Properties

Label 1274.2.m.f.491.7
Level $1274$
Weight $2$
Character 1274.491
Analytic conductor $10.173$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(491,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.491"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,-2,10,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 46 x^{18} + 895 x^{16} + 9634 x^{14} + 62977 x^{12} + 257850 x^{10} + 656102 x^{8} + \cdots + 32041 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 491.7
Root \(-2.35757i\) of defining polynomial
Character \(\chi\) \(=\) 1274.491
Dual form 1274.2.m.f.589.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(-1.17879 - 2.04172i) q^{3} +(0.500000 - 0.866025i) q^{4} -3.34415i q^{5} +(-2.04172 - 1.17879i) q^{6} -1.00000i q^{8} +(-1.27907 + 2.21541i) q^{9} +(-1.67208 - 2.89612i) q^{10} +(-4.36176 + 2.51826i) q^{11} -2.35757 q^{12} +(1.92804 + 3.04674i) q^{13} +(-6.82781 + 3.94204i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(1.86635 - 3.23261i) q^{17} +2.55814i q^{18} +(-5.08703 - 2.93700i) q^{19} +(-2.89612 - 1.67208i) q^{20} +(-2.51826 + 4.36176i) q^{22} +(-1.89185 - 3.27678i) q^{23} +(-2.04172 + 1.17879i) q^{24} -6.18336 q^{25} +(3.19311 + 1.67454i) q^{26} -1.04172 q^{27} +(3.36143 + 5.82216i) q^{29} +(-3.94204 + 6.82781i) q^{30} -1.02180i q^{31} +(-0.866025 - 0.500000i) q^{32} +(10.2832 + 5.93699i) q^{33} -3.73270i q^{34} +(1.27907 + 2.21541i) q^{36} +(0.370851 - 0.214111i) q^{37} -5.87400 q^{38} +(3.94784 - 7.52797i) q^{39} -3.34415 q^{40} +(-0.917963 + 0.529986i) q^{41} +(1.65120 - 2.85996i) q^{43} +5.03653i q^{44} +(7.40868 + 4.27741i) q^{45} +(-3.27678 - 1.89185i) q^{46} -5.31343i q^{47} +(-1.17879 + 2.04172i) q^{48} +(-5.35494 + 3.09168i) q^{50} -8.80011 q^{51} +(3.60258 - 0.146362i) q^{52} +2.31672 q^{53} +(-0.902152 + 0.520858i) q^{54} +(8.42146 + 14.5864i) q^{55} +13.8484i q^{57} +(5.82216 + 3.36143i) q^{58} +(7.00324 + 4.04332i) q^{59} +7.88408i q^{60} +(-5.05050 + 8.74773i) q^{61} +(-0.510901 - 0.884906i) q^{62} -1.00000 q^{64} +(10.1888 - 6.44767i) q^{65} +11.8740 q^{66} +(11.5166 - 6.64910i) q^{67} +(-1.86635 - 3.23261i) q^{68} +(-4.46017 + 7.72525i) q^{69} +(2.35754 + 1.36113i) q^{71} +(2.21541 + 1.27907i) q^{72} -7.95457i q^{73} +(0.214111 - 0.370851i) q^{74} +(7.28885 + 12.6247i) q^{75} +(-5.08703 + 2.93700i) q^{76} +(-0.345059 - 8.49334i) q^{78} -14.1422 q^{79} +(-2.89612 + 1.67208i) q^{80} +(5.06517 + 8.77313i) q^{81} +(-0.529986 + 0.917963i) q^{82} -9.17859i q^{83} +(-10.8104 - 6.24136i) q^{85} -3.30240i q^{86} +(7.92480 - 13.7262i) q^{87} +(2.51826 + 4.36176i) q^{88} +(4.68772 - 2.70646i) q^{89} +8.55481 q^{90} -3.78370 q^{92} +(-2.08623 + 1.20449i) q^{93} +(-2.65672 - 4.60157i) q^{94} +(-9.82177 + 17.0118i) q^{95} +2.35757i q^{96} +(-14.8742 - 8.58763i) q^{97} -12.8842i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{3} + 10 q^{4} - 16 q^{9} + 4 q^{10} + 6 q^{11} - 4 q^{12} - 6 q^{13} - 12 q^{15} - 10 q^{16} + 10 q^{17} - 24 q^{19} + 2 q^{22} - 36 q^{25} + 28 q^{27} + 2 q^{29} - 2 q^{30} + 12 q^{33} + 16 q^{36}+ \cdots - 78 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) −1.17879 2.04172i −0.680572 1.17879i −0.974807 0.223052i \(-0.928398\pi\)
0.294234 0.955733i \(-0.404935\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 3.34415i 1.49555i −0.663952 0.747775i \(-0.731122\pi\)
0.663952 0.747775i \(-0.268878\pi\)
\(6\) −2.04172 1.17879i −0.833527 0.481237i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) −1.27907 + 2.21541i −0.426357 + 0.738472i
\(10\) −1.67208 2.89612i −0.528757 0.915834i
\(11\) −4.36176 + 2.51826i −1.31512 + 0.759285i −0.982939 0.183930i \(-0.941118\pi\)
−0.332182 + 0.943215i \(0.607785\pi\)
\(12\) −2.35757 −0.680572
\(13\) 1.92804 + 3.04674i 0.534743 + 0.845015i
\(14\) 0 0
\(15\) −6.82781 + 3.94204i −1.76293 + 1.01783i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.86635 3.23261i 0.452657 0.784024i −0.545894 0.837855i \(-0.683810\pi\)
0.998550 + 0.0538304i \(0.0171430\pi\)
\(18\) 2.55814i 0.602959i
\(19\) −5.08703 2.93700i −1.16705 0.673794i −0.214063 0.976820i \(-0.568670\pi\)
−0.952982 + 0.303026i \(0.902003\pi\)
\(20\) −2.89612 1.67208i −0.647592 0.373888i
\(21\) 0 0
\(22\) −2.51826 + 4.36176i −0.536896 + 0.929931i
\(23\) −1.89185 3.27678i −0.394478 0.683257i 0.598556 0.801081i \(-0.295741\pi\)
−0.993034 + 0.117824i \(0.962408\pi\)
\(24\) −2.04172 + 1.17879i −0.416764 + 0.240619i
\(25\) −6.18336 −1.23667
\(26\) 3.19311 + 1.67454i 0.626220 + 0.328404i
\(27\) −1.04172 −0.200478
\(28\) 0 0
\(29\) 3.36143 + 5.82216i 0.624201 + 1.08115i 0.988695 + 0.149942i \(0.0479088\pi\)
−0.364494 + 0.931206i \(0.618758\pi\)
\(30\) −3.94204 + 6.82781i −0.719714 + 1.24658i
\(31\) 1.02180i 0.183521i −0.995781 0.0917605i \(-0.970751\pi\)
0.995781 0.0917605i \(-0.0292494\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 10.2832 + 5.93699i 1.79007 + 1.03350i
\(34\) 3.73270i 0.640153i
\(35\) 0 0
\(36\) 1.27907 + 2.21541i 0.213178 + 0.369236i
\(37\) 0.370851 0.214111i 0.0609676 0.0351997i −0.469206 0.883089i \(-0.655460\pi\)
0.530174 + 0.847889i \(0.322127\pi\)
\(38\) −5.87400 −0.952888
\(39\) 3.94784 7.52797i 0.632160 1.20544i
\(40\) −3.34415 −0.528757
\(41\) −0.917963 + 0.529986i −0.143362 + 0.0827699i −0.569965 0.821669i \(-0.693043\pi\)
0.426603 + 0.904439i \(0.359710\pi\)
\(42\) 0 0
\(43\) 1.65120 2.85996i 0.251805 0.436140i −0.712217 0.701959i \(-0.752309\pi\)
0.964023 + 0.265819i \(0.0856423\pi\)
\(44\) 5.03653i 0.759285i
\(45\) 7.40868 + 4.27741i 1.10442 + 0.637638i
\(46\) −3.27678 1.89185i −0.483135 0.278938i
\(47\) 5.31343i 0.775044i −0.921861 0.387522i \(-0.873331\pi\)
0.921861 0.387522i \(-0.126669\pi\)
\(48\) −1.17879 + 2.04172i −0.170143 + 0.294696i
\(49\) 0 0
\(50\) −5.35494 + 3.09168i −0.757303 + 0.437229i
\(51\) −8.80011 −1.23226
\(52\) 3.60258 0.146362i 0.499588 0.0202968i
\(53\) 2.31672 0.318227 0.159113 0.987260i \(-0.449136\pi\)
0.159113 + 0.987260i \(0.449136\pi\)
\(54\) −0.902152 + 0.520858i −0.122767 + 0.0708798i
\(55\) 8.42146 + 14.5864i 1.13555 + 1.96683i
\(56\) 0 0
\(57\) 13.8484i 1.83426i
\(58\) 5.82216 + 3.36143i 0.764487 + 0.441377i
\(59\) 7.00324 + 4.04332i 0.911745 + 0.526396i 0.880992 0.473131i \(-0.156876\pi\)
0.0307526 + 0.999527i \(0.490210\pi\)
\(60\) 7.88408i 1.01783i
\(61\) −5.05050 + 8.74773i −0.646651 + 1.12003i 0.337267 + 0.941409i \(0.390498\pi\)
−0.983918 + 0.178623i \(0.942836\pi\)
\(62\) −0.510901 0.884906i −0.0648845 0.112383i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 10.1888 6.44767i 1.26376 0.799735i
\(66\) 11.8740 1.46159
\(67\) 11.5166 6.64910i 1.40697 0.812317i 0.411879 0.911239i \(-0.364873\pi\)
0.995095 + 0.0989215i \(0.0315393\pi\)
\(68\) −1.86635 3.23261i −0.226328 0.392012i
\(69\) −4.46017 + 7.72525i −0.536942 + 0.930011i
\(70\) 0 0
\(71\) 2.35754 + 1.36113i 0.279788 + 0.161536i 0.633328 0.773884i \(-0.281689\pi\)
−0.353539 + 0.935420i \(0.615022\pi\)
\(72\) 2.21541 + 1.27907i 0.261089 + 0.150740i
\(73\) 7.95457i 0.931012i −0.885045 0.465506i \(-0.845872\pi\)
0.885045 0.465506i \(-0.154128\pi\)
\(74\) 0.214111 0.370851i 0.0248899 0.0431106i
\(75\) 7.28885 + 12.6247i 0.841644 + 1.45777i
\(76\) −5.08703 + 2.93700i −0.583523 + 0.336897i
\(77\) 0 0
\(78\) −0.345059 8.49334i −0.0390702 0.961681i
\(79\) −14.1422 −1.59113 −0.795563 0.605871i \(-0.792825\pi\)
−0.795563 + 0.605871i \(0.792825\pi\)
\(80\) −2.89612 + 1.67208i −0.323796 + 0.186944i
\(81\) 5.06517 + 8.77313i 0.562797 + 0.974792i
\(82\) −0.529986 + 0.917963i −0.0585272 + 0.101372i
\(83\) 9.17859i 1.00748i −0.863855 0.503741i \(-0.831957\pi\)
0.863855 0.503741i \(-0.168043\pi\)
\(84\) 0 0
\(85\) −10.8104 6.24136i −1.17255 0.676971i
\(86\) 3.30240i 0.356107i
\(87\) 7.92480 13.7262i 0.849628 1.47160i
\(88\) 2.51826 + 4.36176i 0.268448 + 0.464965i
\(89\) 4.68772 2.70646i 0.496897 0.286884i −0.230534 0.973064i \(-0.574047\pi\)
0.727431 + 0.686181i \(0.240714\pi\)
\(90\) 8.55481 0.901756
\(91\) 0 0
\(92\) −3.78370 −0.394478
\(93\) −2.08623 + 1.20449i −0.216332 + 0.124899i
\(94\) −2.65672 4.60157i −0.274019 0.474615i
\(95\) −9.82177 + 17.0118i −1.00769 + 1.74537i
\(96\) 2.35757i 0.240619i
\(97\) −14.8742 8.58763i −1.51025 0.871941i −0.999929 0.0119557i \(-0.996194\pi\)
−0.510318 0.859986i \(-0.670472\pi\)
\(98\) 0 0
\(99\) 12.8842i 1.29491i
\(100\) −3.09168 + 5.35494i −0.309168 + 0.535494i
\(101\) 1.22413 + 2.12026i 0.121806 + 0.210973i 0.920480 0.390790i \(-0.127798\pi\)
−0.798674 + 0.601764i \(0.794465\pi\)
\(102\) −7.62112 + 4.40005i −0.754603 + 0.435670i
\(103\) −17.9286 −1.76655 −0.883277 0.468852i \(-0.844668\pi\)
−0.883277 + 0.468852i \(0.844668\pi\)
\(104\) 3.04674 1.92804i 0.298758 0.189060i
\(105\) 0 0
\(106\) 2.00634 1.15836i 0.194873 0.112510i
\(107\) 4.95119 + 8.57572i 0.478650 + 0.829046i 0.999700 0.0244799i \(-0.00779297\pi\)
−0.521050 + 0.853526i \(0.674460\pi\)
\(108\) −0.520858 + 0.902152i −0.0501196 + 0.0868096i
\(109\) 3.55788i 0.340783i −0.985376 0.170391i \(-0.945497\pi\)
0.985376 0.170391i \(-0.0545032\pi\)
\(110\) 14.5864 + 8.42146i 1.39076 + 0.802955i
\(111\) −0.874309 0.504782i −0.0829857 0.0479118i
\(112\) 0 0
\(113\) 2.44458 4.23414i 0.229967 0.398314i −0.727831 0.685756i \(-0.759472\pi\)
0.957798 + 0.287442i \(0.0928049\pi\)
\(114\) 6.92418 + 11.9930i 0.648509 + 1.12325i
\(115\) −10.9581 + 6.32664i −1.02184 + 0.589962i
\(116\) 6.72285 0.624201
\(117\) −9.21590 + 0.374414i −0.852011 + 0.0346146i
\(118\) 8.08665 0.744436
\(119\) 0 0
\(120\) 3.94204 + 6.82781i 0.359857 + 0.623291i
\(121\) 7.18332 12.4419i 0.653029 1.13108i
\(122\) 10.1010i 0.914502i
\(123\) 2.16416 + 1.24948i 0.195136 + 0.112662i
\(124\) −0.884906 0.510901i −0.0794669 0.0458803i
\(125\) 3.95733i 0.353954i
\(126\) 0 0
\(127\) −4.14641 7.18180i −0.367935 0.637281i 0.621308 0.783567i \(-0.286602\pi\)
−0.989242 + 0.146285i \(0.953268\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) −7.78564 −0.685487
\(130\) 5.59991 10.6782i 0.491144 0.936543i
\(131\) −6.16169 −0.538349 −0.269174 0.963091i \(-0.586751\pi\)
−0.269174 + 0.963091i \(0.586751\pi\)
\(132\) 10.2832 5.93699i 0.895035 0.516748i
\(133\) 0 0
\(134\) 6.64910 11.5166i 0.574395 0.994881i
\(135\) 3.48366i 0.299825i
\(136\) −3.23261 1.86635i −0.277194 0.160038i
\(137\) −6.44163 3.71908i −0.550346 0.317742i 0.198916 0.980017i \(-0.436258\pi\)
−0.749261 + 0.662274i \(0.769591\pi\)
\(138\) 8.92035i 0.759351i
\(139\) −2.44199 + 4.22965i −0.207127 + 0.358754i −0.950808 0.309780i \(-0.899745\pi\)
0.743682 + 0.668534i \(0.233078\pi\)
\(140\) 0 0
\(141\) −10.8485 + 6.26339i −0.913610 + 0.527473i
\(142\) 2.72225 0.228446
\(143\) −16.0822 8.43385i −1.34486 0.705274i
\(144\) 2.55814 0.213178
\(145\) 19.4702 11.2411i 1.61691 0.933524i
\(146\) −3.97728 6.88886i −0.329162 0.570126i
\(147\) 0 0
\(148\) 0.428222i 0.0351997i
\(149\) 4.86592 + 2.80934i 0.398632 + 0.230150i 0.685894 0.727702i \(-0.259412\pi\)
−0.287262 + 0.957852i \(0.592745\pi\)
\(150\) 12.6247 + 7.28885i 1.03080 + 0.595132i
\(151\) 8.30978i 0.676240i −0.941103 0.338120i \(-0.890209\pi\)
0.941103 0.338120i \(-0.109791\pi\)
\(152\) −2.93700 + 5.08703i −0.238222 + 0.412613i
\(153\) 4.77439 + 8.26948i 0.385986 + 0.668548i
\(154\) 0 0
\(155\) −3.41706 −0.274465
\(156\) −4.54550 7.18292i −0.363931 0.575094i
\(157\) −5.21503 −0.416204 −0.208102 0.978107i \(-0.566729\pi\)
−0.208102 + 0.978107i \(0.566729\pi\)
\(158\) −12.2475 + 7.07112i −0.974362 + 0.562548i
\(159\) −2.73092 4.73009i −0.216576 0.375121i
\(160\) −1.67208 + 2.89612i −0.132189 + 0.228958i
\(161\) 0 0
\(162\) 8.77313 + 5.06517i 0.689282 + 0.397957i
\(163\) 10.8077 + 6.23982i 0.846524 + 0.488741i 0.859476 0.511176i \(-0.170790\pi\)
−0.0129528 + 0.999916i \(0.504123\pi\)
\(164\) 1.05997i 0.0827699i
\(165\) 19.8542 34.3885i 1.54565 2.67714i
\(166\) −4.58930 7.94889i −0.356198 0.616954i
\(167\) 0.409946 0.236682i 0.0317226 0.0183150i −0.484055 0.875038i \(-0.660836\pi\)
0.515777 + 0.856723i \(0.327503\pi\)
\(168\) 0 0
\(169\) −5.56530 + 11.7485i −0.428100 + 0.903731i
\(170\) −12.4827 −0.957381
\(171\) 13.0133 7.51326i 0.995155 0.574553i
\(172\) −1.65120 2.85996i −0.125903 0.218070i
\(173\) 5.06601 8.77459i 0.385162 0.667120i −0.606630 0.794984i \(-0.707479\pi\)
0.991792 + 0.127865i \(0.0408123\pi\)
\(174\) 15.8496i 1.20156i
\(175\) 0 0
\(176\) 4.36176 + 2.51826i 0.328780 + 0.189821i
\(177\) 19.0648i 1.43300i
\(178\) 2.70646 4.68772i 0.202857 0.351359i
\(179\) −5.35710 9.27876i −0.400408 0.693527i 0.593367 0.804932i \(-0.297798\pi\)
−0.993775 + 0.111405i \(0.964465\pi\)
\(180\) 7.40868 4.27741i 0.552211 0.318819i
\(181\) −1.56347 −0.116212 −0.0581058 0.998310i \(-0.518506\pi\)
−0.0581058 + 0.998310i \(0.518506\pi\)
\(182\) 0 0
\(183\) 23.8138 1.76037
\(184\) −3.27678 + 1.89185i −0.241568 + 0.139469i
\(185\) −0.716021 1.24018i −0.0526429 0.0911801i
\(186\) −1.20449 + 2.08623i −0.0883171 + 0.152970i
\(187\) 18.7999i 1.37478i
\(188\) −4.60157 2.65672i −0.335604 0.193761i
\(189\) 0 0
\(190\) 19.6435i 1.42509i
\(191\) 4.69659 8.13473i 0.339833 0.588608i −0.644568 0.764547i \(-0.722963\pi\)
0.984401 + 0.175939i \(0.0562961\pi\)
\(192\) 1.17879 + 2.04172i 0.0850715 + 0.147348i
\(193\) −7.93269 + 4.57994i −0.571008 + 0.329672i −0.757552 0.652775i \(-0.773605\pi\)
0.186544 + 0.982447i \(0.440271\pi\)
\(194\) −17.1753 −1.23311
\(195\) −25.1747 13.2022i −1.80280 0.945427i
\(196\) 0 0
\(197\) 13.4152 7.74526i 0.955793 0.551827i 0.0609170 0.998143i \(-0.480598\pi\)
0.894876 + 0.446316i \(0.147264\pi\)
\(198\) −6.44208 11.1580i −0.457818 0.792965i
\(199\) −2.74194 + 4.74917i −0.194371 + 0.336660i −0.946694 0.322134i \(-0.895600\pi\)
0.752323 + 0.658794i \(0.228933\pi\)
\(200\) 6.18336i 0.437229i
\(201\) −27.1512 15.6757i −1.91509 1.10568i
\(202\) 2.12026 + 1.22413i 0.149181 + 0.0861295i
\(203\) 0 0
\(204\) −4.40005 + 7.62112i −0.308065 + 0.533585i
\(205\) 1.77235 + 3.06981i 0.123787 + 0.214405i
\(206\) −15.5266 + 8.96428i −1.08179 + 0.624571i
\(207\) 9.67924 0.672754
\(208\) 1.67454 3.19311i 0.116108 0.221402i
\(209\) 29.5846 2.04641
\(210\) 0 0
\(211\) −2.54733 4.41210i −0.175365 0.303741i 0.764922 0.644122i \(-0.222777\pi\)
−0.940288 + 0.340381i \(0.889444\pi\)
\(212\) 1.15836 2.00634i 0.0795567 0.137796i
\(213\) 6.41790i 0.439747i
\(214\) 8.57572 + 4.95119i 0.586224 + 0.338457i
\(215\) −9.56414 5.52186i −0.652269 0.376588i
\(216\) 1.04172i 0.0708798i
\(217\) 0 0
\(218\) −1.77894 3.08121i −0.120485 0.208686i
\(219\) −16.2410 + 9.37673i −1.09746 + 0.633621i
\(220\) 16.8429 1.13555
\(221\) 13.4474 0.546325i 0.904567 0.0367498i
\(222\) −1.00956 −0.0677575
\(223\) 8.65366 4.99619i 0.579492 0.334570i −0.181440 0.983402i \(-0.558076\pi\)
0.760931 + 0.648832i \(0.224742\pi\)
\(224\) 0 0
\(225\) 7.90895 13.6987i 0.527263 0.913247i
\(226\) 4.88916i 0.325222i
\(227\) 11.4442 + 6.60729i 0.759575 + 0.438541i 0.829143 0.559036i \(-0.188829\pi\)
−0.0695679 + 0.997577i \(0.522162\pi\)
\(228\) 11.9930 + 6.92418i 0.794258 + 0.458565i
\(229\) 9.95986i 0.658166i −0.944301 0.329083i \(-0.893260\pi\)
0.944301 0.329083i \(-0.106740\pi\)
\(230\) −6.32664 + 10.9581i −0.417166 + 0.722553i
\(231\) 0 0
\(232\) 5.82216 3.36143i 0.382244 0.220688i
\(233\) 8.58467 0.562400 0.281200 0.959649i \(-0.409267\pi\)
0.281200 + 0.959649i \(0.409267\pi\)
\(234\) −7.79400 + 4.93220i −0.509510 + 0.322428i
\(235\) −17.7689 −1.15912
\(236\) 7.00324 4.04332i 0.455872 0.263198i
\(237\) 16.6707 + 28.8744i 1.08288 + 1.87560i
\(238\) 0 0
\(239\) 1.17300i 0.0758748i −0.999280 0.0379374i \(-0.987921\pi\)
0.999280 0.0379374i \(-0.0120787\pi\)
\(240\) 6.82781 + 3.94204i 0.440733 + 0.254457i
\(241\) −21.1208 12.1941i −1.36051 0.785490i −0.370817 0.928706i \(-0.620922\pi\)
−0.989691 + 0.143216i \(0.954256\pi\)
\(242\) 14.3666i 0.923522i
\(243\) 10.3789 17.9768i 0.665808 1.15321i
\(244\) 5.05050 + 8.74773i 0.323325 + 0.560016i
\(245\) 0 0
\(246\) 2.49896 0.159328
\(247\) −0.859730 21.1615i −0.0547033 1.34648i
\(248\) −1.02180 −0.0648845
\(249\) −18.7401 + 10.8196i −1.18760 + 0.685664i
\(250\) 1.97866 + 3.42714i 0.125142 + 0.216752i
\(251\) 10.6649 18.4721i 0.673162 1.16595i −0.303840 0.952723i \(-0.598269\pi\)
0.977002 0.213228i \(-0.0683978\pi\)
\(252\) 0 0
\(253\) 16.5036 + 9.52837i 1.03757 + 0.599043i
\(254\) −7.18180 4.14641i −0.450626 0.260169i
\(255\) 29.4289i 1.84291i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 6.42956 + 11.1363i 0.401065 + 0.694664i 0.993855 0.110693i \(-0.0353069\pi\)
−0.592790 + 0.805357i \(0.701974\pi\)
\(258\) −6.74256 + 3.89282i −0.419773 + 0.242356i
\(259\) 0 0
\(260\) −0.489457 12.0476i −0.0303548 0.747159i
\(261\) −17.1980 −1.06453
\(262\) −5.33618 + 3.08084i −0.329670 + 0.190335i
\(263\) −12.4300 21.5295i −0.766470 1.32756i −0.939466 0.342642i \(-0.888678\pi\)
0.172997 0.984922i \(-0.444655\pi\)
\(264\) 5.93699 10.2832i 0.365396 0.632885i
\(265\) 7.74748i 0.475924i
\(266\) 0 0
\(267\) −11.0516 6.38066i −0.676349 0.390490i
\(268\) 13.2982i 0.812317i
\(269\) −10.3012 + 17.8422i −0.628074 + 1.08786i 0.359864 + 0.933005i \(0.382823\pi\)
−0.987938 + 0.154851i \(0.950510\pi\)
\(270\) 1.74183 + 3.01693i 0.106004 + 0.183605i
\(271\) −4.57387 + 2.64072i −0.277843 + 0.160413i −0.632446 0.774604i \(-0.717949\pi\)
0.354604 + 0.935017i \(0.384616\pi\)
\(272\) −3.73270 −0.226328
\(273\) 0 0
\(274\) −7.43816 −0.449355
\(275\) 26.9703 15.5713i 1.62637 0.938987i
\(276\) 4.46017 + 7.72525i 0.268471 + 0.465005i
\(277\) −2.62506 + 4.54674i −0.157725 + 0.273187i −0.934048 0.357148i \(-0.883749\pi\)
0.776323 + 0.630335i \(0.217083\pi\)
\(278\) 4.88398i 0.292921i
\(279\) 2.26371 + 1.30696i 0.135525 + 0.0782454i
\(280\) 0 0
\(281\) 31.3151i 1.86810i −0.357141 0.934051i \(-0.616248\pi\)
0.357141 0.934051i \(-0.383752\pi\)
\(282\) −6.26339 + 10.8485i −0.372980 + 0.646020i
\(283\) 3.86020 + 6.68606i 0.229465 + 0.397445i 0.957650 0.287936i \(-0.0929690\pi\)
−0.728185 + 0.685381i \(0.759636\pi\)
\(284\) 2.35754 1.36113i 0.139894 0.0807679i
\(285\) 46.3111 2.74323
\(286\) −18.1445 + 0.737156i −1.07291 + 0.0435890i
\(287\) 0 0
\(288\) 2.21541 1.27907i 0.130545 0.0753699i
\(289\) 1.53347 + 2.65605i 0.0902041 + 0.156238i
\(290\) 11.2411 19.4702i 0.660101 1.14333i
\(291\) 40.4919i 2.37368i
\(292\) −6.88886 3.97728i −0.403140 0.232753i
\(293\) −18.3856 10.6150i −1.07410 0.620133i −0.144802 0.989461i \(-0.546255\pi\)
−0.929299 + 0.369328i \(0.879588\pi\)
\(294\) 0 0
\(295\) 13.5215 23.4199i 0.787252 1.36356i
\(296\) −0.214111 0.370851i −0.0124450 0.0215553i
\(297\) 4.54372 2.62332i 0.263653 0.152220i
\(298\) 5.61868 0.325482
\(299\) 6.33595 12.0818i 0.366417 0.698707i
\(300\) 14.5777 0.841644
\(301\) 0 0
\(302\) −4.15489 7.19648i −0.239087 0.414111i
\(303\) 2.88597 4.99865i 0.165795 0.287165i
\(304\) 5.87400i 0.336897i
\(305\) 29.2537 + 16.8897i 1.67506 + 0.967099i
\(306\) 8.26948 + 4.77439i 0.472735 + 0.272934i
\(307\) 33.9938i 1.94013i 0.242850 + 0.970064i \(0.421918\pi\)
−0.242850 + 0.970064i \(0.578082\pi\)
\(308\) 0 0
\(309\) 21.1339 + 36.6050i 1.20227 + 2.08239i
\(310\) −2.95926 + 1.70853i −0.168075 + 0.0970380i
\(311\) −0.731766 −0.0414946 −0.0207473 0.999785i \(-0.506605\pi\)
−0.0207473 + 0.999785i \(0.506605\pi\)
\(312\) −7.52797 3.94784i −0.426188 0.223502i
\(313\) 7.36717 0.416417 0.208209 0.978084i \(-0.433237\pi\)
0.208209 + 0.978084i \(0.433237\pi\)
\(314\) −4.51635 + 2.60751i −0.254872 + 0.147150i
\(315\) 0 0
\(316\) −7.07112 + 12.2475i −0.397782 + 0.688978i
\(317\) 28.4070i 1.59550i 0.602991 + 0.797748i \(0.293976\pi\)
−0.602991 + 0.797748i \(0.706024\pi\)
\(318\) −4.73009 2.73092i −0.265251 0.153142i
\(319\) −29.3235 16.9299i −1.64180 0.947894i
\(320\) 3.34415i 0.186944i
\(321\) 11.6728 20.2179i 0.651512 1.12845i
\(322\) 0 0
\(323\) −18.9884 + 10.9629i −1.05654 + 0.609994i
\(324\) 10.1303 0.562797
\(325\) −11.9218 18.8391i −0.661301 1.04501i
\(326\) 12.4796 0.691184
\(327\) −7.26418 + 4.19398i −0.401710 + 0.231927i
\(328\) 0.529986 + 0.917963i 0.0292636 + 0.0506860i
\(329\) 0 0
\(330\) 39.7084i 2.18587i
\(331\) −17.5783 10.1489i −0.966193 0.557832i −0.0681192 0.997677i \(-0.521700\pi\)
−0.898073 + 0.439846i \(0.855033\pi\)
\(332\) −7.94889 4.58930i −0.436252 0.251870i
\(333\) 1.09545i 0.0600305i
\(334\) 0.236682 0.409946i 0.0129507 0.0224312i
\(335\) −22.2356 38.5132i −1.21486 2.10420i
\(336\) 0 0
\(337\) −8.85616 −0.482426 −0.241213 0.970472i \(-0.577545\pi\)
−0.241213 + 0.970472i \(0.577545\pi\)
\(338\) 1.05456 + 12.9572i 0.0573606 + 0.704776i
\(339\) −11.5265 −0.626036
\(340\) −10.8104 + 6.24136i −0.586274 + 0.338485i
\(341\) 2.57317 + 4.45686i 0.139345 + 0.241352i
\(342\) 7.51326 13.0133i 0.406270 0.703681i
\(343\) 0 0
\(344\) −2.85996 1.65120i −0.154199 0.0890267i
\(345\) 25.8344 + 14.9155i 1.39088 + 0.803024i
\(346\) 10.1320i 0.544701i
\(347\) −3.44861 + 5.97316i −0.185131 + 0.320656i −0.943621 0.331029i \(-0.892604\pi\)
0.758490 + 0.651685i \(0.225938\pi\)
\(348\) −7.92480 13.7262i −0.424814 0.735799i
\(349\) 3.63303 2.09753i 0.194472 0.112278i −0.399602 0.916689i \(-0.630852\pi\)
0.594074 + 0.804410i \(0.297518\pi\)
\(350\) 0 0
\(351\) −2.00847 3.17384i −0.107204 0.169407i
\(352\) 5.03653 0.268448
\(353\) 21.7100 12.5343i 1.15551 0.667132i 0.205284 0.978702i \(-0.434188\pi\)
0.950223 + 0.311570i \(0.100855\pi\)
\(354\) −9.53242 16.5106i −0.506643 0.877531i
\(355\) 4.55181 7.88397i 0.241585 0.418438i
\(356\) 5.41291i 0.286884i
\(357\) 0 0
\(358\) −9.27876 5.35710i −0.490398 0.283131i
\(359\) 19.8743i 1.04893i −0.851433 0.524463i \(-0.824266\pi\)
0.851433 0.524463i \(-0.175734\pi\)
\(360\) 4.27741 7.40868i 0.225439 0.390472i
\(361\) 7.75193 + 13.4267i 0.407996 + 0.706670i
\(362\) −1.35400 + 0.781733i −0.0711648 + 0.0410870i
\(363\) −33.8704 −1.77773
\(364\) 0 0
\(365\) −26.6013 −1.39238
\(366\) 20.6234 11.9069i 1.07800 0.622385i
\(367\) 7.10630 + 12.3085i 0.370946 + 0.642497i 0.989711 0.143079i \(-0.0457002\pi\)
−0.618765 + 0.785576i \(0.712367\pi\)
\(368\) −1.89185 + 3.27678i −0.0986196 + 0.170814i
\(369\) 2.71156i 0.141158i
\(370\) −1.24018 0.716021i −0.0644741 0.0372241i
\(371\) 0 0
\(372\) 2.40897i 0.124899i
\(373\) 15.6299 27.0718i 0.809288 1.40173i −0.104070 0.994570i \(-0.533187\pi\)
0.913358 0.407157i \(-0.133480\pi\)
\(374\) 9.39993 + 16.2812i 0.486059 + 0.841879i
\(375\) 8.07974 4.66484i 0.417236 0.240891i
\(376\) −5.31343 −0.274019
\(377\) −11.2577 + 21.4668i −0.579799 + 1.10560i
\(378\) 0 0
\(379\) 19.0369 10.9909i 0.977858 0.564567i 0.0762355 0.997090i \(-0.475710\pi\)
0.901623 + 0.432523i \(0.142377\pi\)
\(380\) 9.82177 + 17.0118i 0.503846 + 0.872687i
\(381\) −9.77546 + 16.9316i −0.500812 + 0.867432i
\(382\) 9.39317i 0.480597i
\(383\) −4.21349 2.43266i −0.215299 0.124303i 0.388472 0.921460i \(-0.373003\pi\)
−0.603772 + 0.797157i \(0.706336\pi\)
\(384\) 2.04172 + 1.17879i 0.104191 + 0.0601546i
\(385\) 0 0
\(386\) −4.57994 + 7.93269i −0.233113 + 0.403764i
\(387\) 4.22400 + 7.31618i 0.214718 + 0.371902i
\(388\) −14.8742 + 8.58763i −0.755123 + 0.435971i
\(389\) −12.8779 −0.652938 −0.326469 0.945208i \(-0.605859\pi\)
−0.326469 + 0.945208i \(0.605859\pi\)
\(390\) −28.4030 + 1.15393i −1.43824 + 0.0584315i
\(391\) −14.1234 −0.714253
\(392\) 0 0
\(393\) 7.26330 + 12.5804i 0.366385 + 0.634598i
\(394\) 7.74526 13.4152i 0.390201 0.675847i
\(395\) 47.2938i 2.37961i
\(396\) −11.1580 6.44208i −0.560711 0.323726i
\(397\) 25.8091 + 14.9009i 1.29532 + 0.747855i 0.979593 0.200993i \(-0.0644170\pi\)
0.315731 + 0.948849i \(0.397750\pi\)
\(398\) 5.48387i 0.274882i
\(399\) 0 0
\(400\) 3.09168 + 5.35494i 0.154584 + 0.267747i
\(401\) 8.53523 4.92782i 0.426229 0.246084i −0.271510 0.962436i \(-0.587523\pi\)
0.697739 + 0.716352i \(0.254190\pi\)
\(402\) −31.3515 −1.56367
\(403\) 3.11317 1.97008i 0.155078 0.0981366i
\(404\) 2.44826 0.121806
\(405\) 29.3387 16.9387i 1.45785 0.841691i
\(406\) 0 0
\(407\) −1.07838 + 1.86780i −0.0534532 + 0.0925836i
\(408\) 8.80011i 0.435670i
\(409\) −22.0121 12.7087i −1.08843 0.628403i −0.155269 0.987872i \(-0.549624\pi\)
−0.933157 + 0.359469i \(0.882958\pi\)
\(410\) 3.06981 + 1.77235i 0.151607 + 0.0875304i
\(411\) 17.5360i 0.864986i
\(412\) −8.96428 + 15.5266i −0.441638 + 0.764940i
\(413\) 0 0
\(414\) 8.38247 4.83962i 0.411976 0.237854i
\(415\) −30.6946 −1.50674
\(416\) −0.146362 3.60258i −0.00717598 0.176631i
\(417\) 11.5143 0.563859
\(418\) 25.6210 14.7923i 1.25316 0.723514i
\(419\) 15.5587 + 26.9484i 0.760091 + 1.31652i 0.942803 + 0.333350i \(0.108179\pi\)
−0.182712 + 0.983167i \(0.558488\pi\)
\(420\) 0 0
\(421\) 13.8090i 0.673009i −0.941682 0.336505i \(-0.890755\pi\)
0.941682 0.336505i \(-0.109245\pi\)
\(422\) −4.41210 2.54733i −0.214778 0.124002i
\(423\) 11.7715 + 6.79625i 0.572348 + 0.330445i
\(424\) 2.31672i 0.112510i
\(425\) −11.5403 + 19.9884i −0.559787 + 0.969580i
\(426\) −3.20895 5.55806i −0.155474 0.269289i
\(427\) 0 0
\(428\) 9.90239 0.478650
\(429\) 1.73790 + 42.7769i 0.0839065 + 2.06529i
\(430\) −11.0437 −0.532576
\(431\) 27.4347 15.8394i 1.32148 0.762958i 0.337516 0.941320i \(-0.390413\pi\)
0.983965 + 0.178362i \(0.0570798\pi\)
\(432\) 0.520858 + 0.902152i 0.0250598 + 0.0434048i
\(433\) 13.7233 23.7695i 0.659500 1.14229i −0.321245 0.946996i \(-0.604101\pi\)
0.980745 0.195292i \(-0.0625655\pi\)
\(434\) 0 0
\(435\) −45.9024 26.5017i −2.20085 1.27066i
\(436\) −3.08121 1.77894i −0.147563 0.0851957i
\(437\) 22.2255i 1.06319i
\(438\) −9.37673 + 16.2410i −0.448037 + 0.776024i
\(439\) 6.09116 + 10.5502i 0.290715 + 0.503534i 0.973979 0.226638i \(-0.0727734\pi\)
−0.683264 + 0.730172i \(0.739440\pi\)
\(440\) 14.5864 8.42146i 0.695379 0.401477i
\(441\) 0 0
\(442\) 11.3726 7.19681i 0.540939 0.342317i
\(443\) −29.9063 −1.42089 −0.710445 0.703753i \(-0.751506\pi\)
−0.710445 + 0.703753i \(0.751506\pi\)
\(444\) −0.874309 + 0.504782i −0.0414928 + 0.0239559i
\(445\) −9.05080 15.6764i −0.429049 0.743135i
\(446\) 4.99619 8.65366i 0.236577 0.409763i
\(447\) 13.2464i 0.626535i
\(448\) 0 0
\(449\) 30.6709 + 17.7079i 1.44745 + 0.835685i 0.998329 0.0577858i \(-0.0184040\pi\)
0.449121 + 0.893471i \(0.351737\pi\)
\(450\) 15.8179i 0.745663i
\(451\) 2.66929 4.62335i 0.125692 0.217705i
\(452\) −2.44458 4.23414i −0.114983 0.199157i
\(453\) −16.9662 + 9.79545i −0.797142 + 0.460230i
\(454\) 13.2146 0.620191
\(455\) 0 0
\(456\) 13.8484 0.648509
\(457\) −17.7635 + 10.2558i −0.830943 + 0.479745i −0.854175 0.519985i \(-0.825938\pi\)
0.0232325 + 0.999730i \(0.492604\pi\)
\(458\) −4.97993 8.62549i −0.232697 0.403043i
\(459\) −1.94421 + 3.36746i −0.0907478 + 0.157180i
\(460\) 12.6533i 0.589962i
\(461\) 2.94204 + 1.69858i 0.137024 + 0.0791110i 0.566945 0.823756i \(-0.308125\pi\)
−0.429921 + 0.902867i \(0.641459\pi\)
\(462\) 0 0
\(463\) 39.3586i 1.82915i 0.404417 + 0.914575i \(0.367474\pi\)
−0.404417 + 0.914575i \(0.632526\pi\)
\(464\) 3.36143 5.82216i 0.156050 0.270287i
\(465\) 4.02798 + 6.97667i 0.186793 + 0.323535i
\(466\) 7.43454 4.29233i 0.344399 0.198839i
\(467\) 5.98885 0.277131 0.138565 0.990353i \(-0.455751\pi\)
0.138565 + 0.990353i \(0.455751\pi\)
\(468\) −4.28370 + 8.16841i −0.198014 + 0.377585i
\(469\) 0 0
\(470\) −15.3883 + 8.88446i −0.709811 + 0.409810i
\(471\) 6.14740 + 10.6476i 0.283257 + 0.490616i
\(472\) 4.04332 7.00324i 0.186109 0.322350i
\(473\) 16.6326i 0.764769i
\(474\) 28.8744 + 16.6707i 1.32625 + 0.765709i
\(475\) 31.4549 + 18.1605i 1.44325 + 0.833262i
\(476\) 0 0
\(477\) −2.96325 + 5.13251i −0.135678 + 0.235001i
\(478\) −0.586498 1.01584i −0.0268258 0.0464636i
\(479\) 11.8476 6.84021i 0.541330 0.312537i −0.204288 0.978911i \(-0.565488\pi\)
0.745618 + 0.666374i \(0.232154\pi\)
\(480\) 7.88408 0.359857
\(481\) 1.36736 + 0.717074i 0.0623462 + 0.0326958i
\(482\) −24.3882 −1.11085
\(483\) 0 0
\(484\) −7.18332 12.4419i −0.326514 0.565539i
\(485\) −28.7183 + 49.7416i −1.30403 + 2.25865i
\(486\) 20.7578i 0.941595i
\(487\) −0.910007 0.525393i −0.0412364 0.0238078i 0.479240 0.877684i \(-0.340912\pi\)
−0.520476 + 0.853876i \(0.674246\pi\)
\(488\) 8.74773 + 5.05050i 0.395991 + 0.228626i
\(489\) 29.4216i 1.33049i
\(490\) 0 0
\(491\) −13.7757 23.8602i −0.621688 1.07679i −0.989171 0.146765i \(-0.953114\pi\)
0.367484 0.930030i \(-0.380219\pi\)
\(492\) 2.16416 1.24948i 0.0975680 0.0563309i
\(493\) 25.0944 1.13019
\(494\) −11.3253 17.8966i −0.509550 0.805205i
\(495\) −43.0866 −1.93660
\(496\) −0.884906 + 0.510901i −0.0397335 + 0.0229401i
\(497\) 0 0
\(498\) −10.8196 + 18.7401i −0.484837 + 0.839763i
\(499\) 2.10425i 0.0941991i 0.998890 + 0.0470995i \(0.0149978\pi\)
−0.998890 + 0.0470995i \(0.985002\pi\)
\(500\) 3.42714 + 1.97866i 0.153267 + 0.0884885i
\(501\) −0.966477 0.557996i −0.0431790 0.0249294i
\(502\) 21.3298i 0.951995i
\(503\) −19.3301 + 33.4807i −0.861886 + 1.49283i 0.00822020 + 0.999966i \(0.497383\pi\)
−0.870106 + 0.492864i \(0.835950\pi\)
\(504\) 0 0
\(505\) 7.09046 4.09368i 0.315521 0.182166i
\(506\) 19.0567 0.847175
\(507\) 30.5474 2.48620i 1.35666 0.110416i
\(508\) −8.29282 −0.367935
\(509\) −22.0326 + 12.7205i −0.976578 + 0.563828i −0.901235 0.433330i \(-0.857338\pi\)
−0.0753428 + 0.997158i \(0.524005\pi\)
\(510\) 14.7145 + 25.4862i 0.651567 + 1.12855i
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 5.29924 + 3.05952i 0.233967 + 0.135081i
\(514\) 11.1363 + 6.42956i 0.491202 + 0.283596i
\(515\) 59.9559i 2.64197i
\(516\) −3.89282 + 6.74256i −0.171372 + 0.296825i
\(517\) 13.3806 + 23.1759i 0.588479 + 1.01928i
\(518\) 0 0
\(519\) −23.8870 −1.04852
\(520\) −6.44767 10.1888i −0.282749 0.446807i
\(521\) 15.9879 0.700441 0.350221 0.936667i \(-0.386107\pi\)
0.350221 + 0.936667i \(0.386107\pi\)
\(522\) −14.8939 + 8.59900i −0.651889 + 0.376368i
\(523\) 9.11459 + 15.7869i 0.398553 + 0.690315i 0.993548 0.113415i \(-0.0361790\pi\)
−0.594994 + 0.803730i \(0.702846\pi\)
\(524\) −3.08084 + 5.33618i −0.134587 + 0.233112i
\(525\) 0 0
\(526\) −21.5295 12.4300i −0.938730 0.541976i
\(527\) −3.30309 1.90704i −0.143885 0.0830720i
\(528\) 11.8740i 0.516748i
\(529\) 4.34179 7.52021i 0.188774 0.326966i
\(530\) −3.87374 6.70952i −0.168265 0.291443i
\(531\) −17.9153 + 10.3434i −0.777457 + 0.448865i
\(532\) 0 0
\(533\) −3.38460 1.77496i −0.146603 0.0768822i
\(534\) −12.7613 −0.552236
\(535\) 28.6785 16.5575i 1.23988 0.715845i
\(536\) −6.64910 11.5166i −0.287197 0.497441i
\(537\) −12.6297 + 21.8753i −0.545013 + 0.943991i
\(538\) 20.6024i 0.888231i
\(539\) 0 0
\(540\) 3.01693 + 1.74183i 0.129828 + 0.0749563i
\(541\) 19.2066i 0.825758i −0.910786 0.412879i \(-0.864523\pi\)
0.910786 0.412879i \(-0.135477\pi\)
\(542\) −2.64072 + 4.57387i −0.113429 + 0.196464i
\(543\) 1.84299 + 3.19216i 0.0790903 + 0.136988i
\(544\) −3.23261 + 1.86635i −0.138597 + 0.0800191i
\(545\) −11.8981 −0.509658
\(546\) 0 0
\(547\) −12.3643 −0.528659 −0.264329 0.964432i \(-0.585151\pi\)
−0.264329 + 0.964432i \(0.585151\pi\)
\(548\) −6.44163 + 3.71908i −0.275173 + 0.158871i
\(549\) −12.9199 22.3779i −0.551408 0.955067i
\(550\) 15.5713 26.9703i 0.663964 1.15002i
\(551\) 39.4900i 1.68233i
\(552\) 7.72525 + 4.46017i 0.328808 + 0.189838i
\(553\) 0 0
\(554\) 5.25013i 0.223057i
\(555\) −1.68807 + 2.92382i −0.0716545 + 0.124109i
\(556\) 2.44199 + 4.22965i 0.103563 + 0.179377i
\(557\) 25.5877 14.7731i 1.08419 0.625956i 0.152165 0.988355i \(-0.451376\pi\)
0.932023 + 0.362399i \(0.118042\pi\)
\(558\) 2.61391 0.110656
\(559\) 11.8972 0.483345i 0.503196 0.0204433i
\(560\) 0 0
\(561\) 38.3840 22.1610i 1.62057 0.935638i
\(562\) −15.6575 27.1197i −0.660474 1.14397i
\(563\) −1.26155 + 2.18506i −0.0531678 + 0.0920894i −0.891384 0.453248i \(-0.850265\pi\)
0.838217 + 0.545337i \(0.183598\pi\)
\(564\) 12.5268i 0.527473i
\(565\) −14.1596 8.17505i −0.595699 0.343927i
\(566\) 6.68606 + 3.86020i 0.281036 + 0.162256i
\(567\) 0 0
\(568\) 1.36113 2.35754i 0.0571115 0.0989201i
\(569\) −5.21623 9.03478i −0.218676 0.378758i 0.735728 0.677278i \(-0.236840\pi\)
−0.954403 + 0.298520i \(0.903507\pi\)
\(570\) 40.1065 23.1555i 1.67988 0.969878i
\(571\) −0.145787 −0.00610099 −0.00305049 0.999995i \(-0.500971\pi\)
−0.00305049 + 0.999995i \(0.500971\pi\)
\(572\) −15.3450 + 9.71065i −0.641607 + 0.406022i
\(573\) −22.1451 −0.925124
\(574\) 0 0
\(575\) 11.6980 + 20.2615i 0.487840 + 0.844964i
\(576\) 1.27907 2.21541i 0.0532946 0.0923089i
\(577\) 22.4447i 0.934385i −0.884156 0.467192i \(-0.845266\pi\)
0.884156 0.467192i \(-0.154734\pi\)
\(578\) 2.65605 + 1.53347i 0.110477 + 0.0637840i
\(579\) 18.7019 + 10.7975i 0.777224 + 0.448731i
\(580\) 22.4822i 0.933524i
\(581\) 0 0
\(582\) 20.2459 + 35.0670i 0.839221 + 1.45357i
\(583\) −10.1050 + 5.83413i −0.418507 + 0.241625i
\(584\) −7.95457 −0.329162
\(585\) 1.25210 + 30.8194i 0.0517679 + 1.27422i
\(586\) −21.2299 −0.877000
\(587\) 18.2824 10.5554i 0.754596 0.435666i −0.0727563 0.997350i \(-0.523180\pi\)
0.827352 + 0.561684i \(0.189846\pi\)
\(588\) 0 0
\(589\) −3.00103 + 5.19794i −0.123655 + 0.214177i
\(590\) 27.0430i 1.11334i
\(591\) −31.6273 18.2600i −1.30097 0.751116i
\(592\) −0.370851 0.214111i −0.0152419 0.00879992i
\(593\) 29.8304i 1.22499i −0.790475 0.612494i \(-0.790166\pi\)
0.790475 0.612494i \(-0.209834\pi\)
\(594\) 2.62332 4.54372i 0.107636 0.186431i
\(595\) 0 0
\(596\) 4.86592 2.80934i 0.199316 0.115075i
\(597\) 12.9286 0.529133
\(598\) −0.553790 13.6311i −0.0226462 0.557417i
\(599\) 33.5040 1.36894 0.684469 0.729042i \(-0.260034\pi\)
0.684469 + 0.729042i \(0.260034\pi\)
\(600\) 12.6247 7.28885i 0.515400 0.297566i
\(601\) −18.9681 32.8537i −0.773724 1.34013i −0.935509 0.353303i \(-0.885058\pi\)
0.161785 0.986826i \(-0.448275\pi\)
\(602\) 0 0
\(603\) 34.0187i 1.38535i
\(604\) −7.19648 4.15489i −0.292821 0.169060i
\(605\) −41.6075 24.0221i −1.69159 0.976637i
\(606\) 5.77195i 0.234469i
\(607\) 17.9335 31.0618i 0.727900 1.26076i −0.229870 0.973221i \(-0.573830\pi\)
0.957769 0.287538i \(-0.0928366\pi\)
\(608\) 2.93700 + 5.08703i 0.119111 + 0.206306i
\(609\) 0 0
\(610\) 33.7793 1.36768
\(611\) 16.1887 10.2445i 0.654923 0.414449i
\(612\) 9.54877 0.385986
\(613\) −10.9563 + 6.32562i −0.442521 + 0.255489i −0.704666 0.709539i \(-0.748903\pi\)
0.262146 + 0.965028i \(0.415570\pi\)
\(614\) 16.9969 + 29.4395i 0.685939 + 1.18808i
\(615\) 4.17845 7.23729i 0.168491 0.291836i
\(616\) 0 0
\(617\) 34.6231 + 19.9896i 1.39387 + 0.804753i 0.993741 0.111705i \(-0.0356312\pi\)
0.400131 + 0.916458i \(0.368965\pi\)
\(618\) 36.6050 + 21.1339i 1.47247 + 0.850131i
\(619\) 9.91384i 0.398471i 0.979952 + 0.199235i \(0.0638459\pi\)
−0.979952 + 0.199235i \(0.936154\pi\)
\(620\) −1.70853 + 2.95926i −0.0686162 + 0.118847i
\(621\) 1.97077 + 3.41348i 0.0790843 + 0.136978i
\(622\) −0.633728 + 0.365883i −0.0254102 + 0.0146706i
\(623\) 0 0
\(624\) −8.49334 + 0.345059i −0.340006 + 0.0138134i
\(625\) −17.6829 −0.707315
\(626\) 6.38016 3.68359i 0.255002 0.147226i
\(627\) −34.8739 60.4033i −1.39273 2.41228i
\(628\) −2.60751 + 4.51635i −0.104051 + 0.180222i
\(629\) 1.59843i 0.0637334i
\(630\) 0 0
\(631\) 21.7056 + 12.5318i 0.864088 + 0.498881i 0.865379 0.501118i \(-0.167078\pi\)
−0.00129129 + 0.999999i \(0.500411\pi\)
\(632\) 14.1422i 0.562548i
\(633\) −6.00550 + 10.4018i −0.238697 + 0.413436i
\(634\) 14.2035 + 24.6012i 0.564093 + 0.977038i
\(635\) −24.0170 + 13.8662i −0.953087 + 0.550265i
\(636\) −5.46184 −0.216576
\(637\) 0 0
\(638\) −33.8598 −1.34052
\(639\) −6.03091 + 3.48195i −0.238579 + 0.137744i
\(640\) 1.67208 + 2.89612i 0.0660946 + 0.114479i
\(641\) 4.01506 6.95429i 0.158585 0.274678i −0.775773 0.631012i \(-0.782640\pi\)
0.934359 + 0.356334i \(0.115973\pi\)
\(642\) 23.3456i 0.921377i
\(643\) 13.3951 + 7.73367i 0.528251 + 0.304986i 0.740304 0.672272i \(-0.234682\pi\)
−0.212053 + 0.977258i \(0.568015\pi\)
\(644\) 0 0
\(645\) 26.0364i 1.02518i
\(646\) −10.9629 + 18.9884i −0.431331 + 0.747087i
\(647\) 3.34618 + 5.79575i 0.131552 + 0.227854i 0.924275 0.381727i \(-0.124671\pi\)
−0.792723 + 0.609582i \(0.791337\pi\)
\(648\) 8.77313 5.06517i 0.344641 0.198979i
\(649\) −40.7286 −1.59874
\(650\) −19.7441 10.3543i −0.774428 0.406127i
\(651\) 0 0
\(652\) 10.8077 6.23982i 0.423262 0.244370i
\(653\) 12.0804 + 20.9238i 0.472741 + 0.818811i 0.999513 0.0311950i \(-0.00993128\pi\)
−0.526772 + 0.850006i \(0.676598\pi\)
\(654\) −4.19398 + 7.26418i −0.163997 + 0.284052i
\(655\) 20.6056i 0.805128i
\(656\) 0.917963 + 0.529986i 0.0358404 + 0.0206925i
\(657\) 17.6227 + 10.1745i 0.687526 + 0.396943i
\(658\) 0 0
\(659\) −6.47769 + 11.2197i −0.252335 + 0.437057i −0.964168 0.265291i \(-0.914532\pi\)
0.711833 + 0.702349i \(0.247865\pi\)
\(660\) −19.8542 34.3885i −0.772823 1.33857i
\(661\) 16.7049 9.64460i 0.649747 0.375132i −0.138612 0.990347i \(-0.544264\pi\)
0.788359 + 0.615215i \(0.210931\pi\)
\(662\) −20.2977 −0.788893
\(663\) −16.9670 26.8117i −0.658943 1.04128i
\(664\) −9.17859 −0.356198
\(665\) 0 0
\(666\) 0.547726 + 0.948690i 0.0212240 + 0.0367610i
\(667\) 12.7186 22.0293i 0.492468 0.852979i
\(668\) 0.473365i 0.0183150i
\(669\) −20.4016 11.7789i −0.788772 0.455398i
\(670\) −38.5132 22.2356i −1.48789 0.859037i
\(671\) 50.8740i 1.96397i
\(672\) 0 0
\(673\) −14.7943 25.6245i −0.570279 0.987752i −0.996537 0.0831505i \(-0.973502\pi\)
0.426258 0.904602i \(-0.359832\pi\)
\(674\) −7.66966 + 4.42808i −0.295424 + 0.170563i
\(675\) 6.44130 0.247926
\(676\) 7.39185 + 10.6939i 0.284302 + 0.411306i
\(677\) 13.8422 0.531998 0.265999 0.963973i \(-0.414298\pi\)
0.265999 + 0.963973i \(0.414298\pi\)
\(678\) −9.98228 + 5.76327i −0.383367 + 0.221337i
\(679\) 0 0
\(680\) −6.24136 + 10.8104i −0.239345 + 0.414558i
\(681\) 31.1543i 1.19384i
\(682\) 4.45686 + 2.57317i 0.170662 + 0.0985317i
\(683\) 30.9323 + 17.8588i 1.18359 + 0.683347i 0.956843 0.290607i \(-0.0938571\pi\)
0.226749 + 0.973953i \(0.427190\pi\)
\(684\) 15.0265i 0.574553i
\(685\) −12.4372 + 21.5418i −0.475200 + 0.823070i
\(686\) 0 0
\(687\) −20.3352 + 11.7405i −0.775837 + 0.447929i
\(688\) −3.30240 −0.125903
\(689\) 4.46674 + 7.05847i 0.170169 + 0.268906i
\(690\) 29.8310 1.13565
\(691\) 22.5221 13.0031i 0.856782 0.494663i −0.00615160 0.999981i \(-0.501958\pi\)
0.862933 + 0.505318i \(0.168625\pi\)
\(692\) −5.06601 8.77459i −0.192581 0.333560i
\(693\) 0 0
\(694\) 6.89722i 0.261815i
\(695\) 14.1446 + 8.16638i 0.536535 + 0.309768i
\(696\) −13.7262 7.92480i −0.520289 0.300389i
\(697\) 3.95656i 0.149865i
\(698\) 2.09753 3.63303i 0.0793928 0.137512i
\(699\) −10.1195 17.5275i −0.382754 0.662949i
\(700\) 0 0
\(701\) 24.7068 0.933164 0.466582 0.884478i \(-0.345485\pi\)
0.466582 + 0.884478i \(0.345485\pi\)
\(702\) −3.32631 1.74439i −0.125543 0.0658378i
\(703\) −2.51538 −0.0948693
\(704\) 4.36176 2.51826i 0.164390 0.0949107i
\(705\) 20.9457 + 36.2791i 0.788863 + 1.36635i
\(706\) 12.5343 21.7100i 0.471734 0.817067i
\(707\) 0 0
\(708\) −16.5106 9.53242i −0.620508 0.358250i
\(709\) 19.3947 + 11.1975i 0.728383 + 0.420532i 0.817830 0.575460i \(-0.195177\pi\)
−0.0894476 + 0.995992i \(0.528510\pi\)
\(710\) 9.10362i 0.341653i
\(711\) 18.0889 31.3309i 0.678387 1.17500i
\(712\) −2.70646 4.68772i −0.101429 0.175680i
\(713\) −3.34822 + 1.93310i −0.125392 + 0.0723951i
\(714\) 0 0
\(715\) −28.2041 + 53.7812i −1.05477 + 2.01130i
\(716\) −10.7142 −0.400408
\(717\) −2.39492 + 1.38271i −0.0894401 + 0.0516383i
\(718\) −9.93716 17.2117i −0.370852 0.642334i
\(719\) −12.6421 + 21.8968i −0.471472 + 0.816613i −0.999467 0.0326342i \(-0.989610\pi\)
0.527996 + 0.849247i \(0.322944\pi\)
\(720\) 8.55481i 0.318819i
\(721\) 0 0
\(722\) 13.4267 + 7.75193i 0.499691 + 0.288497i
\(723\) 57.4968i 2.13833i
\(724\) −0.781733 + 1.35400i −0.0290529 + 0.0503211i
\(725\) −20.7849 36.0005i −0.771932 1.33702i
\(726\) −29.3326 + 16.9352i −1.08863 + 0.628523i
\(727\) 39.9649 1.48221 0.741107 0.671386i \(-0.234301\pi\)
0.741107 + 0.671386i \(0.234301\pi\)
\(728\) 0 0
\(729\) −18.5471 −0.686929
\(730\) −23.0374 + 13.3006i −0.852652 + 0.492279i
\(731\) −6.16343 10.6754i −0.227963 0.394843i
\(732\) 11.9069 20.6234i 0.440093 0.762263i
\(733\) 24.1168i 0.890774i −0.895338 0.445387i \(-0.853066\pi\)
0.895338 0.445387i \(-0.146934\pi\)
\(734\) 12.3085 + 7.10630i 0.454314 + 0.262298i
\(735\) 0 0
\(736\) 3.78370i 0.139469i
\(737\) −33.4884 + 58.0036i −1.23356 + 2.13659i
\(738\) −1.35578 2.34828i −0.0499069 0.0864413i
\(739\) −24.7187 + 14.2714i −0.909292 + 0.524980i −0.880203 0.474597i \(-0.842594\pi\)
−0.0290890 + 0.999577i \(0.509261\pi\)
\(740\) −1.43204 −0.0526429
\(741\) −42.1924 + 26.7002i −1.54998 + 0.980858i
\(742\) 0 0
\(743\) −37.9322 + 21.9001i −1.39160 + 0.803438i −0.993492 0.113902i \(-0.963665\pi\)
−0.398104 + 0.917340i \(0.630332\pi\)
\(744\) 1.20449 + 2.08623i 0.0441586 + 0.0764849i
\(745\) 9.39487 16.2724i 0.344201 0.596174i
\(746\) 31.2599i 1.14451i
\(747\) 20.3344 + 11.7401i 0.743996 + 0.429546i
\(748\) 16.2812 + 9.39993i 0.595298 + 0.343696i
\(749\) 0 0
\(750\) 4.66484 8.07974i 0.170336 0.295030i
\(751\) 20.2337 + 35.0458i 0.738338 + 1.27884i 0.953243 + 0.302204i \(0.0977223\pi\)
−0.214906 + 0.976635i \(0.568944\pi\)
\(752\) −4.60157 + 2.65672i −0.167802 + 0.0968804i
\(753\) −50.2865 −1.83254
\(754\) 0.983970 + 24.2196i 0.0358341 + 0.882026i
\(755\) −27.7892 −1.01135
\(756\) 0 0
\(757\) −6.36103 11.0176i −0.231196 0.400442i 0.726965 0.686675i \(-0.240930\pi\)
−0.958160 + 0.286232i \(0.907597\pi\)
\(758\) 10.9909 19.0369i 0.399209 0.691450i
\(759\) 44.9276i 1.63077i
\(760\) 17.0118 + 9.82177i 0.617083 + 0.356273i
\(761\) −26.6191 15.3686i −0.964943 0.557110i −0.0672521 0.997736i \(-0.521423\pi\)
−0.897691 + 0.440626i \(0.854756\pi\)
\(762\) 19.5509i 0.708255i
\(763\) 0 0
\(764\) −4.69659 8.13473i −0.169917 0.294304i
\(765\) 27.6544 15.9663i 0.999847 0.577262i
\(766\) −4.86532 −0.175791
\(767\) 1.18358 + 29.1328i 0.0427365 + 1.05192i
\(768\) 2.35757 0.0850715
\(769\) 10.0887 5.82469i 0.363806 0.210044i −0.306943 0.951728i \(-0.599306\pi\)
0.670749 + 0.741684i \(0.265973\pi\)
\(770\) 0 0
\(771\) 15.1581 26.2547i 0.545907 0.945538i
\(772\) 9.15989i 0.329672i
\(773\) 24.5544 + 14.1765i 0.883159 + 0.509892i 0.871699 0.490042i \(-0.163019\pi\)
0.0114603 + 0.999934i \(0.496352\pi\)
\(774\) 7.31618 + 4.22400i 0.262975 + 0.151829i
\(775\) 6.31817i 0.226955i
\(776\) −8.58763 + 14.8742i −0.308278 + 0.533953i
\(777\) 0 0
\(778\) −11.1526 + 6.43897i −0.399841 + 0.230848i
\(779\) 6.22628 0.223079
\(780\) −24.0208 + 15.2008i −0.860081 + 0.544277i
\(781\) −13.7107 −0.490607
\(782\) −12.2313 + 7.06172i −0.437389 + 0.252527i
\(783\) −3.50165 6.06503i −0.125139 0.216747i
\(784\) 0 0
\(785\) 17.4398i 0.622455i
\(786\) 12.5804 + 7.26330i 0.448728 + 0.259074i
\(787\) −1.85099 1.06867i −0.0659808 0.0380940i 0.466647 0.884444i \(-0.345462\pi\)
−0.532627 + 0.846350i \(0.678795\pi\)
\(788\) 15.4905i 0.551827i
\(789\) −29.3047 + 50.7573i −1.04328 + 1.80701i
\(790\) 23.6469 + 40.9576i 0.841319 + 1.45721i
\(791\) 0 0
\(792\) −12.8842 −0.457818
\(793\) −36.3897 + 1.47840i −1.29224 + 0.0524996i
\(794\) 29.8018 1.05763
\(795\) −15.8182 + 9.13262i −0.561012 + 0.323901i
\(796\) 2.74194 + 4.74917i 0.0971853 + 0.168330i
\(797\) 13.9817 24.2170i 0.495257 0.857810i −0.504728 0.863278i \(-0.668407\pi\)
0.999985 + 0.00546806i \(0.00174055\pi\)
\(798\) 0 0
\(799\) −17.1763 9.91672i −0.607653 0.350829i
\(800\) 5.35494 + 3.09168i 0.189326 + 0.109307i
\(801\) 13.8470i 0.489259i
\(802\) 4.92782 8.53523i 0.174007 0.301390i
\(803\) 20.0317 + 34.6959i 0.706904 + 1.22439i
\(804\) −27.1512 + 15.6757i −0.957547 + 0.552840i
\(805\) 0 0
\(806\) 1.71104 3.26272i 0.0602690 0.114924i
\(807\) 48.5715 1.70980
\(808\) 2.12026 1.22413i 0.0745903 0.0430648i
\(809\) 24.3621 + 42.1965i 0.856527 + 1.48355i 0.875221 + 0.483724i \(0.160716\pi\)
−0.0186933 + 0.999825i \(0.505951\pi\)
\(810\) 16.9387 29.3387i 0.595165 1.03086i
\(811\) 31.9965i 1.12355i −0.827290 0.561774i \(-0.810119\pi\)
0.827290 0.561774i \(-0.189881\pi\)
\(812\) 0 0
\(813\) 10.7832 + 6.22569i 0.378184 + 0.218345i
\(814\) 2.15675i 0.0755942i
\(815\) 20.8669 36.1426i 0.730936 1.26602i
\(816\) 4.40005 + 7.62112i 0.154033 + 0.266792i
\(817\) −16.7994 + 9.69914i −0.587737 + 0.339330i
\(818\) −25.4173 −0.888696
\(819\) 0 0
\(820\) 3.54471 0.123787
\(821\) −10.8028 + 6.23701i −0.377021 + 0.217673i −0.676521 0.736423i \(-0.736513\pi\)
0.299500 + 0.954096i \(0.403180\pi\)
\(822\) 8.76799 + 15.1866i 0.305819 + 0.529694i
\(823\) 8.01300 13.8789i 0.279316 0.483789i −0.691899 0.721994i \(-0.743226\pi\)
0.971215 + 0.238205i \(0.0765591\pi\)
\(824\) 17.9286i 0.624571i
\(825\) −63.5845 36.7105i −2.21373 1.27810i
\(826\) 0 0
\(827\) 6.94225i 0.241406i −0.992689 0.120703i \(-0.961485\pi\)
0.992689 0.120703i \(-0.0385148\pi\)
\(828\) 4.83962 8.38247i 0.168189 0.291311i
\(829\) −4.54445 7.87122i −0.157835 0.273379i 0.776252 0.630422i \(-0.217118\pi\)
−0.934088 + 0.357043i \(0.883785\pi\)
\(830\) −26.5823 + 15.3473i −0.922686 + 0.532713i
\(831\) 12.3775 0.429372
\(832\) −1.92804 3.04674i −0.0668429 0.105627i
\(833\) 0 0
\(834\) 9.97169 5.75716i 0.345291 0.199354i
\(835\) −0.791502 1.37092i −0.0273911 0.0474427i
\(836\) 14.7923 25.6210i 0.511602 0.886120i
\(837\) 1.06443i 0.0367920i
\(838\) 26.9484 + 15.5587i 0.930918 + 0.537466i
\(839\) 15.8840 + 9.17062i 0.548376 + 0.316605i 0.748467 0.663173i \(-0.230790\pi\)
−0.200091 + 0.979777i \(0.564124\pi\)
\(840\) 0 0
\(841\) −8.09837 + 14.0268i −0.279254 + 0.483683i
\(842\) −6.90450 11.9589i −0.237945 0.412132i
\(843\) −63.9365 + 36.9138i −2.20209 + 1.27138i
\(844\) −5.09465 −0.175365
\(845\) 39.2888 + 18.6112i 1.35158 + 0.640245i
\(846\) 13.5925 0.467320
\(847\) 0 0
\(848\) −1.15836 2.00634i −0.0397783 0.0688981i
\(849\) 9.10069 15.7629i 0.312335 0.540980i
\(850\) 23.0806i 0.791659i
\(851\) −1.40319 0.810133i −0.0481008 0.0277710i
\(852\) −5.55806 3.20895i −0.190416 0.109937i
\(853\) 53.7617i 1.84077i 0.391018 + 0.920383i \(0.372123\pi\)
−0.391018 + 0.920383i \(0.627877\pi\)
\(854\) 0 0
\(855\) −25.1255 43.5186i −0.859273 1.48830i
\(856\) 8.57572 4.95119i 0.293112 0.169228i
\(857\) −38.2580 −1.30687 −0.653434 0.756984i \(-0.726672\pi\)
−0.653434 + 0.756984i \(0.726672\pi\)
\(858\) 22.8935 + 36.1770i 0.781572 + 1.23506i
\(859\) 15.7899 0.538744 0.269372 0.963036i \(-0.413184\pi\)
0.269372 + 0.963036i \(0.413184\pi\)
\(860\) −9.56414 + 5.52186i −0.326135 + 0.188294i
\(861\) 0 0
\(862\) 15.8394 27.4347i 0.539492 0.934428i
\(863\) 44.5788i 1.51748i −0.651394 0.758739i \(-0.725816\pi\)
0.651394 0.758739i \(-0.274184\pi\)
\(864\) 0.902152 + 0.520858i 0.0306918 + 0.0177199i
\(865\) −29.3436 16.9415i −0.997711 0.576029i
\(866\) 27.4466i 0.932674i
\(867\) 3.61527 6.26182i 0.122781 0.212663i
\(868\) 0 0
\(869\) 61.6851 35.6139i 2.09252 1.20812i
\(870\) −53.0035 −1.79699
\(871\) 42.4626 + 22.2683i 1.43879 + 0.754533i
\(872\) −3.55788 −0.120485
\(873\) 38.0503 21.9684i 1.28781 0.743516i
\(874\) 11.1127 + 19.2478i 0.375894 + 0.651067i
\(875\) 0 0
\(876\) 18.7535i 0.633621i
\(877\) −0.121237 0.0699963i −0.00409389 0.00236361i 0.497952 0.867205i \(-0.334086\pi\)
−0.502046 + 0.864841i \(0.667419\pi\)
\(878\) 10.5502 + 6.09116i 0.356052 + 0.205567i
\(879\) 50.0510i 1.68818i
\(880\) 8.42146 14.5864i 0.283887 0.491707i
\(881\) 22.6522 + 39.2347i 0.763172 + 1.32185i 0.941208 + 0.337828i \(0.109692\pi\)
−0.178036 + 0.984024i \(0.556974\pi\)
\(882\) 0 0
\(883\) −46.5419 −1.56626 −0.783130 0.621858i \(-0.786378\pi\)
−0.783130 + 0.621858i \(0.786378\pi\)
\(884\) 6.25054 11.9189i 0.210229 0.400876i
\(885\) −63.7558 −2.14313
\(886\) −25.8996 + 14.9531i −0.870114 + 0.502360i
\(887\) 24.4650 + 42.3746i 0.821453 + 1.42280i 0.904600 + 0.426261i \(0.140170\pi\)
−0.0831471 + 0.996537i \(0.526497\pi\)
\(888\) −0.504782 + 0.874309i −0.0169394 + 0.0293399i
\(889\) 0 0
\(890\) −15.6764 9.05080i −0.525476 0.303383i
\(891\) −44.1861 25.5109i −1.48029 0.854647i
\(892\) 9.99239i 0.334570i
\(893\) −15.6055 + 27.0296i −0.522220 + 0.904511i
\(894\) −6.62322 11.4718i −0.221514 0.383673i
\(895\) −31.0296 + 17.9149i −1.03721 + 0.598831i
\(896\) 0 0
\(897\) −32.1363 + 1.30560i −1.07300 + 0.0435927i
\(898\) 35.4157 1.18184
\(899\) 5.94910 3.43471i 0.198413 0.114554i
\(900\) −7.90895 13.6987i −0.263632 0.456623i
\(901\) 4.32382 7.48908i 0.144047 0.249497i
\(902\) 5.33858i 0.177755i
\(903\) 0 0
\(904\) −4.23414 2.44458i −0.140825 0.0813056i
\(905\) 5.22847i 0.173800i
\(906\) −9.79545 + 16.9662i −0.325432 + 0.563665i
\(907\) −24.9923 43.2879i −0.829856 1.43735i −0.898151 0.439687i \(-0.855089\pi\)
0.0682950 0.997665i \(-0.478244\pi\)
\(908\) 11.4442 6.60729i 0.379788 0.219271i
\(909\) −6.26299 −0.207730
\(910\) 0 0
\(911\) 17.2655 0.572033 0.286016 0.958225i \(-0.407669\pi\)
0.286016 + 0.958225i \(0.407669\pi\)
\(912\) 11.9930 6.92418i 0.397129 0.229283i
\(913\) 23.1141 + 40.0348i 0.764966 + 1.32496i
\(914\) −10.2558 + 17.7635i −0.339231 + 0.587565i
\(915\) 79.6371i 2.63272i
\(916\) −8.62549 4.97993i −0.284994 0.164542i
\(917\) 0 0
\(918\) 3.88841i 0.128337i
\(919\) −7.95486 + 13.7782i −0.262407 + 0.454502i −0.966881 0.255228i \(-0.917849\pi\)
0.704474 + 0.709729i \(0.251183\pi\)
\(920\) 6.32664 + 10.9581i 0.208583 + 0.361277i
\(921\) 69.4057 40.0714i 2.28699 1.32040i
\(922\) 3.39717 0.111880
\(923\) 0.398434 + 9.80712i 0.0131146 + 0.322805i
\(924\) 0 0
\(925\) −2.29311 + 1.32393i −0.0753969 + 0.0435304i
\(926\) 19.6793 + 34.0856i 0.646702 + 1.12012i
\(927\) 22.9319 39.7192i 0.753182 1.30455i
\(928\) 6.72285i 0.220688i
\(929\) −19.6257 11.3309i −0.643900 0.371756i 0.142215 0.989836i \(-0.454577\pi\)
−0.786115 + 0.618080i \(0.787911\pi\)
\(930\) 6.97667 + 4.02798i 0.228774 + 0.132083i
\(931\) 0 0
\(932\) 4.29233 7.43454i 0.140600 0.243527i
\(933\) 0.862595 + 1.49406i 0.0282401 + 0.0489133i
\(934\) 5.18650 2.99442i 0.169707 0.0979806i
\(935\) 62.8696 2.05606
\(936\) 0.374414 + 9.21590i 0.0122381 + 0.301231i
\(937\) 22.3601 0.730473 0.365237 0.930915i \(-0.380988\pi\)
0.365237 + 0.930915i \(0.380988\pi\)
\(938\) 0 0
\(939\) −8.68432 15.0417i −0.283402 0.490867i
\(940\) −8.88446 + 15.3883i −0.289779 + 0.501912i
\(941\) 28.2183i 0.919892i −0.887947 0.459946i \(-0.847869\pi\)
0.887947 0.459946i \(-0.152131\pi\)
\(942\) 10.6476 + 6.14740i 0.346918 + 0.200293i
\(943\) 3.47330 + 2.00531i 0.113106 + 0.0653019i
\(944\) 8.08665i 0.263198i
\(945\) 0 0
\(946\) 8.31631 + 14.4043i 0.270387 + 0.468323i
\(947\) −5.51380 + 3.18339i −0.179174 + 0.103446i −0.586905 0.809656i \(-0.699654\pi\)
0.407730 + 0.913102i \(0.366320\pi\)
\(948\) 33.3413 1.08288
\(949\) 24.2355 15.3367i 0.786719 0.497852i
\(950\) 36.3210 1.17841
\(951\) 57.9990 33.4858i 1.88075 1.08585i
\(952\) 0 0
\(953\) 1.16258 2.01365i 0.0376597 0.0652285i −0.846581 0.532260i \(-0.821343\pi\)
0.884241 + 0.467031i \(0.154676\pi\)
\(954\) 5.92651i 0.191878i
\(955\) −27.2038 15.7061i −0.880293 0.508238i
\(956\) −1.01584 0.586498i −0.0328547 0.0189687i
\(957\) 79.8270i 2.58044i
\(958\) 6.84021 11.8476i 0.220997 0.382778i
\(959\) 0 0
\(960\) 6.82781 3.94204i 0.220367 0.127229i
\(961\) 29.9559 0.966320
\(962\) 1.54271 0.0626755i 0.0497388 0.00202074i
\(963\) −25.3317 −0.816302
\(964\) −21.1208 + 12.1941i −0.680254 + 0.392745i
\(965\) 15.3160 + 26.5281i 0.493040 + 0.853971i
\(966\) 0 0
\(967\) 58.7262i 1.88851i −0.329219 0.944254i \(-0.606785\pi\)
0.329219 0.944254i \(-0.393215\pi\)
\(968\) −12.4419 7.18332i −0.399897 0.230881i
\(969\) 44.7664 + 25.8459i 1.43810 + 0.830290i
\(970\) 57.4367i 1.84418i
\(971\) −5.03497 + 8.72083i −0.161580 + 0.279865i −0.935436 0.353497i \(-0.884992\pi\)
0.773855 + 0.633362i \(0.218326\pi\)
\(972\) −10.3789 17.9768i −0.332904 0.576607i
\(973\) 0 0
\(974\) −1.05079 −0.0336693
\(975\) −24.4109 + 46.5482i −0.781774 + 1.49073i
\(976\) 10.1010 0.323325
\(977\) −42.2830 + 24.4121i −1.35275 + 0.781012i −0.988634 0.150341i \(-0.951963\pi\)
−0.364118 + 0.931353i \(0.618629\pi\)
\(978\) −14.7108 25.4799i −0.470400 0.814757i
\(979\) −13.6311 + 23.6098i −0.435653 + 0.754573i
\(980\) 0 0
\(981\) 7.88218 + 4.55078i 0.251658 + 0.145295i
\(982\) −23.8602 13.7757i −0.761409 0.439600i
\(983\) 6.62899i 0.211432i 0.994396 + 0.105716i \(0.0337134\pi\)
−0.994396 + 0.105716i \(0.966287\pi\)
\(984\) 1.24948 2.16416i 0.0398320 0.0689910i
\(985\) −25.9013 44.8624i −0.825285 1.42944i
\(986\) 21.7324 12.5472i 0.692100 0.399584i
\(987\) 0 0
\(988\) −18.7563 9.83622i −0.596717 0.312932i
\(989\) −12.4953 −0.397327
\(990\) −37.3141 + 21.5433i −1.18592 + 0.684690i
\(991\) −12.4847 21.6241i −0.396589 0.686911i 0.596714 0.802454i \(-0.296473\pi\)
−0.993303 + 0.115543i \(0.963139\pi\)
\(992\) −0.510901 + 0.884906i −0.0162211 + 0.0280958i
\(993\) 47.8533i 1.51858i
\(994\) 0 0
\(995\) 15.8820 + 9.16945i 0.503492 + 0.290691i
\(996\) 21.6392i 0.685664i
\(997\) −19.7584 + 34.2225i −0.625754 + 1.08384i 0.362640 + 0.931929i \(0.381875\pi\)
−0.988394 + 0.151909i \(0.951458\pi\)
\(998\) 1.05212 + 1.82233i 0.0333044 + 0.0576849i
\(999\) −0.386322 + 0.223043i −0.0122227 + 0.00705677i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.m.f.491.7 20
7.2 even 3 1274.2.v.h.361.4 20
7.3 odd 6 182.2.o.a.23.9 20
7.4 even 3 1274.2.o.h.569.7 20
7.5 odd 6 182.2.v.a.179.2 yes 20
7.6 odd 2 1274.2.m.g.491.9 20
13.4 even 6 inner 1274.2.m.f.589.7 20
21.5 even 6 1638.2.cr.c.361.6 20
21.17 even 6 1638.2.dt.c.1297.5 20
91.4 even 6 1274.2.v.h.667.4 20
91.17 odd 6 182.2.v.a.121.2 yes 20
91.30 even 6 1274.2.o.h.459.2 20
91.69 odd 6 1274.2.m.g.589.9 20
91.82 odd 6 182.2.o.a.95.4 yes 20
273.17 even 6 1638.2.cr.c.667.6 20
273.173 even 6 1638.2.dt.c.1369.10 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.o.a.23.9 20 7.3 odd 6
182.2.o.a.95.4 yes 20 91.82 odd 6
182.2.v.a.121.2 yes 20 91.17 odd 6
182.2.v.a.179.2 yes 20 7.5 odd 6
1274.2.m.f.491.7 20 1.1 even 1 trivial
1274.2.m.f.589.7 20 13.4 even 6 inner
1274.2.m.g.491.9 20 7.6 odd 2
1274.2.m.g.589.9 20 91.69 odd 6
1274.2.o.h.459.2 20 91.30 even 6
1274.2.o.h.569.7 20 7.4 even 3
1274.2.v.h.361.4 20 7.2 even 3
1274.2.v.h.667.4 20 91.4 even 6
1638.2.cr.c.361.6 20 21.5 even 6
1638.2.cr.c.667.6 20 273.17 even 6
1638.2.dt.c.1297.5 20 21.17 even 6
1638.2.dt.c.1369.10 20 273.173 even 6