Properties

Label 1274.2.m.g.491.9
Level $1274$
Weight $2$
Character 1274.491
Analytic conductor $10.173$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(491,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.491"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,2,10,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 46 x^{18} + 895 x^{16} + 9634 x^{14} + 62977 x^{12} + 257850 x^{10} + 656102 x^{8} + \cdots + 32041 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 491.9
Root \(2.35757i\) of defining polynomial
Character \(\chi\) \(=\) 1274.491
Dual form 1274.2.m.g.589.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(1.17879 + 2.04172i) q^{3} +(0.500000 - 0.866025i) q^{4} +3.34415i q^{5} +(2.04172 + 1.17879i) q^{6} -1.00000i q^{8} +(-1.27907 + 2.21541i) q^{9} +(1.67208 + 2.89612i) q^{10} +(-4.36176 + 2.51826i) q^{11} +2.35757 q^{12} +(-1.92804 - 3.04674i) q^{13} +(-6.82781 + 3.94204i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-1.86635 + 3.23261i) q^{17} +2.55814i q^{18} +(5.08703 + 2.93700i) q^{19} +(2.89612 + 1.67208i) q^{20} +(-2.51826 + 4.36176i) q^{22} +(-1.89185 - 3.27678i) q^{23} +(2.04172 - 1.17879i) q^{24} -6.18336 q^{25} +(-3.19311 - 1.67454i) q^{26} +1.04172 q^{27} +(3.36143 + 5.82216i) q^{29} +(-3.94204 + 6.82781i) q^{30} +1.02180i q^{31} +(-0.866025 - 0.500000i) q^{32} +(-10.2832 - 5.93699i) q^{33} +3.73270i q^{34} +(1.27907 + 2.21541i) q^{36} +(0.370851 - 0.214111i) q^{37} +5.87400 q^{38} +(3.94784 - 7.52797i) q^{39} +3.34415 q^{40} +(0.917963 - 0.529986i) q^{41} +(1.65120 - 2.85996i) q^{43} +5.03653i q^{44} +(-7.40868 - 4.27741i) q^{45} +(-3.27678 - 1.89185i) q^{46} +5.31343i q^{47} +(1.17879 - 2.04172i) q^{48} +(-5.35494 + 3.09168i) q^{50} -8.80011 q^{51} +(-3.60258 + 0.146362i) q^{52} +2.31672 q^{53} +(0.902152 - 0.520858i) q^{54} +(-8.42146 - 14.5864i) q^{55} +13.8484i q^{57} +(5.82216 + 3.36143i) q^{58} +(-7.00324 - 4.04332i) q^{59} +7.88408i q^{60} +(5.05050 - 8.74773i) q^{61} +(0.510901 + 0.884906i) q^{62} -1.00000 q^{64} +(10.1888 - 6.44767i) q^{65} -11.8740 q^{66} +(11.5166 - 6.64910i) q^{67} +(1.86635 + 3.23261i) q^{68} +(4.46017 - 7.72525i) q^{69} +(2.35754 + 1.36113i) q^{71} +(2.21541 + 1.27907i) q^{72} +7.95457i q^{73} +(0.214111 - 0.370851i) q^{74} +(-7.28885 - 12.6247i) q^{75} +(5.08703 - 2.93700i) q^{76} +(-0.345059 - 8.49334i) q^{78} -14.1422 q^{79} +(2.89612 - 1.67208i) q^{80} +(5.06517 + 8.77313i) q^{81} +(0.529986 - 0.917963i) q^{82} +9.17859i q^{83} +(-10.8104 - 6.24136i) q^{85} -3.30240i q^{86} +(-7.92480 + 13.7262i) q^{87} +(2.51826 + 4.36176i) q^{88} +(-4.68772 + 2.70646i) q^{89} -8.55481 q^{90} -3.78370 q^{92} +(-2.08623 + 1.20449i) q^{93} +(2.65672 + 4.60157i) q^{94} +(-9.82177 + 17.0118i) q^{95} -2.35757i q^{96} +(14.8742 + 8.58763i) q^{97} -12.8842i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{3} + 10 q^{4} - 16 q^{9} - 4 q^{10} + 6 q^{11} + 4 q^{12} + 6 q^{13} - 12 q^{15} - 10 q^{16} - 10 q^{17} + 24 q^{19} + 2 q^{22} - 36 q^{25} - 28 q^{27} + 2 q^{29} - 2 q^{30} - 12 q^{33} + 16 q^{36}+ \cdots + 78 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 1.17879 + 2.04172i 0.680572 + 1.17879i 0.974807 + 0.223052i \(0.0716020\pi\)
−0.294234 + 0.955733i \(0.595065\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 3.34415i 1.49555i 0.663952 + 0.747775i \(0.268878\pi\)
−0.663952 + 0.747775i \(0.731122\pi\)
\(6\) 2.04172 + 1.17879i 0.833527 + 0.481237i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) −1.27907 + 2.21541i −0.426357 + 0.738472i
\(10\) 1.67208 + 2.89612i 0.528757 + 0.915834i
\(11\) −4.36176 + 2.51826i −1.31512 + 0.759285i −0.982939 0.183930i \(-0.941118\pi\)
−0.332182 + 0.943215i \(0.607785\pi\)
\(12\) 2.35757 0.680572
\(13\) −1.92804 3.04674i −0.534743 0.845015i
\(14\) 0 0
\(15\) −6.82781 + 3.94204i −1.76293 + 1.01783i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.86635 + 3.23261i −0.452657 + 0.784024i −0.998550 0.0538304i \(-0.982857\pi\)
0.545894 + 0.837855i \(0.316190\pi\)
\(18\) 2.55814i 0.602959i
\(19\) 5.08703 + 2.93700i 1.16705 + 0.673794i 0.952982 0.303026i \(-0.0979969\pi\)
0.214063 + 0.976820i \(0.431330\pi\)
\(20\) 2.89612 + 1.67208i 0.647592 + 0.373888i
\(21\) 0 0
\(22\) −2.51826 + 4.36176i −0.536896 + 0.929931i
\(23\) −1.89185 3.27678i −0.394478 0.683257i 0.598556 0.801081i \(-0.295741\pi\)
−0.993034 + 0.117824i \(0.962408\pi\)
\(24\) 2.04172 1.17879i 0.416764 0.240619i
\(25\) −6.18336 −1.23667
\(26\) −3.19311 1.67454i −0.626220 0.328404i
\(27\) 1.04172 0.200478
\(28\) 0 0
\(29\) 3.36143 + 5.82216i 0.624201 + 1.08115i 0.988695 + 0.149942i \(0.0479088\pi\)
−0.364494 + 0.931206i \(0.618758\pi\)
\(30\) −3.94204 + 6.82781i −0.719714 + 1.24658i
\(31\) 1.02180i 0.183521i 0.995781 + 0.0917605i \(0.0292494\pi\)
−0.995781 + 0.0917605i \(0.970751\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) −10.2832 5.93699i −1.79007 1.03350i
\(34\) 3.73270i 0.640153i
\(35\) 0 0
\(36\) 1.27907 + 2.21541i 0.213178 + 0.369236i
\(37\) 0.370851 0.214111i 0.0609676 0.0351997i −0.469206 0.883089i \(-0.655460\pi\)
0.530174 + 0.847889i \(0.322127\pi\)
\(38\) 5.87400 0.952888
\(39\) 3.94784 7.52797i 0.632160 1.20544i
\(40\) 3.34415 0.528757
\(41\) 0.917963 0.529986i 0.143362 0.0827699i −0.426603 0.904439i \(-0.640290\pi\)
0.569965 + 0.821669i \(0.306957\pi\)
\(42\) 0 0
\(43\) 1.65120 2.85996i 0.251805 0.436140i −0.712217 0.701959i \(-0.752309\pi\)
0.964023 + 0.265819i \(0.0856423\pi\)
\(44\) 5.03653i 0.759285i
\(45\) −7.40868 4.27741i −1.10442 0.637638i
\(46\) −3.27678 1.89185i −0.483135 0.278938i
\(47\) 5.31343i 0.775044i 0.921861 + 0.387522i \(0.126669\pi\)
−0.921861 + 0.387522i \(0.873331\pi\)
\(48\) 1.17879 2.04172i 0.170143 0.294696i
\(49\) 0 0
\(50\) −5.35494 + 3.09168i −0.757303 + 0.437229i
\(51\) −8.80011 −1.23226
\(52\) −3.60258 + 0.146362i −0.499588 + 0.0202968i
\(53\) 2.31672 0.318227 0.159113 0.987260i \(-0.449136\pi\)
0.159113 + 0.987260i \(0.449136\pi\)
\(54\) 0.902152 0.520858i 0.122767 0.0708798i
\(55\) −8.42146 14.5864i −1.13555 1.96683i
\(56\) 0 0
\(57\) 13.8484i 1.83426i
\(58\) 5.82216 + 3.36143i 0.764487 + 0.441377i
\(59\) −7.00324 4.04332i −0.911745 0.526396i −0.0307526 0.999527i \(-0.509790\pi\)
−0.880992 + 0.473131i \(0.843124\pi\)
\(60\) 7.88408i 1.01783i
\(61\) 5.05050 8.74773i 0.646651 1.12003i −0.337267 0.941409i \(-0.609502\pi\)
0.983918 0.178623i \(-0.0571643\pi\)
\(62\) 0.510901 + 0.884906i 0.0648845 + 0.112383i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 10.1888 6.44767i 1.26376 0.799735i
\(66\) −11.8740 −1.46159
\(67\) 11.5166 6.64910i 1.40697 0.812317i 0.411879 0.911239i \(-0.364873\pi\)
0.995095 + 0.0989215i \(0.0315393\pi\)
\(68\) 1.86635 + 3.23261i 0.226328 + 0.392012i
\(69\) 4.46017 7.72525i 0.536942 0.930011i
\(70\) 0 0
\(71\) 2.35754 + 1.36113i 0.279788 + 0.161536i 0.633328 0.773884i \(-0.281689\pi\)
−0.353539 + 0.935420i \(0.615022\pi\)
\(72\) 2.21541 + 1.27907i 0.261089 + 0.150740i
\(73\) 7.95457i 0.931012i 0.885045 + 0.465506i \(0.154128\pi\)
−0.885045 + 0.465506i \(0.845872\pi\)
\(74\) 0.214111 0.370851i 0.0248899 0.0431106i
\(75\) −7.28885 12.6247i −0.841644 1.45777i
\(76\) 5.08703 2.93700i 0.583523 0.336897i
\(77\) 0 0
\(78\) −0.345059 8.49334i −0.0390702 0.961681i
\(79\) −14.1422 −1.59113 −0.795563 0.605871i \(-0.792825\pi\)
−0.795563 + 0.605871i \(0.792825\pi\)
\(80\) 2.89612 1.67208i 0.323796 0.186944i
\(81\) 5.06517 + 8.77313i 0.562797 + 0.974792i
\(82\) 0.529986 0.917963i 0.0585272 0.101372i
\(83\) 9.17859i 1.00748i 0.863855 + 0.503741i \(0.168043\pi\)
−0.863855 + 0.503741i \(0.831957\pi\)
\(84\) 0 0
\(85\) −10.8104 6.24136i −1.17255 0.676971i
\(86\) 3.30240i 0.356107i
\(87\) −7.92480 + 13.7262i −0.849628 + 1.47160i
\(88\) 2.51826 + 4.36176i 0.268448 + 0.464965i
\(89\) −4.68772 + 2.70646i −0.496897 + 0.286884i −0.727431 0.686181i \(-0.759286\pi\)
0.230534 + 0.973064i \(0.425953\pi\)
\(90\) −8.55481 −0.901756
\(91\) 0 0
\(92\) −3.78370 −0.394478
\(93\) −2.08623 + 1.20449i −0.216332 + 0.124899i
\(94\) 2.65672 + 4.60157i 0.274019 + 0.474615i
\(95\) −9.82177 + 17.0118i −1.00769 + 1.74537i
\(96\) 2.35757i 0.240619i
\(97\) 14.8742 + 8.58763i 1.51025 + 0.871941i 0.999929 + 0.0119557i \(0.00380571\pi\)
0.510318 + 0.859986i \(0.329528\pi\)
\(98\) 0 0
\(99\) 12.8842i 1.29491i
\(100\) −3.09168 + 5.35494i −0.309168 + 0.535494i
\(101\) −1.22413 2.12026i −0.121806 0.210973i 0.798674 0.601764i \(-0.205535\pi\)
−0.920480 + 0.390790i \(0.872202\pi\)
\(102\) −7.62112 + 4.40005i −0.754603 + 0.435670i
\(103\) 17.9286 1.76655 0.883277 0.468852i \(-0.155332\pi\)
0.883277 + 0.468852i \(0.155332\pi\)
\(104\) −3.04674 + 1.92804i −0.298758 + 0.189060i
\(105\) 0 0
\(106\) 2.00634 1.15836i 0.194873 0.112510i
\(107\) 4.95119 + 8.57572i 0.478650 + 0.829046i 0.999700 0.0244799i \(-0.00779297\pi\)
−0.521050 + 0.853526i \(0.674460\pi\)
\(108\) 0.520858 0.902152i 0.0501196 0.0868096i
\(109\) 3.55788i 0.340783i −0.985376 0.170391i \(-0.945497\pi\)
0.985376 0.170391i \(-0.0545032\pi\)
\(110\) −14.5864 8.42146i −1.39076 0.802955i
\(111\) 0.874309 + 0.504782i 0.0829857 + 0.0479118i
\(112\) 0 0
\(113\) 2.44458 4.23414i 0.229967 0.398314i −0.727831 0.685756i \(-0.759472\pi\)
0.957798 + 0.287442i \(0.0928049\pi\)
\(114\) 6.92418 + 11.9930i 0.648509 + 1.12325i
\(115\) 10.9581 6.32664i 1.02184 0.589962i
\(116\) 6.72285 0.624201
\(117\) 9.21590 0.374414i 0.852011 0.0346146i
\(118\) −8.08665 −0.744436
\(119\) 0 0
\(120\) 3.94204 + 6.82781i 0.359857 + 0.623291i
\(121\) 7.18332 12.4419i 0.653029 1.13108i
\(122\) 10.1010i 0.914502i
\(123\) 2.16416 + 1.24948i 0.195136 + 0.112662i
\(124\) 0.884906 + 0.510901i 0.0794669 + 0.0458803i
\(125\) 3.95733i 0.353954i
\(126\) 0 0
\(127\) −4.14641 7.18180i −0.367935 0.637281i 0.621308 0.783567i \(-0.286602\pi\)
−0.989242 + 0.146285i \(0.953268\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 7.78564 0.685487
\(130\) 5.59991 10.6782i 0.491144 0.936543i
\(131\) 6.16169 0.538349 0.269174 0.963091i \(-0.413249\pi\)
0.269174 + 0.963091i \(0.413249\pi\)
\(132\) −10.2832 + 5.93699i −0.895035 + 0.516748i
\(133\) 0 0
\(134\) 6.64910 11.5166i 0.574395 0.994881i
\(135\) 3.48366i 0.299825i
\(136\) 3.23261 + 1.86635i 0.277194 + 0.160038i
\(137\) −6.44163 3.71908i −0.550346 0.317742i 0.198916 0.980017i \(-0.436258\pi\)
−0.749261 + 0.662274i \(0.769591\pi\)
\(138\) 8.92035i 0.759351i
\(139\) 2.44199 4.22965i 0.207127 0.358754i −0.743682 0.668534i \(-0.766922\pi\)
0.950808 + 0.309780i \(0.100255\pi\)
\(140\) 0 0
\(141\) −10.8485 + 6.26339i −0.913610 + 0.527473i
\(142\) 2.72225 0.228446
\(143\) 16.0822 + 8.43385i 1.34486 + 0.705274i
\(144\) 2.55814 0.213178
\(145\) −19.4702 + 11.2411i −1.61691 + 0.933524i
\(146\) 3.97728 + 6.88886i 0.329162 + 0.570126i
\(147\) 0 0
\(148\) 0.428222i 0.0351997i
\(149\) 4.86592 + 2.80934i 0.398632 + 0.230150i 0.685894 0.727702i \(-0.259412\pi\)
−0.287262 + 0.957852i \(0.592745\pi\)
\(150\) −12.6247 7.28885i −1.03080 0.595132i
\(151\) 8.30978i 0.676240i −0.941103 0.338120i \(-0.890209\pi\)
0.941103 0.338120i \(-0.109791\pi\)
\(152\) 2.93700 5.08703i 0.238222 0.412613i
\(153\) −4.77439 8.26948i −0.385986 0.668548i
\(154\) 0 0
\(155\) −3.41706 −0.274465
\(156\) −4.54550 7.18292i −0.363931 0.575094i
\(157\) 5.21503 0.416204 0.208102 0.978107i \(-0.433271\pi\)
0.208102 + 0.978107i \(0.433271\pi\)
\(158\) −12.2475 + 7.07112i −0.974362 + 0.562548i
\(159\) 2.73092 + 4.73009i 0.216576 + 0.375121i
\(160\) 1.67208 2.89612i 0.132189 0.228958i
\(161\) 0 0
\(162\) 8.77313 + 5.06517i 0.689282 + 0.397957i
\(163\) 10.8077 + 6.23982i 0.846524 + 0.488741i 0.859476 0.511176i \(-0.170790\pi\)
−0.0129528 + 0.999916i \(0.504123\pi\)
\(164\) 1.05997i 0.0827699i
\(165\) 19.8542 34.3885i 1.54565 2.67714i
\(166\) 4.58930 + 7.94889i 0.356198 + 0.616954i
\(167\) −0.409946 + 0.236682i −0.0317226 + 0.0183150i −0.515777 0.856723i \(-0.672497\pi\)
0.484055 + 0.875038i \(0.339164\pi\)
\(168\) 0 0
\(169\) −5.56530 + 11.7485i −0.428100 + 0.903731i
\(170\) −12.4827 −0.957381
\(171\) −13.0133 + 7.51326i −0.995155 + 0.574553i
\(172\) −1.65120 2.85996i −0.125903 0.218070i
\(173\) −5.06601 + 8.77459i −0.385162 + 0.667120i −0.991792 0.127865i \(-0.959188\pi\)
0.606630 + 0.794984i \(0.292521\pi\)
\(174\) 15.8496i 1.20156i
\(175\) 0 0
\(176\) 4.36176 + 2.51826i 0.328780 + 0.189821i
\(177\) 19.0648i 1.43300i
\(178\) −2.70646 + 4.68772i −0.202857 + 0.351359i
\(179\) −5.35710 9.27876i −0.400408 0.693527i 0.593367 0.804932i \(-0.297798\pi\)
−0.993775 + 0.111405i \(0.964465\pi\)
\(180\) −7.40868 + 4.27741i −0.552211 + 0.318819i
\(181\) 1.56347 0.116212 0.0581058 0.998310i \(-0.481494\pi\)
0.0581058 + 0.998310i \(0.481494\pi\)
\(182\) 0 0
\(183\) 23.8138 1.76037
\(184\) −3.27678 + 1.89185i −0.241568 + 0.139469i
\(185\) 0.716021 + 1.24018i 0.0526429 + 0.0911801i
\(186\) −1.20449 + 2.08623i −0.0883171 + 0.152970i
\(187\) 18.7999i 1.37478i
\(188\) 4.60157 + 2.65672i 0.335604 + 0.193761i
\(189\) 0 0
\(190\) 19.6435i 1.42509i
\(191\) 4.69659 8.13473i 0.339833 0.588608i −0.644568 0.764547i \(-0.722963\pi\)
0.984401 + 0.175939i \(0.0562961\pi\)
\(192\) −1.17879 2.04172i −0.0850715 0.147348i
\(193\) −7.93269 + 4.57994i −0.571008 + 0.329672i −0.757552 0.652775i \(-0.773605\pi\)
0.186544 + 0.982447i \(0.440271\pi\)
\(194\) 17.1753 1.23311
\(195\) 25.1747 + 13.2022i 1.80280 + 0.945427i
\(196\) 0 0
\(197\) 13.4152 7.74526i 0.955793 0.551827i 0.0609170 0.998143i \(-0.480598\pi\)
0.894876 + 0.446316i \(0.147264\pi\)
\(198\) −6.44208 11.1580i −0.457818 0.792965i
\(199\) 2.74194 4.74917i 0.194371 0.336660i −0.752323 0.658794i \(-0.771067\pi\)
0.946694 + 0.322134i \(0.104400\pi\)
\(200\) 6.18336i 0.437229i
\(201\) 27.1512 + 15.6757i 1.91509 + 1.10568i
\(202\) −2.12026 1.22413i −0.149181 0.0861295i
\(203\) 0 0
\(204\) −4.40005 + 7.62112i −0.308065 + 0.533585i
\(205\) 1.77235 + 3.06981i 0.123787 + 0.214405i
\(206\) 15.5266 8.96428i 1.08179 0.624571i
\(207\) 9.67924 0.672754
\(208\) −1.67454 + 3.19311i −0.116108 + 0.221402i
\(209\) −29.5846 −2.04641
\(210\) 0 0
\(211\) −2.54733 4.41210i −0.175365 0.303741i 0.764922 0.644122i \(-0.222777\pi\)
−0.940288 + 0.340381i \(0.889444\pi\)
\(212\) 1.15836 2.00634i 0.0795567 0.137796i
\(213\) 6.41790i 0.439747i
\(214\) 8.57572 + 4.95119i 0.586224 + 0.338457i
\(215\) 9.56414 + 5.52186i 0.652269 + 0.376588i
\(216\) 1.04172i 0.0708798i
\(217\) 0 0
\(218\) −1.77894 3.08121i −0.120485 0.208686i
\(219\) −16.2410 + 9.37673i −1.09746 + 0.633621i
\(220\) −16.8429 −1.13555
\(221\) 13.4474 0.546325i 0.904567 0.0367498i
\(222\) 1.00956 0.0677575
\(223\) −8.65366 + 4.99619i −0.579492 + 0.334570i −0.760931 0.648832i \(-0.775258\pi\)
0.181440 + 0.983402i \(0.441924\pi\)
\(224\) 0 0
\(225\) 7.90895 13.6987i 0.527263 0.913247i
\(226\) 4.88916i 0.325222i
\(227\) −11.4442 6.60729i −0.759575 0.438541i 0.0695679 0.997577i \(-0.477838\pi\)
−0.829143 + 0.559036i \(0.811171\pi\)
\(228\) 11.9930 + 6.92418i 0.794258 + 0.458565i
\(229\) 9.95986i 0.658166i 0.944301 + 0.329083i \(0.106740\pi\)
−0.944301 + 0.329083i \(0.893260\pi\)
\(230\) 6.32664 10.9581i 0.417166 0.722553i
\(231\) 0 0
\(232\) 5.82216 3.36143i 0.382244 0.220688i
\(233\) 8.58467 0.562400 0.281200 0.959649i \(-0.409267\pi\)
0.281200 + 0.959649i \(0.409267\pi\)
\(234\) 7.79400 4.93220i 0.509510 0.322428i
\(235\) −17.7689 −1.15912
\(236\) −7.00324 + 4.04332i −0.455872 + 0.263198i
\(237\) −16.6707 28.8744i −1.08288 1.87560i
\(238\) 0 0
\(239\) 1.17300i 0.0758748i −0.999280 0.0379374i \(-0.987921\pi\)
0.999280 0.0379374i \(-0.0120787\pi\)
\(240\) 6.82781 + 3.94204i 0.440733 + 0.254457i
\(241\) 21.1208 + 12.1941i 1.36051 + 0.785490i 0.989691 0.143216i \(-0.0457443\pi\)
0.370817 + 0.928706i \(0.379078\pi\)
\(242\) 14.3666i 0.923522i
\(243\) −10.3789 + 17.9768i −0.665808 + 1.15321i
\(244\) −5.05050 8.74773i −0.323325 0.560016i
\(245\) 0 0
\(246\) 2.49896 0.159328
\(247\) −0.859730 21.1615i −0.0547033 1.34648i
\(248\) 1.02180 0.0648845
\(249\) −18.7401 + 10.8196i −1.18760 + 0.685664i
\(250\) −1.97866 3.42714i −0.125142 0.216752i
\(251\) −10.6649 + 18.4721i −0.673162 + 1.16595i 0.303840 + 0.952723i \(0.401731\pi\)
−0.977002 + 0.213228i \(0.931602\pi\)
\(252\) 0 0
\(253\) 16.5036 + 9.52837i 1.03757 + 0.599043i
\(254\) −7.18180 4.14641i −0.450626 0.260169i
\(255\) 29.4289i 1.84291i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −6.42956 11.1363i −0.401065 0.694664i 0.592790 0.805357i \(-0.298026\pi\)
−0.993855 + 0.110693i \(0.964693\pi\)
\(258\) 6.74256 3.89282i 0.419773 0.242356i
\(259\) 0 0
\(260\) −0.489457 12.0476i −0.0303548 0.747159i
\(261\) −17.1980 −1.06453
\(262\) 5.33618 3.08084i 0.329670 0.190335i
\(263\) −12.4300 21.5295i −0.766470 1.32756i −0.939466 0.342642i \(-0.888678\pi\)
0.172997 0.984922i \(-0.444655\pi\)
\(264\) −5.93699 + 10.2832i −0.365396 + 0.632885i
\(265\) 7.74748i 0.475924i
\(266\) 0 0
\(267\) −11.0516 6.38066i −0.676349 0.390490i
\(268\) 13.2982i 0.812317i
\(269\) 10.3012 17.8422i 0.628074 1.08786i −0.359864 0.933005i \(-0.617177\pi\)
0.987938 0.154851i \(-0.0494897\pi\)
\(270\) 1.74183 + 3.01693i 0.106004 + 0.183605i
\(271\) 4.57387 2.64072i 0.277843 0.160413i −0.354604 0.935017i \(-0.615384\pi\)
0.632446 + 0.774604i \(0.282051\pi\)
\(272\) 3.73270 0.226328
\(273\) 0 0
\(274\) −7.43816 −0.449355
\(275\) 26.9703 15.5713i 1.62637 0.938987i
\(276\) −4.46017 7.72525i −0.268471 0.465005i
\(277\) −2.62506 + 4.54674i −0.157725 + 0.273187i −0.934048 0.357148i \(-0.883749\pi\)
0.776323 + 0.630335i \(0.217083\pi\)
\(278\) 4.88398i 0.292921i
\(279\) −2.26371 1.30696i −0.135525 0.0782454i
\(280\) 0 0
\(281\) 31.3151i 1.86810i −0.357141 0.934051i \(-0.616248\pi\)
0.357141 0.934051i \(-0.383752\pi\)
\(282\) −6.26339 + 10.8485i −0.372980 + 0.646020i
\(283\) −3.86020 6.68606i −0.229465 0.397445i 0.728185 0.685381i \(-0.240364\pi\)
−0.957650 + 0.287936i \(0.907031\pi\)
\(284\) 2.35754 1.36113i 0.139894 0.0807679i
\(285\) −46.3111 −2.74323
\(286\) 18.1445 0.737156i 1.07291 0.0435890i
\(287\) 0 0
\(288\) 2.21541 1.27907i 0.130545 0.0753699i
\(289\) 1.53347 + 2.65605i 0.0902041 + 0.156238i
\(290\) −11.2411 + 19.4702i −0.660101 + 1.14333i
\(291\) 40.4919i 2.37368i
\(292\) 6.88886 + 3.97728i 0.403140 + 0.232753i
\(293\) 18.3856 + 10.6150i 1.07410 + 0.620133i 0.929299 0.369328i \(-0.120412\pi\)
0.144802 + 0.989461i \(0.453745\pi\)
\(294\) 0 0
\(295\) 13.5215 23.4199i 0.787252 1.36356i
\(296\) −0.214111 0.370851i −0.0124450 0.0215553i
\(297\) −4.54372 + 2.62332i −0.263653 + 0.152220i
\(298\) 5.61868 0.325482
\(299\) −6.33595 + 12.0818i −0.366417 + 0.698707i
\(300\) −14.5777 −0.841644
\(301\) 0 0
\(302\) −4.15489 7.19648i −0.239087 0.414111i
\(303\) 2.88597 4.99865i 0.165795 0.287165i
\(304\) 5.87400i 0.336897i
\(305\) 29.2537 + 16.8897i 1.67506 + 0.967099i
\(306\) −8.26948 4.77439i −0.472735 0.272934i
\(307\) 33.9938i 1.94013i −0.242850 0.970064i \(-0.578082\pi\)
0.242850 0.970064i \(-0.421918\pi\)
\(308\) 0 0
\(309\) 21.1339 + 36.6050i 1.20227 + 2.08239i
\(310\) −2.95926 + 1.70853i −0.168075 + 0.0970380i
\(311\) 0.731766 0.0414946 0.0207473 0.999785i \(-0.493395\pi\)
0.0207473 + 0.999785i \(0.493395\pi\)
\(312\) −7.52797 3.94784i −0.426188 0.223502i
\(313\) −7.36717 −0.416417 −0.208209 0.978084i \(-0.566763\pi\)
−0.208209 + 0.978084i \(0.566763\pi\)
\(314\) 4.51635 2.60751i 0.254872 0.147150i
\(315\) 0 0
\(316\) −7.07112 + 12.2475i −0.397782 + 0.688978i
\(317\) 28.4070i 1.59550i 0.602991 + 0.797748i \(0.293976\pi\)
−0.602991 + 0.797748i \(0.706024\pi\)
\(318\) 4.73009 + 2.73092i 0.265251 + 0.153142i
\(319\) −29.3235 16.9299i −1.64180 0.947894i
\(320\) 3.34415i 0.186944i
\(321\) −11.6728 + 20.2179i −0.651512 + 1.12845i
\(322\) 0 0
\(323\) −18.9884 + 10.9629i −1.05654 + 0.609994i
\(324\) 10.1303 0.562797
\(325\) 11.9218 + 18.8391i 0.661301 + 1.04501i
\(326\) 12.4796 0.691184
\(327\) 7.26418 4.19398i 0.401710 0.231927i
\(328\) −0.529986 0.917963i −0.0292636 0.0506860i
\(329\) 0 0
\(330\) 39.7084i 2.18587i
\(331\) −17.5783 10.1489i −0.966193 0.557832i −0.0681192 0.997677i \(-0.521700\pi\)
−0.898073 + 0.439846i \(0.855033\pi\)
\(332\) 7.94889 + 4.58930i 0.436252 + 0.251870i
\(333\) 1.09545i 0.0600305i
\(334\) −0.236682 + 0.409946i −0.0129507 + 0.0224312i
\(335\) 22.2356 + 38.5132i 1.21486 + 2.10420i
\(336\) 0 0
\(337\) −8.85616 −0.482426 −0.241213 0.970472i \(-0.577545\pi\)
−0.241213 + 0.970472i \(0.577545\pi\)
\(338\) 1.05456 + 12.9572i 0.0573606 + 0.704776i
\(339\) 11.5265 0.626036
\(340\) −10.8104 + 6.24136i −0.586274 + 0.338485i
\(341\) −2.57317 4.45686i −0.139345 0.241352i
\(342\) −7.51326 + 13.0133i −0.406270 + 0.703681i
\(343\) 0 0
\(344\) −2.85996 1.65120i −0.154199 0.0890267i
\(345\) 25.8344 + 14.9155i 1.39088 + 0.803024i
\(346\) 10.1320i 0.544701i
\(347\) −3.44861 + 5.97316i −0.185131 + 0.320656i −0.943621 0.331029i \(-0.892604\pi\)
0.758490 + 0.651685i \(0.225938\pi\)
\(348\) 7.92480 + 13.7262i 0.424814 + 0.735799i
\(349\) −3.63303 + 2.09753i −0.194472 + 0.112278i −0.594074 0.804410i \(-0.702482\pi\)
0.399602 + 0.916689i \(0.369148\pi\)
\(350\) 0 0
\(351\) −2.00847 3.17384i −0.107204 0.169407i
\(352\) 5.03653 0.268448
\(353\) −21.7100 + 12.5343i −1.15551 + 0.667132i −0.950223 0.311570i \(-0.899145\pi\)
−0.205284 + 0.978702i \(0.565812\pi\)
\(354\) −9.53242 16.5106i −0.506643 0.877531i
\(355\) −4.55181 + 7.88397i −0.241585 + 0.418438i
\(356\) 5.41291i 0.286884i
\(357\) 0 0
\(358\) −9.27876 5.35710i −0.490398 0.283131i
\(359\) 19.8743i 1.04893i −0.851433 0.524463i \(-0.824266\pi\)
0.851433 0.524463i \(-0.175734\pi\)
\(360\) −4.27741 + 7.40868i −0.225439 + 0.390472i
\(361\) 7.75193 + 13.4267i 0.407996 + 0.706670i
\(362\) 1.35400 0.781733i 0.0711648 0.0410870i
\(363\) 33.8704 1.77773
\(364\) 0 0
\(365\) −26.6013 −1.39238
\(366\) 20.6234 11.9069i 1.07800 0.622385i
\(367\) −7.10630 12.3085i −0.370946 0.642497i 0.618765 0.785576i \(-0.287633\pi\)
−0.989711 + 0.143079i \(0.954300\pi\)
\(368\) −1.89185 + 3.27678i −0.0986196 + 0.170814i
\(369\) 2.71156i 0.141158i
\(370\) 1.24018 + 0.716021i 0.0644741 + 0.0372241i
\(371\) 0 0
\(372\) 2.40897i 0.124899i
\(373\) 15.6299 27.0718i 0.809288 1.40173i −0.104070 0.994570i \(-0.533187\pi\)
0.913358 0.407157i \(-0.133480\pi\)
\(374\) −9.39993 16.2812i −0.486059 0.841879i
\(375\) 8.07974 4.66484i 0.417236 0.240891i
\(376\) 5.31343 0.274019
\(377\) 11.2577 21.4668i 0.579799 1.10560i
\(378\) 0 0
\(379\) 19.0369 10.9909i 0.977858 0.564567i 0.0762355 0.997090i \(-0.475710\pi\)
0.901623 + 0.432523i \(0.142377\pi\)
\(380\) 9.82177 + 17.0118i 0.503846 + 0.872687i
\(381\) 9.77546 16.9316i 0.500812 0.867432i
\(382\) 9.39317i 0.480597i
\(383\) 4.21349 + 2.43266i 0.215299 + 0.124303i 0.603772 0.797157i \(-0.293664\pi\)
−0.388472 + 0.921460i \(0.626997\pi\)
\(384\) −2.04172 1.17879i −0.104191 0.0601546i
\(385\) 0 0
\(386\) −4.57994 + 7.93269i −0.233113 + 0.403764i
\(387\) 4.22400 + 7.31618i 0.214718 + 0.371902i
\(388\) 14.8742 8.58763i 0.755123 0.435971i
\(389\) −12.8779 −0.652938 −0.326469 0.945208i \(-0.605859\pi\)
−0.326469 + 0.945208i \(0.605859\pi\)
\(390\) 28.4030 1.15393i 1.43824 0.0584315i
\(391\) 14.1234 0.714253
\(392\) 0 0
\(393\) 7.26330 + 12.5804i 0.366385 + 0.634598i
\(394\) 7.74526 13.4152i 0.390201 0.675847i
\(395\) 47.2938i 2.37961i
\(396\) −11.1580 6.44208i −0.560711 0.323726i
\(397\) −25.8091 14.9009i −1.29532 0.747855i −0.315731 0.948849i \(-0.602250\pi\)
−0.979593 + 0.200993i \(0.935583\pi\)
\(398\) 5.48387i 0.274882i
\(399\) 0 0
\(400\) 3.09168 + 5.35494i 0.154584 + 0.267747i
\(401\) 8.53523 4.92782i 0.426229 0.246084i −0.271510 0.962436i \(-0.587523\pi\)
0.697739 + 0.716352i \(0.254190\pi\)
\(402\) 31.3515 1.56367
\(403\) 3.11317 1.97008i 0.155078 0.0981366i
\(404\) −2.44826 −0.121806
\(405\) −29.3387 + 16.9387i −1.45785 + 0.841691i
\(406\) 0 0
\(407\) −1.07838 + 1.86780i −0.0534532 + 0.0925836i
\(408\) 8.80011i 0.435670i
\(409\) 22.0121 + 12.7087i 1.08843 + 0.628403i 0.933157 0.359469i \(-0.117042\pi\)
0.155269 + 0.987872i \(0.450376\pi\)
\(410\) 3.06981 + 1.77235i 0.151607 + 0.0875304i
\(411\) 17.5360i 0.864986i
\(412\) 8.96428 15.5266i 0.441638 0.764940i
\(413\) 0 0
\(414\) 8.38247 4.83962i 0.411976 0.237854i
\(415\) −30.6946 −1.50674
\(416\) 0.146362 + 3.60258i 0.00717598 + 0.176631i
\(417\) 11.5143 0.563859
\(418\) −25.6210 + 14.7923i −1.25316 + 0.723514i
\(419\) −15.5587 26.9484i −0.760091 1.31652i −0.942803 0.333350i \(-0.891821\pi\)
0.182712 0.983167i \(-0.441512\pi\)
\(420\) 0 0
\(421\) 13.8090i 0.673009i −0.941682 0.336505i \(-0.890755\pi\)
0.941682 0.336505i \(-0.109245\pi\)
\(422\) −4.41210 2.54733i −0.214778 0.124002i
\(423\) −11.7715 6.79625i −0.572348 0.330445i
\(424\) 2.31672i 0.112510i
\(425\) 11.5403 19.9884i 0.559787 0.969580i
\(426\) 3.20895 + 5.55806i 0.155474 + 0.269289i
\(427\) 0 0
\(428\) 9.90239 0.478650
\(429\) 1.73790 + 42.7769i 0.0839065 + 2.06529i
\(430\) 11.0437 0.532576
\(431\) 27.4347 15.8394i 1.32148 0.762958i 0.337516 0.941320i \(-0.390413\pi\)
0.983965 + 0.178362i \(0.0570798\pi\)
\(432\) −0.520858 0.902152i −0.0250598 0.0434048i
\(433\) −13.7233 + 23.7695i −0.659500 + 1.14229i 0.321245 + 0.946996i \(0.395899\pi\)
−0.980745 + 0.195292i \(0.937435\pi\)
\(434\) 0 0
\(435\) −45.9024 26.5017i −2.20085 1.27066i
\(436\) −3.08121 1.77894i −0.147563 0.0851957i
\(437\) 22.2255i 1.06319i
\(438\) −9.37673 + 16.2410i −0.448037 + 0.776024i
\(439\) −6.09116 10.5502i −0.290715 0.503534i 0.683264 0.730172i \(-0.260560\pi\)
−0.973979 + 0.226638i \(0.927227\pi\)
\(440\) −14.5864 + 8.42146i −0.695379 + 0.401477i
\(441\) 0 0
\(442\) 11.3726 7.19681i 0.540939 0.342317i
\(443\) −29.9063 −1.42089 −0.710445 0.703753i \(-0.751506\pi\)
−0.710445 + 0.703753i \(0.751506\pi\)
\(444\) 0.874309 0.504782i 0.0414928 0.0239559i
\(445\) −9.05080 15.6764i −0.429049 0.743135i
\(446\) −4.99619 + 8.65366i −0.236577 + 0.409763i
\(447\) 13.2464i 0.626535i
\(448\) 0 0
\(449\) 30.6709 + 17.7079i 1.44745 + 0.835685i 0.998329 0.0577858i \(-0.0184040\pi\)
0.449121 + 0.893471i \(0.351737\pi\)
\(450\) 15.8179i 0.745663i
\(451\) −2.66929 + 4.62335i −0.125692 + 0.217705i
\(452\) −2.44458 4.23414i −0.114983 0.199157i
\(453\) 16.9662 9.79545i 0.797142 0.460230i
\(454\) −13.2146 −0.620191
\(455\) 0 0
\(456\) 13.8484 0.648509
\(457\) −17.7635 + 10.2558i −0.830943 + 0.479745i −0.854175 0.519985i \(-0.825938\pi\)
0.0232325 + 0.999730i \(0.492604\pi\)
\(458\) 4.97993 + 8.62549i 0.232697 + 0.403043i
\(459\) −1.94421 + 3.36746i −0.0907478 + 0.157180i
\(460\) 12.6533i 0.589962i
\(461\) −2.94204 1.69858i −0.137024 0.0791110i 0.429921 0.902867i \(-0.358541\pi\)
−0.566945 + 0.823756i \(0.691875\pi\)
\(462\) 0 0
\(463\) 39.3586i 1.82915i 0.404417 + 0.914575i \(0.367474\pi\)
−0.404417 + 0.914575i \(0.632526\pi\)
\(464\) 3.36143 5.82216i 0.156050 0.270287i
\(465\) −4.02798 6.97667i −0.186793 0.323535i
\(466\) 7.43454 4.29233i 0.344399 0.198839i
\(467\) −5.98885 −0.277131 −0.138565 0.990353i \(-0.544249\pi\)
−0.138565 + 0.990353i \(0.544249\pi\)
\(468\) 4.28370 8.16841i 0.198014 0.377585i
\(469\) 0 0
\(470\) −15.3883 + 8.88446i −0.709811 + 0.409810i
\(471\) 6.14740 + 10.6476i 0.283257 + 0.490616i
\(472\) −4.04332 + 7.00324i −0.186109 + 0.322350i
\(473\) 16.6326i 0.764769i
\(474\) −28.8744 16.6707i −1.32625 0.765709i
\(475\) −31.4549 18.1605i −1.44325 0.833262i
\(476\) 0 0
\(477\) −2.96325 + 5.13251i −0.135678 + 0.235001i
\(478\) −0.586498 1.01584i −0.0268258 0.0464636i
\(479\) −11.8476 + 6.84021i −0.541330 + 0.312537i −0.745618 0.666374i \(-0.767846\pi\)
0.204288 + 0.978911i \(0.434512\pi\)
\(480\) 7.88408 0.359857
\(481\) −1.36736 0.717074i −0.0623462 0.0326958i
\(482\) 24.3882 1.11085
\(483\) 0 0
\(484\) −7.18332 12.4419i −0.326514 0.565539i
\(485\) −28.7183 + 49.7416i −1.30403 + 2.25865i
\(486\) 20.7578i 0.941595i
\(487\) −0.910007 0.525393i −0.0412364 0.0238078i 0.479240 0.877684i \(-0.340912\pi\)
−0.520476 + 0.853876i \(0.674246\pi\)
\(488\) −8.74773 5.05050i −0.395991 0.228626i
\(489\) 29.4216i 1.33049i
\(490\) 0 0
\(491\) −13.7757 23.8602i −0.621688 1.07679i −0.989171 0.146765i \(-0.953114\pi\)
0.367484 0.930030i \(-0.380219\pi\)
\(492\) 2.16416 1.24948i 0.0975680 0.0563309i
\(493\) −25.0944 −1.13019
\(494\) −11.3253 17.8966i −0.509550 0.805205i
\(495\) 43.0866 1.93660
\(496\) 0.884906 0.510901i 0.0397335 0.0229401i
\(497\) 0 0
\(498\) −10.8196 + 18.7401i −0.484837 + 0.839763i
\(499\) 2.10425i 0.0941991i 0.998890 + 0.0470995i \(0.0149978\pi\)
−0.998890 + 0.0470995i \(0.985002\pi\)
\(500\) −3.42714 1.97866i −0.153267 0.0884885i
\(501\) −0.966477 0.557996i −0.0431790 0.0249294i
\(502\) 21.3298i 0.951995i
\(503\) 19.3301 33.4807i 0.861886 1.49283i −0.00822020 0.999966i \(-0.502617\pi\)
0.870106 0.492864i \(-0.164050\pi\)
\(504\) 0 0
\(505\) 7.09046 4.09368i 0.315521 0.182166i
\(506\) 19.0567 0.847175
\(507\) −30.5474 + 2.48620i −1.35666 + 0.110416i
\(508\) −8.29282 −0.367935
\(509\) 22.0326 12.7205i 0.976578 0.563828i 0.0753428 0.997158i \(-0.475995\pi\)
0.901235 + 0.433330i \(0.142662\pi\)
\(510\) −14.7145 25.4862i −0.651567 1.12855i
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 5.29924 + 3.05952i 0.233967 + 0.135081i
\(514\) −11.1363 6.42956i −0.491202 0.283596i
\(515\) 59.9559i 2.64197i
\(516\) 3.89282 6.74256i 0.171372 0.296825i
\(517\) −13.3806 23.1759i −0.588479 1.01928i
\(518\) 0 0
\(519\) −23.8870 −1.04852
\(520\) −6.44767 10.1888i −0.282749 0.446807i
\(521\) −15.9879 −0.700441 −0.350221 0.936667i \(-0.613893\pi\)
−0.350221 + 0.936667i \(0.613893\pi\)
\(522\) −14.8939 + 8.59900i −0.651889 + 0.376368i
\(523\) −9.11459 15.7869i −0.398553 0.690315i 0.594994 0.803730i \(-0.297154\pi\)
−0.993548 + 0.113415i \(0.963821\pi\)
\(524\) 3.08084 5.33618i 0.134587 0.233112i
\(525\) 0 0
\(526\) −21.5295 12.4300i −0.938730 0.541976i
\(527\) −3.30309 1.90704i −0.143885 0.0830720i
\(528\) 11.8740i 0.516748i
\(529\) 4.34179 7.52021i 0.188774 0.326966i
\(530\) 3.87374 + 6.70952i 0.168265 + 0.291443i
\(531\) 17.9153 10.3434i 0.777457 0.448865i
\(532\) 0 0
\(533\) −3.38460 1.77496i −0.146603 0.0768822i
\(534\) −12.7613 −0.552236
\(535\) −28.6785 + 16.5575i −1.23988 + 0.715845i
\(536\) −6.64910 11.5166i −0.287197 0.497441i
\(537\) 12.6297 21.8753i 0.545013 0.943991i
\(538\) 20.6024i 0.888231i
\(539\) 0 0
\(540\) 3.01693 + 1.74183i 0.129828 + 0.0749563i
\(541\) 19.2066i 0.825758i −0.910786 0.412879i \(-0.864523\pi\)
0.910786 0.412879i \(-0.135477\pi\)
\(542\) 2.64072 4.57387i 0.113429 0.196464i
\(543\) 1.84299 + 3.19216i 0.0790903 + 0.136988i
\(544\) 3.23261 1.86635i 0.138597 0.0800191i
\(545\) 11.8981 0.509658
\(546\) 0 0
\(547\) −12.3643 −0.528659 −0.264329 0.964432i \(-0.585151\pi\)
−0.264329 + 0.964432i \(0.585151\pi\)
\(548\) −6.44163 + 3.71908i −0.275173 + 0.158871i
\(549\) 12.9199 + 22.3779i 0.551408 + 0.955067i
\(550\) 15.5713 26.9703i 0.663964 1.15002i
\(551\) 39.4900i 1.68233i
\(552\) −7.72525 4.46017i −0.328808 0.189838i
\(553\) 0 0
\(554\) 5.25013i 0.223057i
\(555\) −1.68807 + 2.92382i −0.0716545 + 0.124109i
\(556\) −2.44199 4.22965i −0.103563 0.179377i
\(557\) 25.5877 14.7731i 1.08419 0.625956i 0.152165 0.988355i \(-0.451376\pi\)
0.932023 + 0.362399i \(0.118042\pi\)
\(558\) −2.61391 −0.110656
\(559\) −11.8972 + 0.483345i −0.503196 + 0.0204433i
\(560\) 0 0
\(561\) 38.3840 22.1610i 1.62057 0.935638i
\(562\) −15.6575 27.1197i −0.660474 1.14397i
\(563\) 1.26155 2.18506i 0.0531678 0.0920894i −0.838217 0.545337i \(-0.816402\pi\)
0.891384 + 0.453248i \(0.149735\pi\)
\(564\) 12.5268i 0.527473i
\(565\) 14.1596 + 8.17505i 0.595699 + 0.343927i
\(566\) −6.68606 3.86020i −0.281036 0.162256i
\(567\) 0 0
\(568\) 1.36113 2.35754i 0.0571115 0.0989201i
\(569\) −5.21623 9.03478i −0.218676 0.378758i 0.735728 0.677278i \(-0.236840\pi\)
−0.954403 + 0.298520i \(0.903507\pi\)
\(570\) −40.1065 + 23.1555i −1.67988 + 0.969878i
\(571\) −0.145787 −0.00610099 −0.00305049 0.999995i \(-0.500971\pi\)
−0.00305049 + 0.999995i \(0.500971\pi\)
\(572\) 15.3450 9.71065i 0.641607 0.406022i
\(573\) 22.1451 0.925124
\(574\) 0 0
\(575\) 11.6980 + 20.2615i 0.487840 + 0.844964i
\(576\) 1.27907 2.21541i 0.0532946 0.0923089i
\(577\) 22.4447i 0.934385i 0.884156 + 0.467192i \(0.154734\pi\)
−0.884156 + 0.467192i \(0.845266\pi\)
\(578\) 2.65605 + 1.53347i 0.110477 + 0.0637840i
\(579\) −18.7019 10.7975i −0.777224 0.448731i
\(580\) 22.4822i 0.933524i
\(581\) 0 0
\(582\) 20.2459 + 35.0670i 0.839221 + 1.45357i
\(583\) −10.1050 + 5.83413i −0.418507 + 0.241625i
\(584\) 7.95457 0.329162
\(585\) 1.25210 + 30.8194i 0.0517679 + 1.27422i
\(586\) 21.2299 0.877000
\(587\) −18.2824 + 10.5554i −0.754596 + 0.435666i −0.827352 0.561684i \(-0.810154\pi\)
0.0727563 + 0.997350i \(0.476820\pi\)
\(588\) 0 0
\(589\) −3.00103 + 5.19794i −0.123655 + 0.214177i
\(590\) 27.0430i 1.11334i
\(591\) 31.6273 + 18.2600i 1.30097 + 0.751116i
\(592\) −0.370851 0.214111i −0.0152419 0.00879992i
\(593\) 29.8304i 1.22499i 0.790475 + 0.612494i \(0.209834\pi\)
−0.790475 + 0.612494i \(0.790166\pi\)
\(594\) −2.62332 + 4.54372i −0.107636 + 0.186431i
\(595\) 0 0
\(596\) 4.86592 2.80934i 0.199316 0.115075i
\(597\) 12.9286 0.529133
\(598\) 0.553790 + 13.6311i 0.0226462 + 0.557417i
\(599\) 33.5040 1.36894 0.684469 0.729042i \(-0.260034\pi\)
0.684469 + 0.729042i \(0.260034\pi\)
\(600\) −12.6247 + 7.28885i −0.515400 + 0.297566i
\(601\) 18.9681 + 32.8537i 0.773724 + 1.34013i 0.935509 + 0.353303i \(0.114942\pi\)
−0.161785 + 0.986826i \(0.551725\pi\)
\(602\) 0 0
\(603\) 34.0187i 1.38535i
\(604\) −7.19648 4.15489i −0.292821 0.169060i
\(605\) 41.6075 + 24.0221i 1.69159 + 0.976637i
\(606\) 5.77195i 0.234469i
\(607\) −17.9335 + 31.0618i −0.727900 + 1.26076i 0.229870 + 0.973221i \(0.426170\pi\)
−0.957769 + 0.287538i \(0.907163\pi\)
\(608\) −2.93700 5.08703i −0.119111 0.206306i
\(609\) 0 0
\(610\) 33.7793 1.36768
\(611\) 16.1887 10.2445i 0.654923 0.414449i
\(612\) −9.54877 −0.385986
\(613\) −10.9563 + 6.32562i −0.442521 + 0.255489i −0.704666 0.709539i \(-0.748903\pi\)
0.262146 + 0.965028i \(0.415570\pi\)
\(614\) −16.9969 29.4395i −0.685939 1.18808i
\(615\) −4.17845 + 7.23729i −0.168491 + 0.291836i
\(616\) 0 0
\(617\) 34.6231 + 19.9896i 1.39387 + 0.804753i 0.993741 0.111705i \(-0.0356312\pi\)
0.400131 + 0.916458i \(0.368965\pi\)
\(618\) 36.6050 + 21.1339i 1.47247 + 0.850131i
\(619\) 9.91384i 0.398471i −0.979952 0.199235i \(-0.936154\pi\)
0.979952 0.199235i \(-0.0638459\pi\)
\(620\) −1.70853 + 2.95926i −0.0686162 + 0.118847i
\(621\) −1.97077 3.41348i −0.0790843 0.136978i
\(622\) 0.633728 0.365883i 0.0254102 0.0146706i
\(623\) 0 0
\(624\) −8.49334 + 0.345059i −0.340006 + 0.0138134i
\(625\) −17.6829 −0.707315
\(626\) −6.38016 + 3.68359i −0.255002 + 0.147226i
\(627\) −34.8739 60.4033i −1.39273 2.41228i
\(628\) 2.60751 4.51635i 0.104051 0.180222i
\(629\) 1.59843i 0.0637334i
\(630\) 0 0
\(631\) 21.7056 + 12.5318i 0.864088 + 0.498881i 0.865379 0.501118i \(-0.167078\pi\)
−0.00129129 + 0.999999i \(0.500411\pi\)
\(632\) 14.1422i 0.562548i
\(633\) 6.00550 10.4018i 0.238697 0.413436i
\(634\) 14.2035 + 24.6012i 0.564093 + 0.977038i
\(635\) 24.0170 13.8662i 0.953087 0.550265i
\(636\) 5.46184 0.216576
\(637\) 0 0
\(638\) −33.8598 −1.34052
\(639\) −6.03091 + 3.48195i −0.238579 + 0.137744i
\(640\) −1.67208 2.89612i −0.0660946 0.114479i
\(641\) 4.01506 6.95429i 0.158585 0.274678i −0.775773 0.631012i \(-0.782640\pi\)
0.934359 + 0.356334i \(0.115973\pi\)
\(642\) 23.3456i 0.921377i
\(643\) −13.3951 7.73367i −0.528251 0.304986i 0.212053 0.977258i \(-0.431985\pi\)
−0.740304 + 0.672272i \(0.765318\pi\)
\(644\) 0 0
\(645\) 26.0364i 1.02518i
\(646\) −10.9629 + 18.9884i −0.431331 + 0.747087i
\(647\) −3.34618 5.79575i −0.131552 0.227854i 0.792723 0.609582i \(-0.208663\pi\)
−0.924275 + 0.381727i \(0.875329\pi\)
\(648\) 8.77313 5.06517i 0.344641 0.198979i
\(649\) 40.7286 1.59874
\(650\) 19.7441 + 10.3543i 0.774428 + 0.406127i
\(651\) 0 0
\(652\) 10.8077 6.23982i 0.423262 0.244370i
\(653\) 12.0804 + 20.9238i 0.472741 + 0.818811i 0.999513 0.0311950i \(-0.00993128\pi\)
−0.526772 + 0.850006i \(0.676598\pi\)
\(654\) 4.19398 7.26418i 0.163997 0.284052i
\(655\) 20.6056i 0.805128i
\(656\) −0.917963 0.529986i −0.0358404 0.0206925i
\(657\) −17.6227 10.1745i −0.687526 0.396943i
\(658\) 0 0
\(659\) −6.47769 + 11.2197i −0.252335 + 0.437057i −0.964168 0.265291i \(-0.914532\pi\)
0.711833 + 0.702349i \(0.247865\pi\)
\(660\) −19.8542 34.3885i −0.772823 1.33857i
\(661\) −16.7049 + 9.64460i −0.649747 + 0.375132i −0.788359 0.615215i \(-0.789069\pi\)
0.138612 + 0.990347i \(0.455736\pi\)
\(662\) −20.2977 −0.788893
\(663\) 16.9670 + 26.8117i 0.658943 + 1.04128i
\(664\) 9.17859 0.356198
\(665\) 0 0
\(666\) 0.547726 + 0.948690i 0.0212240 + 0.0367610i
\(667\) 12.7186 22.0293i 0.492468 0.852979i
\(668\) 0.473365i 0.0183150i
\(669\) −20.4016 11.7789i −0.788772 0.455398i
\(670\) 38.5132 + 22.2356i 1.48789 + 0.859037i
\(671\) 50.8740i 1.96397i
\(672\) 0 0
\(673\) −14.7943 25.6245i −0.570279 0.987752i −0.996537 0.0831505i \(-0.973502\pi\)
0.426258 0.904602i \(-0.359832\pi\)
\(674\) −7.66966 + 4.42808i −0.295424 + 0.170563i
\(675\) −6.44130 −0.247926
\(676\) 7.39185 + 10.6939i 0.284302 + 0.411306i
\(677\) −13.8422 −0.531998 −0.265999 0.963973i \(-0.585702\pi\)
−0.265999 + 0.963973i \(0.585702\pi\)
\(678\) 9.98228 5.76327i 0.383367 0.221337i
\(679\) 0 0
\(680\) −6.24136 + 10.8104i −0.239345 + 0.414558i
\(681\) 31.1543i 1.19384i
\(682\) −4.45686 2.57317i −0.170662 0.0985317i
\(683\) 30.9323 + 17.8588i 1.18359 + 0.683347i 0.956843 0.290607i \(-0.0938571\pi\)
0.226749 + 0.973953i \(0.427190\pi\)
\(684\) 15.0265i 0.574553i
\(685\) 12.4372 21.5418i 0.475200 0.823070i
\(686\) 0 0
\(687\) −20.3352 + 11.7405i −0.775837 + 0.447929i
\(688\) −3.30240 −0.125903
\(689\) −4.46674 7.05847i −0.170169 0.268906i
\(690\) 29.8310 1.13565
\(691\) −22.5221 + 13.0031i −0.856782 + 0.494663i −0.862933 0.505318i \(-0.831375\pi\)
0.00615160 + 0.999981i \(0.498042\pi\)
\(692\) 5.06601 + 8.77459i 0.192581 + 0.333560i
\(693\) 0 0
\(694\) 6.89722i 0.261815i
\(695\) 14.1446 + 8.16638i 0.536535 + 0.309768i
\(696\) 13.7262 + 7.92480i 0.520289 + 0.300389i
\(697\) 3.95656i 0.149865i
\(698\) −2.09753 + 3.63303i −0.0793928 + 0.137512i
\(699\) 10.1195 + 17.5275i 0.382754 + 0.662949i
\(700\) 0 0
\(701\) 24.7068 0.933164 0.466582 0.884478i \(-0.345485\pi\)
0.466582 + 0.884478i \(0.345485\pi\)
\(702\) −3.32631 1.74439i −0.125543 0.0658378i
\(703\) 2.51538 0.0948693
\(704\) 4.36176 2.51826i 0.164390 0.0949107i
\(705\) −20.9457 36.2791i −0.788863 1.36635i
\(706\) −12.5343 + 21.7100i −0.471734 + 0.817067i
\(707\) 0 0
\(708\) −16.5106 9.53242i −0.620508 0.358250i
\(709\) 19.3947 + 11.1975i 0.728383 + 0.420532i 0.817830 0.575460i \(-0.195177\pi\)
−0.0894476 + 0.995992i \(0.528510\pi\)
\(710\) 9.10362i 0.341653i
\(711\) 18.0889 31.3309i 0.678387 1.17500i
\(712\) 2.70646 + 4.68772i 0.101429 + 0.175680i
\(713\) 3.34822 1.93310i 0.125392 0.0723951i
\(714\) 0 0
\(715\) −28.2041 + 53.7812i −1.05477 + 2.01130i
\(716\) −10.7142 −0.400408
\(717\) 2.39492 1.38271i 0.0894401 0.0516383i
\(718\) −9.93716 17.2117i −0.370852 0.642334i
\(719\) 12.6421 21.8968i 0.471472 0.816613i −0.527996 0.849247i \(-0.677056\pi\)
0.999467 + 0.0326342i \(0.0103896\pi\)
\(720\) 8.55481i 0.318819i
\(721\) 0 0
\(722\) 13.4267 + 7.75193i 0.499691 + 0.288497i
\(723\) 57.4968i 2.13833i
\(724\) 0.781733 1.35400i 0.0290529 0.0503211i
\(725\) −20.7849 36.0005i −0.771932 1.33702i
\(726\) 29.3326 16.9352i 1.08863 0.628523i
\(727\) −39.9649 −1.48221 −0.741107 0.671386i \(-0.765699\pi\)
−0.741107 + 0.671386i \(0.765699\pi\)
\(728\) 0 0
\(729\) −18.5471 −0.686929
\(730\) −23.0374 + 13.3006i −0.852652 + 0.492279i
\(731\) 6.16343 + 10.6754i 0.227963 + 0.394843i
\(732\) 11.9069 20.6234i 0.440093 0.762263i
\(733\) 24.1168i 0.890774i 0.895338 + 0.445387i \(0.146934\pi\)
−0.895338 + 0.445387i \(0.853066\pi\)
\(734\) −12.3085 7.10630i −0.454314 0.262298i
\(735\) 0 0
\(736\) 3.78370i 0.139469i
\(737\) −33.4884 + 58.0036i −1.23356 + 2.13659i
\(738\) 1.35578 + 2.34828i 0.0499069 + 0.0864413i
\(739\) −24.7187 + 14.2714i −0.909292 + 0.524980i −0.880203 0.474597i \(-0.842594\pi\)
−0.0290890 + 0.999577i \(0.509261\pi\)
\(740\) 1.43204 0.0526429
\(741\) 42.1924 26.7002i 1.54998 0.980858i
\(742\) 0 0
\(743\) −37.9322 + 21.9001i −1.39160 + 0.803438i −0.993492 0.113902i \(-0.963665\pi\)
−0.398104 + 0.917340i \(0.630332\pi\)
\(744\) 1.20449 + 2.08623i 0.0441586 + 0.0764849i
\(745\) −9.39487 + 16.2724i −0.344201 + 0.596174i
\(746\) 31.2599i 1.14451i
\(747\) −20.3344 11.7401i −0.743996 0.429546i
\(748\) −16.2812 9.39993i −0.595298 0.343696i
\(749\) 0 0
\(750\) 4.66484 8.07974i 0.170336 0.295030i
\(751\) 20.2337 + 35.0458i 0.738338 + 1.27884i 0.953243 + 0.302204i \(0.0977223\pi\)
−0.214906 + 0.976635i \(0.568944\pi\)
\(752\) 4.60157 2.65672i 0.167802 0.0968804i
\(753\) −50.2865 −1.83254
\(754\) −0.983970 24.2196i −0.0358341 0.882026i
\(755\) 27.7892 1.01135
\(756\) 0 0
\(757\) −6.36103 11.0176i −0.231196 0.400442i 0.726965 0.686675i \(-0.240930\pi\)
−0.958160 + 0.286232i \(0.907597\pi\)
\(758\) 10.9909 19.0369i 0.399209 0.691450i
\(759\) 44.9276i 1.63077i
\(760\) 17.0118 + 9.82177i 0.617083 + 0.356273i
\(761\) 26.6191 + 15.3686i 0.964943 + 0.557110i 0.897691 0.440626i \(-0.145244\pi\)
0.0672521 + 0.997736i \(0.478577\pi\)
\(762\) 19.5509i 0.708255i
\(763\) 0 0
\(764\) −4.69659 8.13473i −0.169917 0.294304i
\(765\) 27.6544 15.9663i 0.999847 0.577262i
\(766\) 4.86532 0.175791
\(767\) 1.18358 + 29.1328i 0.0427365 + 1.05192i
\(768\) −2.35757 −0.0850715
\(769\) −10.0887 + 5.82469i −0.363806 + 0.210044i −0.670749 0.741684i \(-0.734027\pi\)
0.306943 + 0.951728i \(0.400694\pi\)
\(770\) 0 0
\(771\) 15.1581 26.2547i 0.545907 0.945538i
\(772\) 9.15989i 0.329672i
\(773\) −24.5544 14.1765i −0.883159 0.509892i −0.0114603 0.999934i \(-0.503648\pi\)
−0.871699 + 0.490042i \(0.836981\pi\)
\(774\) 7.31618 + 4.22400i 0.262975 + 0.151829i
\(775\) 6.31817i 0.226955i
\(776\) 8.58763 14.8742i 0.308278 0.533953i
\(777\) 0 0
\(778\) −11.1526 + 6.43897i −0.399841 + 0.230848i
\(779\) 6.22628 0.223079
\(780\) 24.0208 15.2008i 0.860081 0.544277i
\(781\) −13.7107 −0.490607
\(782\) 12.2313 7.06172i 0.437389 0.252527i
\(783\) 3.50165 + 6.06503i 0.125139 + 0.216747i
\(784\) 0 0
\(785\) 17.4398i 0.622455i
\(786\) 12.5804 + 7.26330i 0.448728 + 0.259074i
\(787\) 1.85099 + 1.06867i 0.0659808 + 0.0380940i 0.532627 0.846350i \(-0.321205\pi\)
−0.466647 + 0.884444i \(0.654538\pi\)
\(788\) 15.4905i 0.551827i
\(789\) 29.3047 50.7573i 1.04328 1.80701i
\(790\) −23.6469 40.9576i −0.841319 1.45721i
\(791\) 0 0
\(792\) −12.8842 −0.457818
\(793\) −36.3897 + 1.47840i −1.29224 + 0.0524996i
\(794\) −29.8018 −1.05763
\(795\) −15.8182 + 9.13262i −0.561012 + 0.323901i
\(796\) −2.74194 4.74917i −0.0971853 0.168330i
\(797\) −13.9817 + 24.2170i −0.495257 + 0.857810i −0.999985 0.00546806i \(-0.998259\pi\)
0.504728 + 0.863278i \(0.331593\pi\)
\(798\) 0 0
\(799\) −17.1763 9.91672i −0.607653 0.350829i
\(800\) 5.35494 + 3.09168i 0.189326 + 0.109307i
\(801\) 13.8470i 0.489259i
\(802\) 4.92782 8.53523i 0.174007 0.301390i
\(803\) −20.0317 34.6959i −0.706904 1.22439i
\(804\) 27.1512 15.6757i 0.957547 0.552840i
\(805\) 0 0
\(806\) 1.71104 3.26272i 0.0602690 0.114924i
\(807\) 48.5715 1.70980
\(808\) −2.12026 + 1.22413i −0.0745903 + 0.0430648i
\(809\) 24.3621 + 42.1965i 0.856527 + 1.48355i 0.875221 + 0.483724i \(0.160716\pi\)
−0.0186933 + 0.999825i \(0.505951\pi\)
\(810\) −16.9387 + 29.3387i −0.595165 + 1.03086i
\(811\) 31.9965i 1.12355i 0.827290 + 0.561774i \(0.189881\pi\)
−0.827290 + 0.561774i \(0.810119\pi\)
\(812\) 0 0
\(813\) 10.7832 + 6.22569i 0.378184 + 0.218345i
\(814\) 2.15675i 0.0755942i
\(815\) −20.8669 + 36.1426i −0.730936 + 1.26602i
\(816\) 4.40005 + 7.62112i 0.154033 + 0.266792i
\(817\) 16.7994 9.69914i 0.587737 0.339330i
\(818\) 25.4173 0.888696
\(819\) 0 0
\(820\) 3.54471 0.123787
\(821\) −10.8028 + 6.23701i −0.377021 + 0.217673i −0.676521 0.736423i \(-0.736513\pi\)
0.299500 + 0.954096i \(0.403180\pi\)
\(822\) −8.76799 15.1866i −0.305819 0.529694i
\(823\) 8.01300 13.8789i 0.279316 0.483789i −0.691899 0.721994i \(-0.743226\pi\)
0.971215 + 0.238205i \(0.0765591\pi\)
\(824\) 17.9286i 0.624571i
\(825\) 63.5845 + 36.7105i 2.21373 + 1.27810i
\(826\) 0 0
\(827\) 6.94225i 0.241406i −0.992689 0.120703i \(-0.961485\pi\)
0.992689 0.120703i \(-0.0385148\pi\)
\(828\) 4.83962 8.38247i 0.168189 0.291311i
\(829\) 4.54445 + 7.87122i 0.157835 + 0.273379i 0.934088 0.357043i \(-0.116215\pi\)
−0.776252 + 0.630422i \(0.782882\pi\)
\(830\) −26.5823 + 15.3473i −0.922686 + 0.532713i
\(831\) −12.3775 −0.429372
\(832\) 1.92804 + 3.04674i 0.0668429 + 0.105627i
\(833\) 0 0
\(834\) 9.97169 5.75716i 0.345291 0.199354i
\(835\) −0.791502 1.37092i −0.0273911 0.0474427i
\(836\) −14.7923 + 25.6210i −0.511602 + 0.886120i
\(837\) 1.06443i 0.0367920i
\(838\) −26.9484 15.5587i −0.930918 0.537466i
\(839\) −15.8840 9.17062i −0.548376 0.316605i 0.200091 0.979777i \(-0.435876\pi\)
−0.748467 + 0.663173i \(0.769210\pi\)
\(840\) 0 0
\(841\) −8.09837 + 14.0268i −0.279254 + 0.483683i
\(842\) −6.90450 11.9589i −0.237945 0.412132i
\(843\) 63.9365 36.9138i 2.20209 1.27138i
\(844\) −5.09465 −0.175365
\(845\) −39.2888 18.6112i −1.35158 0.640245i
\(846\) −13.5925 −0.467320
\(847\) 0 0
\(848\) −1.15836 2.00634i −0.0397783 0.0688981i
\(849\) 9.10069 15.7629i 0.312335 0.540980i
\(850\) 23.0806i 0.791659i
\(851\) −1.40319 0.810133i −0.0481008 0.0277710i
\(852\) 5.55806 + 3.20895i 0.190416 + 0.109937i
\(853\) 53.7617i 1.84077i −0.391018 0.920383i \(-0.627877\pi\)
0.391018 0.920383i \(-0.372123\pi\)
\(854\) 0 0
\(855\) −25.1255 43.5186i −0.859273 1.48830i
\(856\) 8.57572 4.95119i 0.293112 0.169228i
\(857\) 38.2580 1.30687 0.653434 0.756984i \(-0.273328\pi\)
0.653434 + 0.756984i \(0.273328\pi\)
\(858\) 22.8935 + 36.1770i 0.781572 + 1.23506i
\(859\) −15.7899 −0.538744 −0.269372 0.963036i \(-0.586816\pi\)
−0.269372 + 0.963036i \(0.586816\pi\)
\(860\) 9.56414 5.52186i 0.326135 0.188294i
\(861\) 0 0
\(862\) 15.8394 27.4347i 0.539492 0.934428i
\(863\) 44.5788i 1.51748i −0.651394 0.758739i \(-0.725816\pi\)
0.651394 0.758739i \(-0.274184\pi\)
\(864\) −0.902152 0.520858i −0.0306918 0.0177199i
\(865\) −29.3436 16.9415i −0.997711 0.576029i
\(866\) 27.4466i 0.932674i
\(867\) −3.61527 + 6.26182i −0.122781 + 0.212663i
\(868\) 0 0
\(869\) 61.6851 35.6139i 2.09252 1.20812i
\(870\) −53.0035 −1.79699
\(871\) −42.4626 22.2683i −1.43879 0.754533i
\(872\) −3.55788 −0.120485
\(873\) −38.0503 + 21.9684i −1.28781 + 0.743516i
\(874\) −11.1127 19.2478i −0.375894 0.651067i
\(875\) 0 0
\(876\) 18.7535i 0.633621i
\(877\) −0.121237 0.0699963i −0.00409389 0.00236361i 0.497952 0.867205i \(-0.334086\pi\)
−0.502046 + 0.864841i \(0.667419\pi\)
\(878\) −10.5502 6.09116i −0.356052 0.205567i
\(879\) 50.0510i 1.68818i
\(880\) −8.42146 + 14.5864i −0.283887 + 0.491707i
\(881\) −22.6522 39.2347i −0.763172 1.32185i −0.941208 0.337828i \(-0.890308\pi\)
0.178036 0.984024i \(-0.443026\pi\)
\(882\) 0 0
\(883\) −46.5419 −1.56626 −0.783130 0.621858i \(-0.786378\pi\)
−0.783130 + 0.621858i \(0.786378\pi\)
\(884\) 6.25054 11.9189i 0.210229 0.400876i
\(885\) 63.7558 2.14313
\(886\) −25.8996 + 14.9531i −0.870114 + 0.502360i
\(887\) −24.4650 42.3746i −0.821453 1.42280i −0.904600 0.426261i \(-0.859830\pi\)
0.0831471 0.996537i \(-0.473503\pi\)
\(888\) 0.504782 0.874309i 0.0169394 0.0293399i
\(889\) 0 0
\(890\) −15.6764 9.05080i −0.525476 0.303383i
\(891\) −44.1861 25.5109i −1.48029 0.854647i
\(892\) 9.99239i 0.334570i
\(893\) −15.6055 + 27.0296i −0.522220 + 0.904511i
\(894\) 6.62322 + 11.4718i 0.221514 + 0.383673i
\(895\) 31.0296 17.9149i 1.03721 0.598831i
\(896\) 0 0
\(897\) −32.1363 + 1.30560i −1.07300 + 0.0435927i
\(898\) 35.4157 1.18184
\(899\) −5.94910 + 3.43471i −0.198413 + 0.114554i
\(900\) −7.90895 13.6987i −0.263632 0.456623i
\(901\) −4.32382 + 7.48908i −0.144047 + 0.249497i
\(902\) 5.33858i 0.177755i
\(903\) 0 0
\(904\) −4.23414 2.44458i −0.140825 0.0813056i
\(905\) 5.22847i 0.173800i
\(906\) 9.79545 16.9662i 0.325432 0.563665i
\(907\) −24.9923 43.2879i −0.829856 1.43735i −0.898151 0.439687i \(-0.855089\pi\)
0.0682950 0.997665i \(-0.478244\pi\)
\(908\) −11.4442 + 6.60729i −0.379788 + 0.219271i
\(909\) 6.26299 0.207730
\(910\) 0 0
\(911\) 17.2655 0.572033 0.286016 0.958225i \(-0.407669\pi\)
0.286016 + 0.958225i \(0.407669\pi\)
\(912\) 11.9930 6.92418i 0.397129 0.229283i
\(913\) −23.1141 40.0348i −0.764966 1.32496i
\(914\) −10.2558 + 17.7635i −0.339231 + 0.587565i
\(915\) 79.6371i 2.63272i
\(916\) 8.62549 + 4.97993i 0.284994 + 0.164542i
\(917\) 0 0
\(918\) 3.88841i 0.128337i
\(919\) −7.95486 + 13.7782i −0.262407 + 0.454502i −0.966881 0.255228i \(-0.917849\pi\)
0.704474 + 0.709729i \(0.251183\pi\)
\(920\) −6.32664 10.9581i −0.208583 0.361277i
\(921\) 69.4057 40.0714i 2.28699 1.32040i
\(922\) −3.39717 −0.111880
\(923\) −0.398434 9.80712i −0.0131146 0.322805i
\(924\) 0 0
\(925\) −2.29311 + 1.32393i −0.0753969 + 0.0435304i
\(926\) 19.6793 + 34.0856i 0.646702 + 1.12012i
\(927\) −22.9319 + 39.7192i −0.753182 + 1.30455i
\(928\) 6.72285i 0.220688i
\(929\) 19.6257 + 11.3309i 0.643900 + 0.371756i 0.786115 0.618080i \(-0.212089\pi\)
−0.142215 + 0.989836i \(0.545423\pi\)
\(930\) −6.97667 4.02798i −0.228774 0.132083i
\(931\) 0 0
\(932\) 4.29233 7.43454i 0.140600 0.243527i
\(933\) 0.862595 + 1.49406i 0.0282401 + 0.0489133i
\(934\) −5.18650 + 2.99442i −0.169707 + 0.0979806i
\(935\) 62.8696 2.05606
\(936\) −0.374414 9.21590i −0.0122381 0.301231i
\(937\) −22.3601 −0.730473 −0.365237 0.930915i \(-0.619012\pi\)
−0.365237 + 0.930915i \(0.619012\pi\)
\(938\) 0 0
\(939\) −8.68432 15.0417i −0.283402 0.490867i
\(940\) −8.88446 + 15.3883i −0.289779 + 0.501912i
\(941\) 28.2183i 0.919892i 0.887947 + 0.459946i \(0.152131\pi\)
−0.887947 + 0.459946i \(0.847869\pi\)
\(942\) 10.6476 + 6.14740i 0.346918 + 0.200293i
\(943\) −3.47330 2.00531i −0.113106 0.0653019i
\(944\) 8.08665i 0.263198i
\(945\) 0 0
\(946\) 8.31631 + 14.4043i 0.270387 + 0.468323i
\(947\) −5.51380 + 3.18339i −0.179174 + 0.103446i −0.586905 0.809656i \(-0.699654\pi\)
0.407730 + 0.913102i \(0.366320\pi\)
\(948\) −33.3413 −1.08288
\(949\) 24.2355 15.3367i 0.786719 0.497852i
\(950\) −36.3210 −1.17841
\(951\) −57.9990 + 33.4858i −1.88075 + 1.08585i
\(952\) 0 0
\(953\) 1.16258 2.01365i 0.0376597 0.0652285i −0.846581 0.532260i \(-0.821343\pi\)
0.884241 + 0.467031i \(0.154676\pi\)
\(954\) 5.92651i 0.191878i
\(955\) 27.2038 + 15.7061i 0.880293 + 0.508238i
\(956\) −1.01584 0.586498i −0.0328547 0.0189687i
\(957\) 79.8270i 2.58044i
\(958\) −6.84021 + 11.8476i −0.220997 + 0.382778i
\(959\) 0 0
\(960\) 6.82781 3.94204i 0.220367 0.127229i
\(961\) 29.9559 0.966320
\(962\) −1.54271 + 0.0626755i −0.0497388 + 0.00202074i
\(963\) −25.3317 −0.816302
\(964\) 21.1208 12.1941i 0.680254 0.392745i
\(965\) −15.3160 26.5281i −0.493040 0.853971i
\(966\) 0 0
\(967\) 58.7262i 1.88851i −0.329219 0.944254i \(-0.606785\pi\)
0.329219 0.944254i \(-0.393215\pi\)
\(968\) −12.4419 7.18332i −0.399897 0.230881i
\(969\) −44.7664 25.8459i −1.43810 0.830290i
\(970\) 57.4367i 1.84418i
\(971\) 5.03497 8.72083i 0.161580 0.279865i −0.773855 0.633362i \(-0.781674\pi\)
0.935436 + 0.353497i \(0.115008\pi\)
\(972\) 10.3789 + 17.9768i 0.332904 + 0.576607i
\(973\) 0 0
\(974\) −1.05079 −0.0336693
\(975\) −24.4109 + 46.5482i −0.781774 + 1.49073i
\(976\) −10.1010 −0.323325
\(977\) −42.2830 + 24.4121i −1.35275 + 0.781012i −0.988634 0.150341i \(-0.951963\pi\)
−0.364118 + 0.931353i \(0.618629\pi\)
\(978\) 14.7108 + 25.4799i 0.470400 + 0.814757i
\(979\) 13.6311 23.6098i 0.435653 0.754573i
\(980\) 0 0
\(981\) 7.88218 + 4.55078i 0.251658 + 0.145295i
\(982\) −23.8602 13.7757i −0.761409 0.439600i
\(983\) 6.62899i 0.211432i −0.994396 0.105716i \(-0.966287\pi\)
0.994396 0.105716i \(-0.0337134\pi\)
\(984\) 1.24948 2.16416i 0.0398320 0.0689910i
\(985\) 25.9013 + 44.8624i 0.825285 + 1.42944i
\(986\) −21.7324 + 12.5472i −0.692100 + 0.399584i
\(987\) 0 0
\(988\) −18.7563 9.83622i −0.596717 0.312932i
\(989\) −12.4953 −0.397327
\(990\) 37.3141 21.5433i 1.18592 0.684690i
\(991\) −12.4847 21.6241i −0.396589 0.686911i 0.596714 0.802454i \(-0.296473\pi\)
−0.993303 + 0.115543i \(0.963139\pi\)
\(992\) 0.510901 0.884906i 0.0162211 0.0280958i
\(993\) 47.8533i 1.51858i
\(994\) 0 0
\(995\) 15.8820 + 9.16945i 0.503492 + 0.290691i
\(996\) 21.6392i 0.685664i
\(997\) 19.7584 34.2225i 0.625754 1.08384i −0.362640 0.931929i \(-0.618125\pi\)
0.988394 0.151909i \(-0.0485421\pi\)
\(998\) 1.05212 + 1.82233i 0.0333044 + 0.0576849i
\(999\) 0.386322 0.223043i 0.0122227 0.00705677i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.m.g.491.9 20
7.2 even 3 182.2.v.a.179.2 yes 20
7.3 odd 6 1274.2.o.h.569.7 20
7.4 even 3 182.2.o.a.23.9 20
7.5 odd 6 1274.2.v.h.361.4 20
7.6 odd 2 1274.2.m.f.491.7 20
13.4 even 6 inner 1274.2.m.g.589.9 20
21.2 odd 6 1638.2.cr.c.361.6 20
21.11 odd 6 1638.2.dt.c.1297.5 20
91.4 even 6 182.2.v.a.121.2 yes 20
91.17 odd 6 1274.2.v.h.667.4 20
91.30 even 6 182.2.o.a.95.4 yes 20
91.69 odd 6 1274.2.m.f.589.7 20
91.82 odd 6 1274.2.o.h.459.2 20
273.95 odd 6 1638.2.cr.c.667.6 20
273.212 odd 6 1638.2.dt.c.1369.10 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.o.a.23.9 20 7.4 even 3
182.2.o.a.95.4 yes 20 91.30 even 6
182.2.v.a.121.2 yes 20 91.4 even 6
182.2.v.a.179.2 yes 20 7.2 even 3
1274.2.m.f.491.7 20 7.6 odd 2
1274.2.m.f.589.7 20 91.69 odd 6
1274.2.m.g.491.9 20 1.1 even 1 trivial
1274.2.m.g.589.9 20 13.4 even 6 inner
1274.2.o.h.459.2 20 91.82 odd 6
1274.2.o.h.569.7 20 7.3 odd 6
1274.2.v.h.361.4 20 7.5 odd 6
1274.2.v.h.667.4 20 91.17 odd 6
1638.2.cr.c.361.6 20 21.2 odd 6
1638.2.cr.c.667.6 20 273.95 odd 6
1638.2.dt.c.1297.5 20 21.11 odd 6
1638.2.dt.c.1369.10 20 273.212 odd 6