899145\pi\)
−0.205284 + 0.978702i \(0.565812\pi\)
\(354\) 0 0
\(355\) −4.55181 + 7.88397i −0.241585 + 0.418438i
\(356\) 5.41291i 0.286884i
\(357\) 0 0
\(358\) −9.27876 + 5.35710i −0.490398 + 0.283131i
\(359\) −17.2117 + 9.93716i −0.908397 + 0.524463i −0.879915 0.475131i \(-0.842401\pi\)
−0.0284821 + 0.999594i \(0.509067\pi\)
\(360\) 0 0
\(361\) 7.75193 + 13.4267i 0.407996 + 0.706670i
\(362\) 1.56347i 0.0821740i
\(363\) 0 0
\(364\) 8.53700 + 4.25672i 0.447460 + 0.223113i
\(365\) 26.6013 1.39238
\(366\) 0 0
\(367\) −7.10630 12.3085i −0.370946 0.642497i 0.618765 0.785576i \(-0.287633\pi\)
−0.989711 + 0.143079i \(0.954300\pi\)
\(368\) −3.78370 −0.197239
\(369\) 0 0
\(370\) 1.24018 0.716021i 0.0644741 0.0372241i
\(371\) 5.59190 + 2.51020i 0.290317 + 0.130323i
\(372\) 0 0
\(373\) 15.6299 27.0718i 0.809288 1.40173i −0.104070 0.994570i \(-0.533187\pi\)
0.913358 0.407157i \(-0.133480\pi\)
\(374\) 9.39993 + 16.2812i 0.486059 + 0.841879i
\(375\) 0 0
\(376\) −2.65672 4.60157i −0.137010 0.237308i
\(377\) −11.2577 21.4668i −0.579799 1.10560i
\(378\) 0 0
\(379\) 19.0369 + 10.9909i 0.977858 + 0.564567i 0.901623 0.432523i \(-0.142377\pi\)
0.0762355 + 0.997090i \(0.475710\pi\)
\(380\) 19.6435 1.00769
\(381\) 0 0
\(382\) −8.13473 4.69659i −0.416209 0.240298i
\(383\) 4.21349 + 2.43266i 0.215299 + 0.124303i 0.603772 0.797157i \(-0.293664\pi\)
−0.388472 + 0.921460i \(0.626997\pi\)
\(384\) 0 0
\(385\) −40.6539 18.2495i −2.07192 0.930082i
\(386\) 4.57994 + 7.93269i 0.233113 + 0.403764i
\(387\) 0 0
\(388\) −14.8742 + 8.58763i −0.755123 + 0.435971i
\(389\) −6.43897 + 11.1526i −0.326469 + 0.565460i −0.981809 0.189874i \(-0.939192\pi\)
0.655340 + 0.755334i \(0.272525\pi\)
\(390\) 0 0
\(391\) 14.1234 0.714253
\(392\) 1.41346 + 6.85581i 0.0713907 + 0.346271i
\(393\) 0 0
\(394\) 7.74526 13.4152i 0.390201 0.675847i
\(395\) 40.9576 + 23.6469i 2.06080 + 1.18980i
\(396\) 0 0
\(397\) 25.8091 + 14.9009i 1.29532 + 0.747855i 0.979593 0.200993i \(-0.0644170\pi\)
0.315731 + 0.948849i \(0.397750\pi\)
\(398\) 5.48387i 0.274882i
\(399\) 0 0
\(400\) 3.09168 5.35494i 0.154584 0.267747i
\(401\) 9.85564i 0.492167i 0.969249 + 0.246084i \(0.0791438\pi\)
−0.969249 + 0.246084i \(0.920856\pi\)
\(402\) 0 0
\(403\) −3.26272 + 1.71104i −0.162528 + 0.0852332i
\(404\) −1.22413 2.12026i −0.0609028 0.105487i
\(405\) 0 0
\(406\) 7.28430 16.2270i 0.361514 0.805334i
\(407\) 1.07838 + 1.86780i 0.0534532 + 0.0925836i
\(408\) 0 0
\(409\) 25.4173i 1.25681i 0.777888 + 0.628403i \(0.216291\pi\)
−0.777888 + 0.628403i \(0.783709\pi\)
\(410\) 3.54471i 0.175061i
\(411\) 0 0
\(412\) 8.96428 + 15.5266i 0.441638 + 0.764940i
\(413\) −21.2848 + 2.17131i −1.04736 + 0.106843i
\(414\) 0 0
\(415\) 15.3473 + 26.5823i 0.753370 + 1.30487i
\(416\) −3.04674 1.92804i −0.149379 0.0945301i
\(417\) 0 0
\(418\) 29.5846i 1.44703i
\(419\) 15.5587 26.9484i 0.760091 1.31652i −0.182712 0.983167i \(-0.558488\pi\)
0.942803 0.333350i \(-0.108179\pi\)
\(420\) 0 0
\(421\) 13.8090i 0.673009i 0.941682 + 0.336505i \(0.109245\pi\)
−0.941682 + 0.336505i \(0.890755\pi\)
\(422\) −4.41210 2.54733i −0.214778 0.124002i
\(423\) 0 0
\(424\) −2.00634 1.15836i −0.0974366 0.0562551i
\(425\) −11.5403 + 19.9884i −0.559787 + 0.969580i
\(426\) 0 0
\(427\) 24.3809 + 10.9446i 1.17988 + 0.529645i
\(428\) −9.90239 −0.478650
\(429\) 0 0
\(430\) −5.52186 + 9.56414i −0.266288 + 0.461224i
\(431\) 27.4347 15.8394i 1.32148 0.762958i 0.337516 0.941320i \(-0.390413\pi\)
0.983965 + 0.178362i \(0.0570798\pi\)
\(432\) 0 0
\(433\) −13.7233 23.7695i −0.659500 1.14229i −0.980745 0.195292i \(-0.937435\pi\)
0.321245 0.946996i \(-0.395899\pi\)
\(434\) −2.46633 1.10714i −0.118388 0.0531442i
\(435\) 0 0
\(436\) 3.08121 + 1.77894i 0.147563 + 0.0851957i
\(437\) 19.2478 + 11.1127i 0.920748 + 0.531594i
\(438\) 0 0
\(439\) 12.1823 0.581431 0.290715 0.956810i \(-0.406107\pi\)
0.290715 + 0.956810i \(0.406107\pi\)
\(440\) 14.5864 + 8.42146i 0.695379 + 0.401477i
\(441\) 0 0
\(442\) 11.3726 + 7.19681i 0.540939 + 0.342317i
\(443\) −14.9531 25.8996i −0.710445 1.23053i −0.964690 0.263387i \(-0.915160\pi\)
0.254245 0.967140i \(-0.418173\pi\)
\(444\) 0 0
\(445\) −9.05080 15.6764i −0.429049 0.743135i
\(446\) 4.99619 8.65366i 0.236577 0.409763i
\(447\) 0 0
\(448\) −0.268506 2.63209i −0.0126857 0.124355i
\(449\) −30.6709 + 17.7079i −1.44745 + 0.835685i −0.998329 0.0577858i \(-0.981596\pi\)
−0.449121 + 0.893471i \(0.648263\pi\)
\(450\) 0 0
\(451\) 5.33858 0.251384
\(452\) 2.44458 + 4.23414i 0.114983 + 0.199157i
\(453\) 0 0
\(454\) −13.2146 −0.620191
\(455\) −31.8417 + 1.94655i −1.49276 + 0.0912556i
\(456\) 0 0
\(457\) 20.5116i 0.959490i 0.877408 + 0.479745i \(0.159271\pi\)
−0.877408 + 0.479745i \(0.840729\pi\)
\(458\) −4.97993 8.62549i −0.232697 0.403043i
\(459\) 0 0
\(460\) 10.9581 6.32664i 0.510922 0.294981i
\(461\) 2.94204 1.69858i 0.137024 0.0791110i −0.429921 0.902867i \(-0.641459\pi\)
0.566945 + 0.823756i \(0.308125\pi\)
\(462\) 0 0
\(463\) 39.3586i 1.82915i −0.404417 0.914575i \(-0.632526\pi\)
0.404417 0.914575i \(-0.367474\pi\)
\(464\) −3.36143 + 5.82216i −0.156050 + 0.270287i
\(465\) 0 0
\(466\) −7.43454 + 4.29233i −0.344399 + 0.198839i
\(467\) −2.99442 5.18650i −0.138565 0.240002i 0.788388 0.615178i \(-0.210916\pi\)
−0.926954 + 0.375175i \(0.877582\pi\)
\(468\) 0 0
\(469\) −20.5933 28.5274i −0.950911 1.31727i
\(470\) 15.3883 + 8.88446i 0.709811 + 0.409810i
\(471\) 0 0
\(472\) 8.08665 0.372218
\(473\) −14.4043 8.31631i −0.662309 0.382384i
\(474\) 0 0
\(475\) −31.4549 + 18.1605i −1.44325 + 0.833262i
\(476\) 1.00225 + 9.82481i 0.0459381 + 0.450319i
\(477\) 0 0
\(478\) 1.17300 0.0536516
\(479\) −11.8476 + 6.84021i −0.541330 + 0.312537i −0.745618 0.666374i \(-0.767846\pi\)
0.204288 + 0.978911i \(0.434512\pi\)
\(480\) 0 0
\(481\) 1.30468 + 0.825631i 0.0594885 + 0.0376455i
\(482\) −24.3882 −1.11085
\(483\) 0 0
\(484\) −7.18332 + 12.4419i −0.326514 + 0.565539i
\(485\) 28.7183 49.7416i 1.30403 2.25865i
\(486\) 0 0
\(487\) 1.05079i 0.0476156i −0.999717 0.0238078i \(-0.992421\pi\)
0.999717 0.0238078i \(-0.00757898\pi\)
\(488\) −8.74773 5.05050i −0.395991 0.228626i
\(489\) 0 0
\(490\) −15.5570 17.4918i −0.702793 0.790201i
\(491\) 13.7757 23.8602i 0.621688 1.07679i −0.367484 0.930030i \(-0.619781\pi\)
0.989171 0.146765i \(-0.0468861\pi\)
\(492\) 0 0
\(493\) 12.5472 21.7324i 0.565097 0.978778i
\(494\) 9.83622 + 18.7563i 0.442553 + 0.843886i
\(495\) 0 0
\(496\) 0.884906 + 0.510901i 0.0397335 + 0.0229401i
\(497\) −4.21562 5.83979i −0.189096 0.261950i
\(498\) 0 0
\(499\) −1.82233 + 1.05212i −0.0815788 + 0.0470995i −0.540235 0.841515i \(-0.681664\pi\)
0.458656 + 0.888614i \(0.348331\pi\)
\(500\) 3.95733i 0.176977i
\(501\) 0 0
\(502\) −18.4721 + 10.6649i −0.824452 + 0.475998i
\(503\) −19.3301 33.4807i −0.861886 1.49283i −0.870106 0.492864i \(-0.835950\pi\)
0.00822020 0.999966i \(-0.497383\pi\)
\(504\) 0 0
\(505\) 7.09046 + 4.09368i 0.315521 + 0.182166i
\(506\) 9.52837 + 16.5036i 0.423588 + 0.733675i
\(507\) 0 0
\(508\) 4.14641 7.18180i 0.183967 0.318641i
\(509\) 25.4411i 1.12766i 0.825892 + 0.563828i \(0.190672\pi\)
−0.825892 + 0.563828i \(0.809328\pi\)
\(510\) 0 0
\(511\) −8.61888 + 19.2000i −0.381277 + 0.849359i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 12.8591i 0.567191i
\(515\) −51.9233 29.9779i −2.28801 1.32099i
\(516\) 0 0
\(517\) −13.3806 + 23.1759i −0.588479 + 1.01928i
\(518\) 0.114980 + 1.12712i 0.00505194 + 0.0495228i
\(519\) 0 0
\(520\) 12.0476 + 0.489457i 0.528321 + 0.0214641i
\(521\) −7.99393 + 13.8459i −0.350221 + 0.606600i −0.986288 0.165034i \(-0.947227\pi\)
0.636067 + 0.771634i \(0.280560\pi\)
\(522\) 0 0
\(523\) 18.2292 0.797107 0.398553 0.917145i \(-0.369512\pi\)
0.398553 + 0.917145i \(0.369512\pi\)
\(524\) −3.08084 5.33618i −0.134587 0.233112i
\(525\) 0 0
\(526\) −21.5295 + 12.4300i −0.938730 + 0.541976i
\(527\) −3.30309 1.90704i −0.143885 0.0830720i
\(528\) 0 0
\(529\) −8.68359 −0.377547
\(530\) 7.74748 0.336529
\(531\) 0 0
\(532\) −6.36455 + 14.1781i −0.275938 + 0.614700i
\(533\) 3.38460 1.77496i 0.146603 0.0768822i
\(534\) 0 0
\(535\) 28.6785 16.5575i 1.23988 0.715845i
\(536\) 6.64910 + 11.5166i 0.287197 + 0.497441i
\(537\) 0 0
\(538\) 20.6024i 0.888231i
\(539\) 26.3439 23.4299i 1.13471 1.00920i
\(540\) 0 0
\(541\) 16.6334 9.60332i 0.715128 0.412879i −0.0978290 0.995203i \(-0.531190\pi\)
0.812957 + 0.582324i \(0.197857\pi\)
\(542\) 5.28145 0.226858
\(543\) 0 0
\(544\) 3.73270i 0.160038i
\(545\) −11.8981 −0.509658
\(546\) 0 0
\(547\) −12.3643 −0.528659 −0.264329 0.964432i \(-0.585151\pi\)
−0.264329 + 0.964432i \(0.585151\pi\)
\(548\) 7.43816i 0.317742i
\(549\) 0 0
\(550\) −31.1427 −1.32793
\(551\) 34.1994 19.7450i 1.45694 0.841166i
\(552\) 0 0
\(553\) −30.3380 + 21.9004i −1.29010 + 0.931298i
\(554\) 5.25013i 0.223057i
\(555\) 0 0
\(556\) −2.44199 4.22965i −0.103563 0.179377i
\(557\) 25.5877 14.7731i 1.08419 0.625956i 0.152165 0.988355i \(-0.451376\pi\)
0.932023 + 0.362399i \(0.118042\pi\)
\(558\) 0 0
\(559\) −11.8972 0.483345i −0.503196 0.0204433i
\(560\) 5.17868 + 7.17389i 0.218839 + 0.303152i
\(561\) 0 0
\(562\) 31.3151 1.32095
\(563\) 2.52309 0.106336 0.0531678 0.998586i \(-0.483068\pi\)
0.0531678 + 0.998586i \(0.483068\pi\)
\(564\) 0 0
\(565\) −14.1596 8.17505i −0.595699 0.343927i
\(566\) 6.68606 3.86020i 0.281036 0.162256i
\(567\) 0 0
\(568\) 1.36113 + 2.35754i 0.0571115 + 0.0989201i
\(569\) −10.4325 −0.437352 −0.218676 0.975798i \(-0.570174\pi\)
−0.218676 + 0.975798i \(0.570174\pi\)
\(570\) 0 0
\(571\) 0.0728934 0.126255i 0.00305049 0.00528361i −0.864496 0.502639i \(-0.832362\pi\)
0.867547 + 0.497356i \(0.165696\pi\)
\(572\) −0.737156 + 18.1445i −0.0308221 + 0.758660i
\(573\) 0 0
\(574\) 2.55847 + 1.14849i 0.106788 + 0.0479372i
\(575\) −11.6980 + 20.2615i −0.487840 + 0.844964i
\(576\) 0 0
\(577\) 19.4377 + 11.2223i 0.809201 + 0.467192i 0.846678 0.532105i \(-0.178599\pi\)
−0.0374775 + 0.999297i \(0.511932\pi\)
\(578\) 3.06694i 0.127568i
\(579\) 0 0
\(580\) 22.4822i 0.933524i
\(581\) −24.1589 + 2.46450i −1.00228 + 0.102245i
\(582\) 0 0
\(583\) 11.6683i 0.483250i
\(584\) 3.97728 6.88886i 0.164581 0.285063i
\(585\) 0 0
\(586\) −10.6150 18.3856i −0.438500 0.759504i
\(587\) 18.2824 + 10.5554i 0.754596 + 0.435666i 0.827352 0.561684i \(-0.189846\pi\)
−0.0727563 + 0.997350i \(0.523180\pi\)
\(588\) 0 0
\(589\) −3.00103 5.19794i −0.123655 0.214177i
\(590\) −23.4199 + 13.5215i −0.964183 + 0.556671i
\(591\) 0 0
\(592\) 0.428222i 0.0175998i
\(593\) 25.8339 14.9152i 1.06087 0.612494i 0.135198 0.990819i \(-0.456833\pi\)
0.925673 + 0.378324i \(0.123500\pi\)
\(594\) 0 0
\(595\) −19.3305 26.7780i −0.792472 1.09779i
\(596\) −4.86592 2.80934i −0.199316 0.115075i
\(597\) 0 0
\(598\) 11.5280 + 7.29514i 0.471414 + 0.298321i
\(599\) 16.7520 29.0153i 0.684469 1.18553i −0.289135 0.957288i \(-0.593368\pi\)
0.973603 0.228246i \(-0.0732990\pi\)
\(600\) 0 0
\(601\) 18.9681 32.8537i 0.773724 1.34013i −0.161785 0.986826i \(-0.551725\pi\)
0.935509 0.353303i \(-0.114942\pi\)
\(602\) −5.11402 7.08432i −0.208432 0.288735i
\(603\) 0 0
\(604\) 7.19648 + 4.15489i 0.292821 + 0.169060i
\(605\) 48.0442i 1.95327i
\(606\) 0 0
\(607\) −17.9335 + 31.0618i −0.727900 + 1.26076i 0.229870 + 0.973221i \(0.426170\pi\)
−0.957769 + 0.287538i \(0.907163\pi\)
\(608\) 2.93700 5.08703i 0.119111 0.206306i
\(609\) 0 0
\(610\) 33.7793 1.36768
\(611\) −0.777684 + 19.1421i −0.0314617 + 0.774405i
\(612\) 0 0
\(613\) 10.9563 6.32562i 0.442521 0.255489i −0.262146 0.965028i \(-0.584430\pi\)
0.704666 + 0.709539i \(0.251097\pi\)
\(614\) −33.9938 −1.37188
\(615\) 0 0
\(616\) −10.8044 + 7.79946i −0.435321 + 0.314249i
\(617\) −34.6231 + 19.9896i −1.39387 + 0.804753i −0.993741 0.111705i \(-0.964369\pi\)
−0.400131 + 0.916458i \(0.631035\pi\)
\(618\) 0 0
\(619\) −8.58564 4.95692i −0.345086 0.199235i 0.317433 0.948281i \(-0.397179\pi\)
−0.662519 + 0.749045i \(0.730513\pi\)
\(620\) −3.41706 −0.137232
\(621\) 0 0
\(622\) 0.633728 + 0.365883i 0.0254102 + 0.0146706i
\(623\) 14.2473 1.45340i 0.570805 0.0582291i
\(624\) 0 0
\(625\) 8.84144 + 15.3138i 0.353658 + 0.612553i
\(626\) −6.38016 + 3.68359i −0.255002 + 0.147226i
\(627\) 0 0
\(628\) 2.60751 4.51635i 0.104051 0.180222i
\(629\) 1.59843i 0.0637334i
\(630\) 0 0
\(631\) 21.7056 12.5318i 0.864088 0.498881i −0.00129129 0.999999i \(-0.500411\pi\)
0.865379 + 0.501118i \(0.167078\pi\)
\(632\) 12.2475 7.07112i 0.487181 0.281274i
\(633\) 0 0
\(634\) 14.2035 + 24.6012i 0.564093 + 0.977038i
\(635\) 27.7325i 1.10053i
\(636\) 0 0
\(637\) 8.91183 23.6131i 0.353100 0.935586i
\(638\) 33.8598 1.34052
\(639\) 0 0
\(640\) −1.67208 2.89612i −0.0660946 0.114479i
\(641\) 8.03012 0.317171 0.158585 0.987345i \(-0.449307\pi\)
0.158585 + 0.987345i \(0.449307\pi\)
\(642\) 0 0
\(643\) −13.3951 + 7.73367i −0.528251 + 0.304986i −0.740304 0.672272i \(-0.765318\pi\)
0.212053 + 0.977258i \(0.431985\pi\)
\(644\) 1.01595 + 9.95905i 0.0400339 + 0.392442i
\(645\) 0 0
\(646\) −10.9629 + 18.9884i −0.431331 + 0.747087i
\(647\) 3.34618 + 5.79575i 0.131552 + 0.227854i 0.924275 0.381727i \(-0.124671\pi\)
−0.792723 + 0.609582i \(0.791337\pi\)
\(648\) 0 0
\(649\) −20.3643 35.2720i −0.799370 1.38455i
\(650\) −19.7441 + 10.3543i −0.774428 + 0.406127i
\(651\) 0 0
\(652\) 10.8077 + 6.23982i 0.423262 + 0.244370i
\(653\) 24.1607 0.945482 0.472741 0.881201i \(-0.343265\pi\)
0.472741 + 0.881201i \(0.343265\pi\)
\(654\) 0 0
\(655\) 17.8450 + 10.3028i 0.697261 + 0.402564i
\(656\) −0.917963 0.529986i −0.0358404 0.0206925i
\(657\) 0 0
\(658\) −11.3984 + 8.22826i −0.444356 + 0.320771i
\(659\) 6.47769 + 11.2197i 0.252335 + 0.437057i 0.964168 0.265291i \(-0.0854681\pi\)
−0.711833 + 0.702349i \(0.752135\pi\)
\(660\) 0 0
\(661\) 16.7049 9.64460i 0.649747 0.375132i −0.138612 0.990347i \(-0.544264\pi\)
0.788359 + 0.615215i \(0.210931\pi\)
\(662\) −10.1489 + 17.5783i −0.394446 + 0.683201i
\(663\) 0 0
\(664\) 9.17859 0.356198
\(665\) −5.27440 51.7036i −0.204533 2.00498i
\(666\) 0 0
\(667\) 12.7186 22.0293i 0.492468 0.852979i
\(668\) −0.409946 0.236682i −0.0158613 0.00915752i
\(669\) 0 0
\(670\) −38.5132 22.2356i −1.48789 0.859037i
\(671\) 50.8740i 1.96397i
\(672\) 0 0
\(673\) −14.7943 + 25.6245i −0.570279 + 0.987752i 0.426258 + 0.904602i \(0.359832\pi\)
−0.996537 + 0.0831505i \(0.973502\pi\)
\(674\) 8.85616i 0.341127i
\(675\) 0 0
\(676\) 5.56530 + 11.7485i 0.214050 + 0.451866i
\(677\) −6.92108 11.9877i −0.265999 0.460723i 0.701826 0.712348i \(-0.252368\pi\)
−0.967825 + 0.251625i \(0.919035\pi\)
\(678\) 0 0
\(679\) 26.5972 + 36.8444i 1.02071 + 1.41396i
\(680\) 6.24136 + 10.8104i 0.239345 + 0.414558i
\(681\) 0 0
\(682\) 5.14634i 0.197063i
\(683\) 35.7175i 1.36669i −0.730094 0.683347i \(-0.760524\pi\)
0.730094 0.683347i \(-0.239476\pi\)
\(684\) 0 0
\(685\) 12.4372 + 21.5418i 0.475200 + 0.823070i
\(686\) 17.6656 5.56119i 0.674475 0.212327i
\(687\) 0 0
\(688\) 1.65120 + 2.85996i 0.0629514 + 0.109035i
\(689\) 3.87944 + 7.39755i 0.147795 + 0.281824i
\(690\) 0 0
\(691\) 26.0063i 0.989326i 0.869085 + 0.494663i \(0.164709\pi\)
−0.869085 + 0.494663i \(0.835291\pi\)
\(692\) −5.06601 + 8.77459i −0.192581 + 0.333560i
\(693\) 0 0
\(694\) 6.89722i 0.261815i
\(695\) 14.1446 + 8.16638i 0.536535 + 0.309768i
\(696\) 0 0
\(697\) 3.42648 + 1.97828i 0.129787 + 0.0749327i
\(698\) 2.09753 3.63303i 0.0793928 0.137512i
\(699\) 0 0
\(700\) −14.9248 6.69975i −0.564106 0.253227i
\(701\) −24.7068 −0.933164 −0.466582 0.884478i \(-0.654515\pi\)
−0.466582 + 0.884478i \(0.654515\pi\)
\(702\) 0 0
\(703\) −1.25769 + 2.17838i −0.0474346 + 0.0821592i
\(704\) 4.36176 2.51826i 0.164390 0.0949107i
\(705\) 0 0
\(706\) −12.5343 21.7100i −0.471734 0.817067i
\(707\) −5.25202 + 3.79132i −0.197523 + 0.142587i
\(708\) 0 0
\(709\) −19.3947 11.1975i −0.728383 0.420532i 0.0894476 0.995992i \(-0.471490\pi\)
−0.817830 + 0.575460i \(0.804823\pi\)
\(710\) −7.88397 4.55181i −0.295880 0.170826i
\(711\) 0 0
\(712\) −5.41291 −0.202857
\(713\) −3.34822 1.93310i −0.125392 0.0723951i
\(714\) 0 0
\(715\) −28.2041 53.7812i −1.05477 2.01130i
\(716\) −5.35710 9.27876i −0.200204 0.346764i
\(717\) 0 0
\(718\) −9.93716 17.2117i −0.370852 0.642334i
\(719\) −12.6421 + 21.8968i −0.471472 + 0.816613i −0.999467 0.0326342i \(-0.989610\pi\)
0.527996 + 0.849247i \(0.322944\pi\)
\(720\) 0 0
\(721\) 38.4604 27.7638i 1.43234 1.03398i
\(722\) −13.4267 + 7.75193i −0.499691 + 0.288497i
\(723\) 0 0
\(724\) −1.56347 −0.0581058
\(725\) 20.7849 + 36.0005i 0.771932 + 1.33702i
\(726\) 0 0
\(727\) −39.9649 −1.48221 −0.741107 0.671386i \(-0.765699\pi\)
−0.741107 + 0.671386i \(0.765699\pi\)
\(728\) −4.25672 + 8.53700i −0.157764 + 0.316402i
\(729\) 0 0
\(730\) 26.6013i 0.984558i
\(731\) −6.16343 10.6754i −0.227963 0.394843i
\(732\) 0 0
\(733\) −20.8858 + 12.0584i −0.771433 + 0.445387i −0.833386 0.552692i \(-0.813601\pi\)
0.0619525 + 0.998079i \(0.480267\pi\)
\(734\) 12.3085 7.10630i 0.454314 0.262298i
\(735\) 0 0
\(736\) 3.78370i 0.139469i
\(737\) 33.4884 58.0036i 1.23356 2.13659i
\(738\) 0 0
\(739\) 24.7187 14.2714i 0.909292 0.524980i 0.0290890 0.999577i \(-0.490739\pi\)
0.880203 + 0.474597i \(0.157406\pi\)
\(740\) 0.716021 + 1.24018i 0.0263214 + 0.0455901i
\(741\) 0 0
\(742\) −2.51020 + 5.59190i −0.0921524 + 0.205285i
\(743\) 37.9322 + 21.9001i 1.39160 + 0.803438i 0.993492 0.113902i \(-0.0363350\pi\)
0.398104 + 0.917340i \(0.369668\pi\)
\(744\) 0 0
\(745\) 18.7897 0.688403
\(746\) 27.0718 + 15.6299i 0.991171 + 0.572253i
\(747\) 0 0
\(748\) −16.2812 + 9.39993i −0.595298 + 0.343696i
\(749\) 2.65885 + 26.0640i 0.0971522 + 0.952357i
\(750\) 0 0
\(751\) −40.4674 −1.47668 −0.738338 0.674431i \(-0.764389\pi\)
−0.738338 + 0.674431i \(0.764389\pi\)
\(752\) 4.60157 2.65672i 0.167802 0.0968804i
\(753\) 0 0
\(754\) 21.4668 11.2577i 0.781774 0.409980i
\(755\) −27.7892 −1.01135
\(756\) 0 0
\(757\) −6.36103 + 11.0176i −0.231196 + 0.400442i −0.958160 0.286232i \(-0.907597\pi\)
0.726965 + 0.686675i \(0.240930\pi\)
\(758\) −10.9909 + 19.0369i −0.399209 + 0.691450i
\(759\) 0 0
\(760\) 19.6435i 0.712546i
\(761\) 26.6191 + 15.3686i 0.964943 + 0.557110i 0.897691 0.440626i \(-0.145244\pi\)
0.0672521 + 0.997736i \(0.478577\pi\)
\(762\) 0 0
\(763\) 3.85501 8.58769i 0.139561 0.310895i
\(764\) 4.69659 8.13473i 0.169917 0.294304i
\(765\) 0 0
\(766\) −2.43266 + 4.21349i −0.0878956 + 0.152240i
\(767\) −24.6380 15.5914i −0.889625 0.562973i
\(768\) 0 0
\(769\) −10.0887 5.82469i −0.363806 0.210044i 0.306943 0.951728i \(-0.400694\pi\)
−0.670749 + 0.741684i \(0.734027\pi\)
\(770\) 18.2495 40.6539i 0.657667 1.46507i
\(771\) 0 0
\(772\) −7.93269 + 4.57994i −0.285504 + 0.164836i
\(773\) 28.3529i 1.01978i 0.860238 + 0.509892i \(0.170315\pi\)
−0.860238 + 0.509892i \(0.829685\pi\)
\(774\) 0 0
\(775\) 5.47169 3.15908i 0.196549 0.113478i
\(776\) −8.58763 14.8742i −0.308278 0.533953i
\(777\) 0 0
\(778\) −11.1526 6.43897i −0.399841 0.230848i
\(779\) 3.11314 + 5.39211i 0.111540 + 0.193193i
\(780\) 0 0
\(781\) 6.85535 11.8738i 0.245304 0.424878i
\(782\) 14.1234i 0.505053i
\(783\) 0 0
\(784\) −6.85581 + 1.41346i −0.244850 + 0.0504808i
\(785\) 17.4398i 0.622455i
\(786\) 0 0
\(787\) 2.13734i 0.0761881i 0.999274 + 0.0380940i \(0.0121286\pi\)
−0.999274 + 0.0380940i \(0.987871\pi\)
\(788\) 13.4152 + 7.74526i 0.477896 + 0.275914i
\(789\) 0 0
\(790\) −23.6469 + 40.9576i −0.841319 + 1.45721i
\(791\) 10.4883 7.57125i 0.372919 0.269203i
\(792\) 0 0
\(793\) 16.9145 + 32.2536i 0.600652 + 1.14536i
\(794\) −14.9009 + 25.8091i −0.528814 + 0.915932i
\(795\) 0 0
\(796\) 5.48387 0.194371
\(797\) 13.9817 + 24.2170i 0.495257 + 0.857810i 0.999985 0.00546806i \(-0.00174055\pi\)
−0.504728 + 0.863278i \(0.668407\pi\)
\(798\) 0 0
\(799\) −17.1763 + 9.91672i −0.607653 + 0.350829i
\(800\) 5.35494 + 3.09168i 0.189326 + 0.109307i
\(801\) 0 0
\(802\) −9.85564 −0.348015
\(803\) −40.0634 −1.41381
\(804\) 0 0
\(805\) −19.5946 27.1439i −0.690619 0.956696i
\(806\) −1.71104 3.26272i −0.0602690 0.114924i
\(807\) 0 0
\(808\) 2.12026 1.22413i 0.0745903 0.0430648i
\(809\) −24.3621 42.1965i −0.856527 1.48355i −0.875221 0.483724i \(-0.839284\pi\)
0.0186933 0.999825i \(-0.494049\pi\)
\(810\) 0 0
\(811\) 31.9965i 1.12355i −0.827290 0.561774i \(-0.810119\pi\)
0.827290 0.561774i \(-0.189881\pi\)
\(812\) 16.2270 + 7.28430i 0.569457 + 0.255629i
\(813\) 0 0
\(814\) −1.86780 + 1.07838i −0.0654665 + 0.0377971i
\(815\) −41.7338 −1.46187
\(816\) 0 0
\(817\) 19.3983i 0.678660i
\(818\) −25.4173 −0.888696
\(819\) 0 0
\(820\) 3.54471 0.123787
\(821\) 12.4740i 0.435347i −0.976022 0.217673i \(-0.930153\pi\)
0.976022 0.217673i \(-0.0698467\pi\)
\(822\) 0 0
\(823\) −16.0260 −0.558631 −0.279316 0.960199i \(-0.590108\pi\)
−0.279316 + 0.960199i \(0.590108\pi\)
\(824\) −15.5266 + 8.96428i −0.540894 + 0.312286i
\(825\) 0 0
\(826\) −2.17131 21.2848i −0.0755496 0.740593i
\(827\) 6.94225i 0.241406i −0.992689 0.120703i \(-0.961485\pi\)
0.992689 0.120703i \(-0.0385148\pi\)
\(828\) 0 0
\(829\) 4.54445 + 7.87122i 0.157835 + 0.273379i 0.934088 0.357043i \(-0.116215\pi\)
−0.776252 + 0.630422i \(0.782882\pi\)
\(830\) −26.5823 + 15.3473i −0.922686 + 0.532713i
\(831\) 0 0
\(832\) 1.92804 3.04674i 0.0668429 0.105627i
\(833\) 25.5907 5.27604i 0.886665 0.182804i
\(834\) 0 0
\(835\) 1.58300 0.0547821
\(836\) −29.5846 −1.02320
\(837\) 0 0
\(838\) 26.9484 + 15.5587i 0.930918 + 0.537466i
\(839\) 15.8840 9.17062i 0.548376 0.316605i −0.200091 0.979777i \(-0.564124\pi\)
0.748467 + 0.663173i \(0.230790\pi\)
\(840\) 0 0
\(841\) −8.09837 14.0268i −0.279254 0.483683i
\(842\) −13.8090 −0.475889
\(843\) 0 0
\(844\) 2.54733 4.41210i 0.0876826 0.151871i
\(845\) −35.7622 24.7195i −1.23026 0.850376i
\(846\) 0 0
\(847\) 34.6769 + 15.5664i 1.19151 + 0.534869i
\(848\) 1.15836 2.00634i 0.0397783 0.0688981i
\(849\) 0 0
\(850\) −19.9884 11.5403i −0.685597 0.395829i
\(851\) 1.62027i 0.0555420i
\(852\) 0 0
\(853\) 53.7617i 1.84077i 0.391018 + 0.920383i \(0.372123\pi\)
−0.391018 + 0.920383i \(0.627877\pi\)
\(854\) −10.9446 + 24.3809i −0.374516 + 0.834298i
\(855\) 0 0
\(856\) 9.90239i 0.338457i
\(857\) 19.1290 33.1324i 0.653434 1.13178i −0.328850 0.944382i \(-0.606661\pi\)
0.982284 0.187399i \(-0.0600056\pi\)
\(858\) 0 0
\(859\) 7.89494 + 13.6744i 0.269372 + 0.466566i 0.968700 0.248235i \(-0.0798506\pi\)
−0.699328 + 0.714801i \(0.746517\pi\)
\(860\) −9.56414 5.52186i −0.326135 0.188294i
\(861\) 0 0
\(862\) 15.8394 + 27.4347i 0.539492 + 0.934428i
\(863\) −38.6063 + 22.2894i −1.31417 + 0.758739i −0.982785 0.184755i \(-0.940851\pi\)
−0.331390 + 0.943494i \(0.607518\pi\)
\(864\) 0 0
\(865\) 33.8830i 1.15206i
\(866\) 23.7695 13.7233i 0.807720 0.466337i
\(867\) 0 0
\(868\) 1.10714 2.46633i 0.0375786 0.0837128i
\(869\) −61.6851 35.6139i −2.09252 1.20812i
\(870\) 0 0
\(871\) 1.94635 47.9078i 0.0659496 1.62329i
\(872\) −1.77894 + 3.08121i −0.0602425 + 0.104343i
\(873\) 0 0
\(874\) −11.1127 + 19.2478i −0.375894 + 0.651067i
\(875\) 10.4160 1.06256i 0.352127 0.0359212i
\(876\) 0 0
\(877\) 0.121237 + 0.0699963i 0.00409389 + 0.00236361i 0.502046 0.864841i \(-0.332581\pi\)
−0.497952 + 0.867205i \(0.665914\pi\)
\(878\) 12.1823i 0.411134i
\(879\) 0 0
\(880\) −8.42146 + 14.5864i −0.283887 + 0.491707i
\(881\) 22.6522 39.2347i 0.763172 1.32185i −0.178036 0.984024i \(-0.556974\pi\)
0.941208 0.337828i \(-0.109692\pi\)
\(882\) 0 0
\(883\) −46.5419 −1.56626 −0.783130 0.621858i \(-0.786378\pi\)
−0.783130 + 0.621858i \(0.786378\pi\)
\(884\) −7.19681 + 11.3726i −0.242055 + 0.382501i
\(885\) 0 0
\(886\) 25.8996 14.9531i 0.870114 0.502360i
\(887\) −48.9299 −1.64291 −0.821453 0.570276i \(-0.806836\pi\)
−0.821453 + 0.570276i \(0.806836\pi\)
\(888\) 0 0
\(889\) −20.0165 8.98538i −0.671331 0.301360i
\(890\) 15.6764 9.05080i 0.525476 0.303383i
\(891\) 0 0
\(892\) 8.65366 + 4.99619i 0.289746 + 0.167285i
\(893\) −31.2111 −1.04444
\(894\) 0 0
\(895\) 31.0296 + 17.9149i 1.03721 + 0.598831i
\(896\) 2.63209 0.268506i 0.0879320 0.00897015i
\(897\) 0 0
\(898\) −17.7079 30.6709i −0.590919 1.02350i
\(899\) −5.94910 + 3.43471i −0.198413 + 0.114554i
\(900\) 0 0
\(901\) −4.32382 + 7.48908i −0.144047 + 0.249497i
\(902\) 5.33858i 0.177755i
\(903\) 0 0
\(904\) −4.23414 + 2.44458i −0.140825 + 0.0813056i
\(905\) 4.52799 2.61424i 0.150515 0.0869001i
\(906\) 0 0
\(907\) −24.9923 43.2879i −0.829856 1.43735i −0.898151 0.439687i \(-0.855089\pi\)
0.0682950 0.997665i \(-0.478244\pi\)
\(908\) 13.2146i 0.438541i
\(909\) 0 0
\(910\) −1.94655 31.8417i −0.0645274 1.05554i
\(911\) −17.2655 −0.572033 −0.286016 0.958225i \(-0.592331\pi\)
−0.286016 + 0.958225i \(0.592331\pi\)
\(912\) 0 0
\(913\) −23.1141 40.0348i −0.764966 1.32496i
\(914\) −20.5116 −0.678462
\(915\) 0 0
\(916\) 8.62549 4.97993i 0.284994 0.164542i
\(917\) −13.2181 + 9.54185i −0.436499 + 0.315100i
\(918\) 0 0
\(919\) −7.95486 + 13.7782i −0.262407 + 0.454502i −0.966881 0.255228i \(-0.917849\pi\)
0.704474 + 0.709729i \(0.251183\pi\)
\(920\) 6.32664 + 10.9581i 0.208583 + 0.361277i
\(921\) 0 0
\(922\) 1.69858 + 2.94204i 0.0559399 + 0.0968908i
\(923\) 0.398434 9.80712i 0.0131146 0.322805i
\(924\) 0 0
\(925\) −2.29311 1.32393i −0.0753969 0.0435304i
\(926\) 39.3586 1.29340
\(927\) 0 0
\(928\) −5.82216 3.36143i −0.191122 0.110344i
\(929\) 19.6257 + 11.3309i 0.643900 + 0.371756i 0.786115 0.618080i \(-0.212089\pi\)
−0.142215 + 0.989836i \(0.545423\pi\)
\(930\) 0 0
\(931\) 39.0271 + 12.9452i 1.27906 + 0.424261i
\(932\) −4.29233 7.43454i −0.140600 0.243527i
\(933\) 0 0
\(934\) 5.18650 2.99442i 0.169707 0.0979806i
\(935\) 31.4348 54.4467i 1.02803 1.78060i
\(936\) 0 0
\(937\) −22.3601 −0.730473 −0.365237 0.930915i \(-0.619012\pi\)
−0.365237 + 0.930915i \(0.619012\pi\)
\(938\) 28.5274 20.5933i 0.931452 0.672395i
\(939\) 0 0
\(940\) −8.88446 + 15.3883i −0.289779 + 0.501912i
\(941\) −24.4378 14.1092i −0.796650 0.459946i 0.0456486 0.998958i \(-0.485465\pi\)
−0.842298 + 0.539012i \(0.818798\pi\)
\(942\) 0 0
\(943\) 3.47330 + 2.00531i 0.113106 + 0.0653019i
\(944\) 8.08665i 0.263198i
\(945\) 0 0
\(946\) 8.31631 14.4043i 0.270387 0.468323i
\(947\) 6.36679i 0.206893i −0.994635 0.103446i \(-0.967013\pi\)
0.994635 0.103446i \(-0.0329870\pi\)
\(948\) 0 0
\(949\) −25.3998 + 13.3202i −0.824512 + 0.432392i
\(950\) −18.1605 31.4549i −0.589205 1.02053i
\(951\) 0 0
\(952\) −9.82481 + 1.00225i −0.318424 + 0.0324832i
\(953\) −1.16258 2.01365i −0.0376597 0.0652285i 0.846581 0.532260i \(-0.178657\pi\)
−0.884241 + 0.467031i \(0.845324\pi\)
\(954\) 0 0
\(955\) 31.4122i 1.01648i
\(956\) 1.17300i 0.0379374i
\(957\) 0 0
\(958\) −6.84021 11.8476i −0.220997 0.382778i
\(959\) −19.5779 + 1.99719i −0.632204 + 0.0644925i
\(960\) 0 0
\(961\) −14.9780 25.9426i −0.483160 0.836858i
\(962\) −0.825631 + 1.30468i −0.0266194 + 0.0420647i
\(963\) 0 0
\(964\) 24.3882i 0.785490i
\(965\) 15.3160 26.5281i 0.493040 0.853971i
\(966\) 0 0
\(967\) 58.7262i 1.88851i 0.329219 + 0.944254i \(0.393215\pi\)
−0.329219 + 0.944254i \(0.606785\pi\)
\(968\) −12.4419 7.18332i −0.399897 0.230881i
\(969\) 0 0
\(970\) 49.7416 + 28.7183i 1.59711 + 0.922090i
\(971\) −5.03497 + 8.72083i −0.161580 + 0.279865i −0.935436 0.353497i \(-0.884992\pi\)
0.773855 + 0.633362i \(0.218326\pi\)
\(972\) 0 0
\(973\) −10.4771 + 7.56322i −0.335881 + 0.242466i
\(974\) 1.05079 0.0336693
\(975\) 0 0
\(976\) 5.05050 8.74773i 0.161663 0.280008i
\(977\) −42.2830 + 24.4121i −1.35275 + 0.781012i −0.988634 0.150341i \(-0.951963\pi\)
−0.364118 + 0.931353i \(0.618629\pi\)
\(978\) 0 0
\(979\) 13.6311 + 23.6098i 0.435653 + 0.754573i
\(980\) 17.4918 15.5570i 0.558756 0.496950i
\(981\) 0 0
\(982\) 23.8602 + 13.7757i 0.761409 + 0.439600i
\(983\) 5.74087 + 3.31449i 0.183105 + 0.105716i 0.588751 0.808315i \(-0.299620\pi\)
−0.405646 + 0.914030i \(0.632953\pi\)
\(984\) 0 0
\(985\) −51.8027 −1.65057
\(986\) 21.7324 + 12.5472i 0.692100 + 0.399584i
\(987\) 0 0
\(988\) −18.7563 + 9.83622i −0.596717 + 0.312932i
\(989\) −6.24765 10.8212i −0.198664 0.344096i
\(990\) 0 0
\(991\) −12.4847 21.6241i −0.396589 0.686911i 0.596714 0.802454i \(-0.296473\pi\)
−0.993303 + 0.115543i \(0.963139\pi\)
\(992\) −0.510901 + 0.884906i −0.0162211 + 0.0280958i
\(993\) 0 0
\(994\) 5.83979 4.21562i 0.185227 0.133711i
\(995\) −15.8820 + 9.16945i −0.503492 + 0.290691i
\(996\) 0 0
\(997\) −39.5168 −1.25151 −0.625754 0.780020i \(-0.715209\pi\)
−0.625754 + 0.780020i \(0.715209\pi\)
\(998\) −1.05212 1.82233i −0.0333044 0.0576849i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.dt.c.1369.10 20
3.2 odd 2 182.2.o.a.95.4 yes 20
7.2 even 3 1638.2.cr.c.667.6 20
13.10 even 6 1638.2.cr.c.361.6 20
21.2 odd 6 182.2.v.a.121.2 yes 20
21.5 even 6 1274.2.v.h.667.4 20
21.11 odd 6 1274.2.m.g.589.9 20
21.17 even 6 1274.2.m.f.589.7 20
21.20 even 2 1274.2.o.h.459.2 20
39.23 odd 6 182.2.v.a.179.2 yes 20
91.23 even 6 inner 1638.2.dt.c.1297.5 20
273.23 odd 6 182.2.o.a.23.9 20
273.62 even 6 1274.2.v.h.361.4 20
273.101 even 6 1274.2.m.f.491.7 20
273.179 odd 6 1274.2.m.g.491.9 20
273.257 even 6 1274.2.o.h.569.7 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.o.a.23.9 20 273.23 odd 6
182.2.o.a.95.4 yes 20 3.2 odd 2
182.2.v.a.121.2 yes 20 21.2 odd 6
182.2.v.a.179.2 yes 20 39.23 odd 6
1274.2.m.f.491.7 20 273.101 even 6
1274.2.m.f.589.7 20 21.17 even 6
1274.2.m.g.491.9 20 273.179 odd 6
1274.2.m.g.589.9 20 21.11 odd 6
1274.2.o.h.459.2 20 21.20 even 2
1274.2.o.h.569.7 20 273.257 even 6
1274.2.v.h.361.4 20 273.62 even 6
1274.2.v.h.667.4 20 21.5 even 6
1638.2.cr.c.361.6 20 13.10 even 6
1638.2.cr.c.667.6 20 7.2 even 3
1638.2.dt.c.1297.5 20 91.23 even 6 inner
1638.2.dt.c.1369.10 20 1.1 even 1 trivial