Properties

Label 1274.2.v.h.361.4
Level $1274$
Weight $2$
Character 1274.361
Analytic conductor $10.173$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(361,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.v (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,4,10,0,0,0,0,32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 46 x^{18} + 895 x^{16} + 9634 x^{14} + 62977 x^{12} + 257850 x^{10} + 656102 x^{8} + \cdots + 32041 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.4
Root \(2.35757i\) of defining polynomial
Character \(\chi\) \(=\) 1274.361
Dual form 1274.2.v.h.667.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +2.35757 q^{3} +(0.500000 + 0.866025i) q^{4} +(-2.89612 + 1.67208i) q^{5} +(-2.04172 - 1.17879i) q^{6} -1.00000i q^{8} +2.55814 q^{9} +3.34415 q^{10} -5.03653i q^{11} +(1.17879 + 2.04172i) q^{12} +(1.92804 + 3.04674i) q^{13} +(-6.82781 + 3.94204i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(1.86635 + 3.23261i) q^{17} +(-2.21541 - 1.27907i) q^{18} +5.87400i q^{19} +(-2.89612 - 1.67208i) q^{20} +(-2.51826 + 4.36176i) q^{22} +(-1.89185 + 3.27678i) q^{23} -2.35757i q^{24} +(3.09168 - 5.35494i) q^{25} +(-0.146362 - 3.60258i) q^{26} -1.04172 q^{27} +(3.36143 + 5.82216i) q^{29} +7.88408 q^{30} +(0.884906 + 0.510901i) q^{31} +(0.866025 - 0.500000i) q^{32} -11.8740i q^{33} -3.73270i q^{34} +(1.27907 + 2.21541i) q^{36} +(-0.370851 - 0.214111i) q^{37} +(2.93700 - 5.08703i) q^{38} +(4.54550 + 7.18292i) q^{39} +(1.67208 + 2.89612i) q^{40} +(-0.917963 + 0.529986i) q^{41} +(1.65120 - 2.85996i) q^{43} +(4.36176 - 2.51826i) q^{44} +(-7.40868 + 4.27741i) q^{45} +(3.27678 - 1.89185i) q^{46} +(-4.60157 + 2.65672i) q^{47} +(-1.17879 + 2.04172i) q^{48} +(-5.35494 + 3.09168i) q^{50} +(4.40005 + 7.62112i) q^{51} +(-1.67454 + 3.19311i) q^{52} +(-1.15836 + 2.00634i) q^{53} +(0.902152 + 0.520858i) q^{54} +(8.42146 + 14.5864i) q^{55} +13.8484i q^{57} -6.72285i q^{58} +(-7.00324 + 4.04332i) q^{59} +(-6.82781 - 3.94204i) q^{60} +10.1010 q^{61} +(-0.510901 - 0.884906i) q^{62} -1.00000 q^{64} +(-10.6782 - 5.59991i) q^{65} +(-5.93699 + 10.2832i) q^{66} +13.2982i q^{67} +(-1.86635 + 3.23261i) q^{68} +(-4.46017 + 7.72525i) q^{69} +(2.35754 + 1.36113i) q^{71} -2.55814i q^{72} +(6.88886 + 3.97728i) q^{73} +(0.214111 + 0.370851i) q^{74} +(7.28885 - 12.6247i) q^{75} +(-5.08703 + 2.93700i) q^{76} +(-0.345059 - 8.49334i) q^{78} +(7.07112 + 12.2475i) q^{79} -3.34415i q^{80} -10.1303 q^{81} +1.05997 q^{82} -9.17859i q^{83} +(-10.8104 - 6.24136i) q^{85} +(-2.85996 + 1.65120i) q^{86} +(7.92480 + 13.7262i) q^{87} -5.03653 q^{88} +(-4.68772 - 2.70646i) q^{89} +8.55481 q^{90} -3.78370 q^{92} +(2.08623 + 1.20449i) q^{93} +5.31343 q^{94} +(-9.82177 - 17.0118i) q^{95} +(2.04172 - 1.17879i) q^{96} +(-14.8742 - 8.58763i) q^{97} -12.8842i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{3} + 10 q^{4} + 32 q^{9} - 8 q^{10} + 2 q^{12} - 6 q^{13} - 12 q^{15} - 10 q^{16} + 10 q^{17} - 24 q^{18} + 2 q^{22} + 18 q^{25} + 6 q^{26} + 28 q^{27} + 2 q^{29} + 4 q^{30} - 6 q^{31} + 16 q^{36}+ \cdots - 78 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 2.35757 1.36114 0.680572 0.732681i \(-0.261731\pi\)
0.680572 + 0.732681i \(0.261731\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −2.89612 + 1.67208i −1.29518 + 0.747775i −0.979568 0.201112i \(-0.935545\pi\)
−0.315616 + 0.948887i \(0.602211\pi\)
\(6\) −2.04172 1.17879i −0.833527 0.481237i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 2.55814 0.852713
\(10\) 3.34415 1.05751
\(11\) 5.03653i 1.51857i −0.650758 0.759285i \(-0.725549\pi\)
0.650758 0.759285i \(-0.274451\pi\)
\(12\) 1.17879 + 2.04172i 0.340286 + 0.589393i
\(13\) 1.92804 + 3.04674i 0.534743 + 0.845015i
\(14\) 0 0
\(15\) −6.82781 + 3.94204i −1.76293 + 1.01783i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.86635 + 3.23261i 0.452657 + 0.784024i 0.998550 0.0538304i \(-0.0171430\pi\)
−0.545894 + 0.837855i \(0.683810\pi\)
\(18\) −2.21541 1.27907i −0.522178 0.301480i
\(19\) 5.87400i 1.34759i 0.738919 + 0.673794i \(0.235336\pi\)
−0.738919 + 0.673794i \(0.764664\pi\)
\(20\) −2.89612 1.67208i −0.647592 0.373888i
\(21\) 0 0
\(22\) −2.51826 + 4.36176i −0.536896 + 0.929931i
\(23\) −1.89185 + 3.27678i −0.394478 + 0.683257i −0.993034 0.117824i \(-0.962408\pi\)
0.598556 + 0.801081i \(0.295741\pi\)
\(24\) 2.35757i 0.481237i
\(25\) 3.09168 5.35494i 0.618336 1.07099i
\(26\) −0.146362 3.60258i −0.0287039 0.706524i
\(27\) −1.04172 −0.200478
\(28\) 0 0
\(29\) 3.36143 + 5.82216i 0.624201 + 1.08115i 0.988695 + 0.149942i \(0.0479088\pi\)
−0.364494 + 0.931206i \(0.618758\pi\)
\(30\) 7.88408 1.43943
\(31\) 0.884906 + 0.510901i 0.158934 + 0.0917605i 0.577357 0.816491i \(-0.304084\pi\)
−0.418424 + 0.908252i \(0.637417\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 11.8740i 2.06699i
\(34\) 3.73270i 0.640153i
\(35\) 0 0
\(36\) 1.27907 + 2.21541i 0.213178 + 0.369236i
\(37\) −0.370851 0.214111i −0.0609676 0.0351997i 0.469206 0.883089i \(-0.344540\pi\)
−0.530174 + 0.847889i \(0.677873\pi\)
\(38\) 2.93700 5.08703i 0.476444 0.825226i
\(39\) 4.54550 + 7.18292i 0.727862 + 1.15019i
\(40\) 1.67208 + 2.89612i 0.264378 + 0.457917i
\(41\) −0.917963 + 0.529986i −0.143362 + 0.0827699i −0.569965 0.821669i \(-0.693043\pi\)
0.426603 + 0.904439i \(0.359710\pi\)
\(42\) 0 0
\(43\) 1.65120 2.85996i 0.251805 0.436140i −0.712217 0.701959i \(-0.752309\pi\)
0.964023 + 0.265819i \(0.0856423\pi\)
\(44\) 4.36176 2.51826i 0.657560 0.379643i
\(45\) −7.40868 + 4.27741i −1.10442 + 0.637638i
\(46\) 3.27678 1.89185i 0.483135 0.278938i
\(47\) −4.60157 + 2.65672i −0.671207 + 0.387522i −0.796534 0.604594i \(-0.793335\pi\)
0.125327 + 0.992116i \(0.460002\pi\)
\(48\) −1.17879 + 2.04172i −0.170143 + 0.294696i
\(49\) 0 0
\(50\) −5.35494 + 3.09168i −0.757303 + 0.437229i
\(51\) 4.40005 + 7.62112i 0.616131 + 1.06717i
\(52\) −1.67454 + 3.19311i −0.232216 + 0.442804i
\(53\) −1.15836 + 2.00634i −0.159113 + 0.275592i −0.934549 0.355834i \(-0.884197\pi\)
0.775436 + 0.631426i \(0.217530\pi\)
\(54\) 0.902152 + 0.520858i 0.122767 + 0.0708798i
\(55\) 8.42146 + 14.5864i 1.13555 + 1.96683i
\(56\) 0 0
\(57\) 13.8484i 1.83426i
\(58\) 6.72285i 0.882754i
\(59\) −7.00324 + 4.04332i −0.911745 + 0.526396i −0.880992 0.473131i \(-0.843124\pi\)
−0.0307526 + 0.999527i \(0.509790\pi\)
\(60\) −6.82781 3.94204i −0.881467 0.508915i
\(61\) 10.1010 1.29330 0.646651 0.762786i \(-0.276169\pi\)
0.646651 + 0.762786i \(0.276169\pi\)
\(62\) −0.510901 0.884906i −0.0648845 0.112383i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −10.6782 5.59991i −1.32447 0.694583i
\(66\) −5.93699 + 10.2832i −0.730793 + 1.26577i
\(67\) 13.2982i 1.62463i 0.583216 + 0.812317i \(0.301794\pi\)
−0.583216 + 0.812317i \(0.698206\pi\)
\(68\) −1.86635 + 3.23261i −0.226328 + 0.392012i
\(69\) −4.46017 + 7.72525i −0.536942 + 0.930011i
\(70\) 0 0
\(71\) 2.35754 + 1.36113i 0.279788 + 0.161536i 0.633328 0.773884i \(-0.281689\pi\)
−0.353539 + 0.935420i \(0.615022\pi\)
\(72\) 2.55814i 0.301480i
\(73\) 6.88886 + 3.97728i 0.806280 + 0.465506i 0.845662 0.533718i \(-0.179206\pi\)
−0.0393824 + 0.999224i \(0.512539\pi\)
\(74\) 0.214111 + 0.370851i 0.0248899 + 0.0431106i
\(75\) 7.28885 12.6247i 0.841644 1.45777i
\(76\) −5.08703 + 2.93700i −0.583523 + 0.336897i
\(77\) 0 0
\(78\) −0.345059 8.49334i −0.0390702 0.961681i
\(79\) 7.07112 + 12.2475i 0.795563 + 1.37796i 0.922481 + 0.386043i \(0.126158\pi\)
−0.126918 + 0.991913i \(0.540508\pi\)
\(80\) 3.34415i 0.373888i
\(81\) −10.1303 −1.12559
\(82\) 1.05997 0.117054
\(83\) 9.17859i 1.00748i −0.863855 0.503741i \(-0.831957\pi\)
0.863855 0.503741i \(-0.168043\pi\)
\(84\) 0 0
\(85\) −10.8104 6.24136i −1.17255 0.676971i
\(86\) −2.85996 + 1.65120i −0.308397 + 0.178053i
\(87\) 7.92480 + 13.7262i 0.849628 + 1.47160i
\(88\) −5.03653 −0.536896
\(89\) −4.68772 2.70646i −0.496897 0.286884i 0.230534 0.973064i \(-0.425953\pi\)
−0.727431 + 0.686181i \(0.759286\pi\)
\(90\) 8.55481 0.901756
\(91\) 0 0
\(92\) −3.78370 −0.394478
\(93\) 2.08623 + 1.20449i 0.216332 + 0.124899i
\(94\) 5.31343 0.548039
\(95\) −9.82177 17.0118i −1.00769 1.74537i
\(96\) 2.04172 1.17879i 0.208382 0.120309i
\(97\) −14.8742 8.58763i −1.51025 0.871941i −0.999929 0.0119557i \(-0.996194\pi\)
−0.510318 0.859986i \(-0.670472\pi\)
\(98\) 0 0
\(99\) 12.8842i 1.29491i
\(100\) 6.18336 0.618336
\(101\) −2.44826 −0.243611 −0.121806 0.992554i \(-0.538868\pi\)
−0.121806 + 0.992554i \(0.538868\pi\)
\(102\) 8.80011i 0.871341i
\(103\) 8.96428 + 15.5266i 0.883277 + 1.52988i 0.847676 + 0.530514i \(0.178001\pi\)
0.0356010 + 0.999366i \(0.488665\pi\)
\(104\) 3.04674 1.92804i 0.298758 0.189060i
\(105\) 0 0
\(106\) 2.00634 1.15836i 0.194873 0.112510i
\(107\) 4.95119 8.57572i 0.478650 0.829046i −0.521050 0.853526i \(-0.674460\pi\)
0.999700 + 0.0244799i \(0.00779297\pi\)
\(108\) −0.520858 0.902152i −0.0501196 0.0868096i
\(109\) 3.08121 + 1.77894i 0.295127 + 0.170391i 0.640252 0.768165i \(-0.278830\pi\)
−0.345125 + 0.938557i \(0.612163\pi\)
\(110\) 16.8429i 1.60591i
\(111\) −0.874309 0.504782i −0.0829857 0.0479118i
\(112\) 0 0
\(113\) 2.44458 4.23414i 0.229967 0.398314i −0.727831 0.685756i \(-0.759472\pi\)
0.957798 + 0.287442i \(0.0928049\pi\)
\(114\) 6.92418 11.9930i 0.648509 1.12325i
\(115\) 12.6533i 1.17992i
\(116\) −3.36143 + 5.82216i −0.312101 + 0.540574i
\(117\) 4.93220 + 7.79400i 0.455982 + 0.720556i
\(118\) 8.08665 0.744436
\(119\) 0 0
\(120\) 3.94204 + 6.82781i 0.359857 + 0.623291i
\(121\) −14.3666 −1.30606
\(122\) −8.74773 5.05050i −0.791982 0.457251i
\(123\) −2.16416 + 1.24948i −0.195136 + 0.112662i
\(124\) 1.02180i 0.0917605i
\(125\) 3.95733i 0.353954i
\(126\) 0 0
\(127\) −4.14641 7.18180i −0.367935 0.637281i 0.621308 0.783567i \(-0.286602\pi\)
−0.989242 + 0.146285i \(0.953268\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 3.89282 6.74256i 0.342744 0.593649i
\(130\) 6.44767 + 10.1888i 0.565498 + 0.893615i
\(131\) 3.08084 + 5.33618i 0.269174 + 0.466224i 0.968649 0.248434i \(-0.0799158\pi\)
−0.699474 + 0.714658i \(0.746583\pi\)
\(132\) 10.2832 5.93699i 0.895035 0.516748i
\(133\) 0 0
\(134\) 6.64910 11.5166i 0.574395 0.994881i
\(135\) 3.01693 1.74183i 0.259656 0.149913i
\(136\) 3.23261 1.86635i 0.277194 0.160038i
\(137\) 6.44163 3.71908i 0.550346 0.317742i −0.198916 0.980017i \(-0.563742\pi\)
0.749261 + 0.662274i \(0.230409\pi\)
\(138\) 7.72525 4.46017i 0.657617 0.379675i
\(139\) −2.44199 + 4.22965i −0.207127 + 0.358754i −0.950808 0.309780i \(-0.899745\pi\)
0.743682 + 0.668534i \(0.233078\pi\)
\(140\) 0 0
\(141\) −10.8485 + 6.26339i −0.913610 + 0.527473i
\(142\) −1.36113 2.35754i −0.114223 0.197840i
\(143\) 15.3450 9.71065i 1.28321 0.812045i
\(144\) −1.27907 + 2.21541i −0.106589 + 0.184618i
\(145\) −19.4702 11.2411i −1.61691 0.933524i
\(146\) −3.97728 6.88886i −0.329162 0.570126i
\(147\) 0 0
\(148\) 0.428222i 0.0351997i
\(149\) 5.61868i 0.460301i −0.973155 0.230150i \(-0.926078\pi\)
0.973155 0.230150i \(-0.0739218\pi\)
\(150\) −12.6247 + 7.28885i −1.03080 + 0.595132i
\(151\) 7.19648 + 4.15489i 0.585641 + 0.338120i 0.763372 0.645959i \(-0.223542\pi\)
−0.177731 + 0.984079i \(0.556876\pi\)
\(152\) 5.87400 0.476444
\(153\) 4.77439 + 8.26948i 0.385986 + 0.668548i
\(154\) 0 0
\(155\) −3.41706 −0.274465
\(156\) −3.94784 + 7.52797i −0.316080 + 0.602720i
\(157\) 2.60751 4.51635i 0.208102 0.360444i −0.743014 0.669275i \(-0.766605\pi\)
0.951117 + 0.308832i \(0.0999380\pi\)
\(158\) 14.1422i 1.12510i
\(159\) −2.73092 + 4.73009i −0.216576 + 0.375121i
\(160\) −1.67208 + 2.89612i −0.132189 + 0.228958i
\(161\) 0 0
\(162\) 8.77313 + 5.06517i 0.689282 + 0.397957i
\(163\) 12.4796i 0.977481i −0.872429 0.488741i \(-0.837456\pi\)
0.872429 0.488741i \(-0.162544\pi\)
\(164\) −0.917963 0.529986i −0.0716809 0.0413850i
\(165\) 19.8542 + 34.3885i 1.54565 + 2.67714i
\(166\) −4.58930 + 7.94889i −0.356198 + 0.616954i
\(167\) 0.409946 0.236682i 0.0317226 0.0183150i −0.484055 0.875038i \(-0.660836\pi\)
0.515777 + 0.856723i \(0.327503\pi\)
\(168\) 0 0
\(169\) −5.56530 + 11.7485i −0.428100 + 0.903731i
\(170\) 6.24136 + 10.8104i 0.478691 + 0.829116i
\(171\) 15.0265i 1.14911i
\(172\) 3.30240 0.251805
\(173\) −10.1320 −0.770323 −0.385162 0.922849i \(-0.625854\pi\)
−0.385162 + 0.922849i \(0.625854\pi\)
\(174\) 15.8496i 1.20156i
\(175\) 0 0
\(176\) 4.36176 + 2.51826i 0.328780 + 0.189821i
\(177\) −16.5106 + 9.53242i −1.24102 + 0.716501i
\(178\) 2.70646 + 4.68772i 0.202857 + 0.351359i
\(179\) 10.7142 0.800816 0.400408 0.916337i \(-0.368868\pi\)
0.400408 + 0.916337i \(0.368868\pi\)
\(180\) −7.40868 4.27741i −0.552211 0.318819i
\(181\) −1.56347 −0.116212 −0.0581058 0.998310i \(-0.518506\pi\)
−0.0581058 + 0.998310i \(0.518506\pi\)
\(182\) 0 0
\(183\) 23.8138 1.76037
\(184\) 3.27678 + 1.89185i 0.241568 + 0.139469i
\(185\) 1.43204 0.105286
\(186\) −1.20449 2.08623i −0.0883171 0.152970i
\(187\) 16.2812 9.39993i 1.19060 0.687391i
\(188\) −4.60157 2.65672i −0.335604 0.193761i
\(189\) 0 0
\(190\) 19.6435i 1.42509i
\(191\) −9.39317 −0.679666 −0.339833 0.940486i \(-0.610371\pi\)
−0.339833 + 0.940486i \(0.610371\pi\)
\(192\) −2.35757 −0.170143
\(193\) 9.15989i 0.659343i −0.944096 0.329672i \(-0.893062\pi\)
0.944096 0.329672i \(-0.106938\pi\)
\(194\) 8.58763 + 14.8742i 0.616556 + 1.06791i
\(195\) −25.1747 13.2022i −1.80280 0.945427i
\(196\) 0 0
\(197\) 13.4152 7.74526i 0.955793 0.551827i 0.0609170 0.998143i \(-0.480598\pi\)
0.894876 + 0.446316i \(0.147264\pi\)
\(198\) −6.44208 + 11.1580i −0.457818 + 0.792965i
\(199\) −2.74194 4.74917i −0.194371 0.336660i 0.752323 0.658794i \(-0.228933\pi\)
−0.946694 + 0.322134i \(0.895600\pi\)
\(200\) −5.35494 3.09168i −0.378652 0.218615i
\(201\) 31.3515i 2.21136i
\(202\) 2.12026 + 1.22413i 0.149181 + 0.0861295i
\(203\) 0 0
\(204\) −4.40005 + 7.62112i −0.308065 + 0.533585i
\(205\) 1.77235 3.06981i 0.123787 0.214405i
\(206\) 17.9286i 1.24914i
\(207\) −4.83962 + 8.38247i −0.336377 + 0.582622i
\(208\) −3.60258 + 0.146362i −0.249794 + 0.0101484i
\(209\) 29.5846 2.04641
\(210\) 0 0
\(211\) −2.54733 4.41210i −0.175365 0.303741i 0.764922 0.644122i \(-0.222777\pi\)
−0.940288 + 0.340381i \(0.889444\pi\)
\(212\) −2.31672 −0.159113
\(213\) 5.55806 + 3.20895i 0.380832 + 0.219874i
\(214\) −8.57572 + 4.95119i −0.586224 + 0.338457i
\(215\) 11.0437i 0.753176i
\(216\) 1.04172i 0.0708798i
\(217\) 0 0
\(218\) −1.77894 3.08121i −0.120485 0.208686i
\(219\) 16.2410 + 9.37673i 1.09746 + 0.633621i
\(220\) −8.42146 + 14.5864i −0.567775 + 0.983415i
\(221\) −6.25054 + 11.9189i −0.420457 + 0.801753i
\(222\) 0.504782 + 0.874309i 0.0338788 + 0.0586798i
\(223\) 8.65366 4.99619i 0.579492 0.334570i −0.181440 0.983402i \(-0.558076\pi\)
0.760931 + 0.648832i \(0.224742\pi\)
\(224\) 0 0
\(225\) 7.90895 13.6987i 0.527263 0.913247i
\(226\) −4.23414 + 2.44458i −0.281651 + 0.162611i
\(227\) −11.4442 + 6.60729i −0.759575 + 0.438541i −0.829143 0.559036i \(-0.811171\pi\)
0.0695679 + 0.997577i \(0.477838\pi\)
\(228\) −11.9930 + 6.92418i −0.794258 + 0.458565i
\(229\) −8.62549 + 4.97993i −0.569989 + 0.329083i −0.757145 0.653247i \(-0.773406\pi\)
0.187156 + 0.982330i \(0.440073\pi\)
\(230\) −6.32664 + 10.9581i −0.417166 + 0.722553i
\(231\) 0 0
\(232\) 5.82216 3.36143i 0.382244 0.220688i
\(233\) −4.29233 7.43454i −0.281200 0.487053i 0.690480 0.723351i \(-0.257399\pi\)
−0.971681 + 0.236298i \(0.924066\pi\)
\(234\) −0.374414 9.21590i −0.0244762 0.602462i
\(235\) 8.88446 15.3883i 0.579558 1.00382i
\(236\) −7.00324 4.04332i −0.455872 0.263198i
\(237\) 16.6707 + 28.8744i 1.08288 + 1.87560i
\(238\) 0 0
\(239\) 1.17300i 0.0758748i −0.999280 0.0379374i \(-0.987921\pi\)
0.999280 0.0379374i \(-0.0120787\pi\)
\(240\) 7.88408i 0.508915i
\(241\) 21.1208 12.1941i 1.36051 0.785490i 0.370817 0.928706i \(-0.379078\pi\)
0.989691 + 0.143216i \(0.0457443\pi\)
\(242\) 12.4419 + 7.18332i 0.799794 + 0.461761i
\(243\) −20.7578 −1.33162
\(244\) 5.05050 + 8.74773i 0.323325 + 0.560016i
\(245\) 0 0
\(246\) 2.49896 0.159328
\(247\) −17.8966 + 11.3253i −1.13873 + 0.720613i
\(248\) 0.510901 0.884906i 0.0324422 0.0561916i
\(249\) 21.6392i 1.37133i
\(250\) 1.97866 3.42714i 0.125142 0.216752i
\(251\) 10.6649 18.4721i 0.673162 1.16595i −0.303840 0.952723i \(-0.598269\pi\)
0.977002 0.213228i \(-0.0683978\pi\)
\(252\) 0 0
\(253\) 16.5036 + 9.52837i 1.03757 + 0.599043i
\(254\) 8.29282i 0.520338i
\(255\) −25.4862 14.7145i −1.59601 0.921455i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 6.42956 11.1363i 0.401065 0.694664i −0.592790 0.805357i \(-0.701974\pi\)
0.993855 + 0.110693i \(0.0353069\pi\)
\(258\) −6.74256 + 3.89282i −0.419773 + 0.242356i
\(259\) 0 0
\(260\) −0.489457 12.0476i −0.0303548 0.747159i
\(261\) 8.59900 + 14.8939i 0.532265 + 0.921910i
\(262\) 6.16169i 0.380670i
\(263\) 24.8601 1.53294 0.766470 0.642281i \(-0.222012\pi\)
0.766470 + 0.642281i \(0.222012\pi\)
\(264\) −11.8740 −0.730793
\(265\) 7.74748i 0.475924i
\(266\) 0 0
\(267\) −11.0516 6.38066i −0.676349 0.390490i
\(268\) −11.5166 + 6.64910i −0.703487 + 0.406158i
\(269\) −10.3012 17.8422i −0.628074 1.08786i −0.987938 0.154851i \(-0.950510\pi\)
0.359864 0.933005i \(-0.382823\pi\)
\(270\) −3.48366 −0.212009
\(271\) 4.57387 + 2.64072i 0.277843 + 0.160413i 0.632446 0.774604i \(-0.282051\pi\)
−0.354604 + 0.935017i \(0.615384\pi\)
\(272\) −3.73270 −0.226328
\(273\) 0 0
\(274\) −7.43816 −0.449355
\(275\) −26.9703 15.5713i −1.62637 0.938987i
\(276\) −8.92035 −0.536942
\(277\) −2.62506 4.54674i −0.157725 0.273187i 0.776323 0.630335i \(-0.217083\pi\)
−0.934048 + 0.357148i \(0.883749\pi\)
\(278\) 4.22965 2.44199i 0.253677 0.146461i
\(279\) 2.26371 + 1.30696i 0.135525 + 0.0782454i
\(280\) 0 0
\(281\) 31.3151i 1.86810i −0.357141 0.934051i \(-0.616248\pi\)
0.357141 0.934051i \(-0.383752\pi\)
\(282\) 12.5268 0.745959
\(283\) −7.72040 −0.458930 −0.229465 0.973317i \(-0.573698\pi\)
−0.229465 + 0.973317i \(0.573698\pi\)
\(284\) 2.72225i 0.161536i
\(285\) −23.1555 40.1065i −1.37162 2.37571i
\(286\) −18.1445 + 0.737156i −1.07291 + 0.0435890i
\(287\) 0 0
\(288\) 2.21541 1.27907i 0.130545 0.0753699i
\(289\) 1.53347 2.65605i 0.0902041 0.156238i
\(290\) 11.2411 + 19.4702i 0.660101 + 1.14333i
\(291\) −35.0670 20.2459i −2.05566 1.18684i
\(292\) 7.95457i 0.465506i
\(293\) −18.3856 10.6150i −1.07410 0.620133i −0.144802 0.989461i \(-0.546255\pi\)
−0.929299 + 0.369328i \(0.879588\pi\)
\(294\) 0 0
\(295\) 13.5215 23.4199i 0.787252 1.36356i
\(296\) −0.214111 + 0.370851i −0.0124450 + 0.0215553i
\(297\) 5.24663i 0.304440i
\(298\) −2.80934 + 4.86592i −0.162741 + 0.281875i
\(299\) −13.6311 + 0.553790i −0.788306 + 0.0320265i
\(300\) 14.5777 0.841644
\(301\) 0 0
\(302\) −4.15489 7.19648i −0.239087 0.414111i
\(303\) −5.77195 −0.331590
\(304\) −5.08703 2.93700i −0.291761 0.168448i
\(305\) −29.2537 + 16.8897i −1.67506 + 0.967099i
\(306\) 9.54877i 0.545867i
\(307\) 33.9938i 1.94013i 0.242850 + 0.970064i \(0.421918\pi\)
−0.242850 + 0.970064i \(0.578082\pi\)
\(308\) 0 0
\(309\) 21.1339 + 36.6050i 1.20227 + 2.08239i
\(310\) 2.95926 + 1.70853i 0.168075 + 0.0970380i
\(311\) 0.365883 0.633728i 0.0207473 0.0359354i −0.855465 0.517860i \(-0.826729\pi\)
0.876213 + 0.481925i \(0.160062\pi\)
\(312\) 7.18292 4.54550i 0.406653 0.257338i
\(313\) −3.68359 6.38016i −0.208209 0.360628i 0.742942 0.669356i \(-0.233430\pi\)
−0.951150 + 0.308728i \(0.900097\pi\)
\(314\) −4.51635 + 2.60751i −0.254872 + 0.147150i
\(315\) 0 0
\(316\) −7.07112 + 12.2475i −0.397782 + 0.688978i
\(317\) 24.6012 14.2035i 1.38174 0.797748i 0.389375 0.921079i \(-0.372691\pi\)
0.992366 + 0.123331i \(0.0393577\pi\)
\(318\) 4.73009 2.73092i 0.265251 0.153142i
\(319\) 29.3235 16.9299i 1.64180 0.947894i
\(320\) 2.89612 1.67208i 0.161898 0.0934719i
\(321\) 11.6728 20.2179i 0.651512 1.12845i
\(322\) 0 0
\(323\) −18.9884 + 10.9629i −1.05654 + 0.609994i
\(324\) −5.06517 8.77313i −0.281398 0.487396i
\(325\) 22.2760 0.905008i 1.23565 0.0502008i
\(326\) −6.23982 + 10.8077i −0.345592 + 0.598583i
\(327\) 7.26418 + 4.19398i 0.401710 + 0.231927i
\(328\) 0.529986 + 0.917963i 0.0292636 + 0.0506860i
\(329\) 0 0
\(330\) 39.7084i 2.18587i
\(331\) 20.2977i 1.11566i 0.829954 + 0.557832i \(0.188366\pi\)
−0.829954 + 0.557832i \(0.811634\pi\)
\(332\) 7.94889 4.58930i 0.436252 0.251870i
\(333\) −0.948690 0.547726i −0.0519879 0.0300152i
\(334\) −0.473365 −0.0259014
\(335\) −22.2356 38.5132i −1.21486 2.10420i
\(336\) 0 0
\(337\) −8.85616 −0.482426 −0.241213 0.970472i \(-0.577545\pi\)
−0.241213 + 0.970472i \(0.577545\pi\)
\(338\) 10.6939 7.39185i 0.581674 0.402064i
\(339\) 5.76327 9.98228i 0.313018 0.542163i
\(340\) 12.4827i 0.676971i
\(341\) 2.57317 4.45686i 0.139345 0.241352i
\(342\) 7.51326 13.0133i 0.406270 0.703681i
\(343\) 0 0
\(344\) −2.85996 1.65120i −0.154199 0.0890267i
\(345\) 29.8310i 1.60605i
\(346\) 8.77459 + 5.06601i 0.471725 + 0.272350i
\(347\) −3.44861 5.97316i −0.185131 0.320656i 0.758490 0.651685i \(-0.225938\pi\)
−0.943621 + 0.331029i \(0.892604\pi\)
\(348\) −7.92480 + 13.7262i −0.424814 + 0.735799i
\(349\) 3.63303 2.09753i 0.194472 0.112278i −0.399602 0.916689i \(-0.630852\pi\)
0.594074 + 0.804410i \(0.297518\pi\)
\(350\) 0 0
\(351\) −2.00847 3.17384i −0.107204 0.169407i
\(352\) −2.51826 4.36176i −0.134224 0.232483i
\(353\) 25.0686i 1.33426i 0.744939 + 0.667132i \(0.232478\pi\)
−0.744939 + 0.667132i \(0.767522\pi\)
\(354\) 19.0648 1.01329
\(355\) −9.10362 −0.483170
\(356\) 5.41291i 0.286884i
\(357\) 0 0
\(358\) −9.27876 5.35710i −0.490398 0.283131i
\(359\) −17.2117 + 9.93716i −0.908397 + 0.524463i −0.879915 0.475131i \(-0.842401\pi\)
−0.0284821 + 0.999594i \(0.509067\pi\)
\(360\) 4.27741 + 7.40868i 0.225439 + 0.390472i
\(361\) −15.5039 −0.815992
\(362\) 1.35400 + 0.781733i 0.0711648 + 0.0410870i
\(363\) −33.8704 −1.77773
\(364\) 0 0
\(365\) −26.6013 −1.39238
\(366\) −20.6234 11.9069i −1.07800 0.622385i
\(367\) −14.2126 −0.741892 −0.370946 0.928654i \(-0.620967\pi\)
−0.370946 + 0.928654i \(0.620967\pi\)
\(368\) −1.89185 3.27678i −0.0986196 0.170814i
\(369\) −2.34828 + 1.35578i −0.122246 + 0.0705790i
\(370\) −1.24018 0.716021i −0.0644741 0.0372241i
\(371\) 0 0
\(372\) 2.40897i 0.124899i
\(373\) −31.2599 −1.61858 −0.809288 0.587413i \(-0.800147\pi\)
−0.809288 + 0.587413i \(0.800147\pi\)
\(374\) −18.7999 −0.972118
\(375\) 9.32968i 0.481782i
\(376\) 2.65672 + 4.60157i 0.137010 + 0.237308i
\(377\) −11.2577 + 21.4668i −0.579799 + 1.10560i
\(378\) 0 0
\(379\) 19.0369 10.9909i 0.977858 0.564567i 0.0762355 0.997090i \(-0.475710\pi\)
0.901623 + 0.432523i \(0.142377\pi\)
\(380\) 9.82177 17.0118i 0.503846 0.872687i
\(381\) −9.77546 16.9316i −0.500812 0.867432i
\(382\) 8.13473 + 4.69659i 0.416209 + 0.240298i
\(383\) 4.86532i 0.248606i 0.992244 + 0.124303i \(0.0396695\pi\)
−0.992244 + 0.124303i \(0.960330\pi\)
\(384\) 2.04172 + 1.17879i 0.104191 + 0.0601546i
\(385\) 0 0
\(386\) −4.57994 + 7.93269i −0.233113 + 0.403764i
\(387\) 4.22400 7.31618i 0.214718 0.371902i
\(388\) 17.1753i 0.871941i
\(389\) 6.43897 11.1526i 0.326469 0.565460i −0.655340 0.755334i \(-0.727475\pi\)
0.981809 + 0.189874i \(0.0608079\pi\)
\(390\) 15.2008 + 24.0208i 0.769724 + 1.21634i
\(391\) −14.1234 −0.714253
\(392\) 0 0
\(393\) 7.26330 + 12.5804i 0.366385 + 0.634598i
\(394\) −15.4905 −0.780401
\(395\) −40.9576 23.6469i −2.06080 1.18980i
\(396\) 11.1580 6.44208i 0.560711 0.323726i
\(397\) 29.8018i 1.49571i −0.663862 0.747855i \(-0.731084\pi\)
0.663862 0.747855i \(-0.268916\pi\)
\(398\) 5.48387i 0.274882i
\(399\) 0 0
\(400\) 3.09168 + 5.35494i 0.154584 + 0.267747i
\(401\) −8.53523 4.92782i −0.426229 0.246084i 0.271510 0.962436i \(-0.412477\pi\)
−0.697739 + 0.716352i \(0.745810\pi\)
\(402\) 15.6757 27.1512i 0.781834 1.35418i
\(403\) 0.149553 + 3.68112i 0.00744976 + 0.183370i
\(404\) −1.22413 2.12026i −0.0609028 0.105487i
\(405\) 29.3387 16.9387i 1.45785 0.841691i
\(406\) 0 0
\(407\) −1.07838 + 1.86780i −0.0534532 + 0.0925836i
\(408\) 7.62112 4.40005i 0.377302 0.217835i
\(409\) 22.0121 12.7087i 1.08843 0.628403i 0.155269 0.987872i \(-0.450376\pi\)
0.933157 + 0.359469i \(0.117042\pi\)
\(410\) −3.06981 + 1.77235i −0.151607 + 0.0875304i
\(411\) 15.1866 8.76799i 0.749100 0.432493i
\(412\) −8.96428 + 15.5266i −0.441638 + 0.764940i
\(413\) 0 0
\(414\) 8.38247 4.83962i 0.411976 0.237854i
\(415\) 15.3473 + 26.5823i 0.753370 + 1.30487i
\(416\) 3.19311 + 1.67454i 0.156555 + 0.0821009i
\(417\) −5.75716 + 9.97169i −0.281929 + 0.488316i
\(418\) −25.6210 14.7923i −1.25316 0.723514i
\(419\) 15.5587 + 26.9484i 0.760091 + 1.31652i 0.942803 + 0.333350i \(0.108179\pi\)
−0.182712 + 0.983167i \(0.558488\pi\)
\(420\) 0 0
\(421\) 13.8090i 0.673009i −0.941682 0.336505i \(-0.890755\pi\)
0.941682 0.336505i \(-0.109245\pi\)
\(422\) 5.09465i 0.248004i
\(423\) −11.7715 + 6.79625i −0.572348 + 0.330445i
\(424\) 2.00634 + 1.15836i 0.0974366 + 0.0562551i
\(425\) 23.0806 1.11957
\(426\) −3.20895 5.55806i −0.155474 0.269289i
\(427\) 0 0
\(428\) 9.90239 0.478650
\(429\) 36.1770 22.8935i 1.74664 1.10531i
\(430\) 5.52186 9.56414i 0.266288 0.461224i
\(431\) 31.6788i 1.52592i 0.646449 + 0.762958i \(0.276253\pi\)
−0.646449 + 0.762958i \(0.723747\pi\)
\(432\) 0.520858 0.902152i 0.0250598 0.0434048i
\(433\) 13.7233 23.7695i 0.659500 1.14229i −0.321245 0.946996i \(-0.604101\pi\)
0.980745 0.195292i \(-0.0625655\pi\)
\(434\) 0 0
\(435\) −45.9024 26.5017i −2.20085 1.27066i
\(436\) 3.55788i 0.170391i
\(437\) −19.2478 11.1127i −0.920748 0.531594i
\(438\) −9.37673 16.2410i −0.448037 0.776024i
\(439\) 6.09116 10.5502i 0.290715 0.503534i −0.683264 0.730172i \(-0.739440\pi\)
0.973979 + 0.226638i \(0.0727734\pi\)
\(440\) 14.5864 8.42146i 0.695379 0.401477i
\(441\) 0 0
\(442\) 11.3726 7.19681i 0.540939 0.342317i
\(443\) 14.9531 + 25.8996i 0.710445 + 1.23053i 0.964690 + 0.263387i \(0.0848396\pi\)
−0.254245 + 0.967140i \(0.581827\pi\)
\(444\) 1.00956i 0.0479118i
\(445\) 18.1016 0.858098
\(446\) −9.99239 −0.473153
\(447\) 13.2464i 0.626535i
\(448\) 0 0
\(449\) 30.6709 + 17.7079i 1.44745 + 0.835685i 0.998329 0.0577858i \(-0.0184040\pi\)
0.449121 + 0.893471i \(0.351737\pi\)
\(450\) −13.6987 + 7.90895i −0.645763 + 0.372831i
\(451\) 2.66929 + 4.62335i 0.125692 + 0.217705i
\(452\) 4.88916 0.229967
\(453\) 16.9662 + 9.79545i 0.797142 + 0.460230i
\(454\) 13.2146 0.620191
\(455\) 0 0
\(456\) 13.8484 0.648509
\(457\) 17.7635 + 10.2558i 0.830943 + 0.479745i 0.854175 0.519985i \(-0.174062\pi\)
−0.0232325 + 0.999730i \(0.507396\pi\)
\(458\) 9.95986 0.465394
\(459\) −1.94421 3.36746i −0.0907478 0.157180i
\(460\) 10.9581 6.32664i 0.510922 0.294981i
\(461\) 2.94204 + 1.69858i 0.137024 + 0.0791110i 0.566945 0.823756i \(-0.308125\pi\)
−0.429921 + 0.902867i \(0.641459\pi\)
\(462\) 0 0
\(463\) 39.3586i 1.82915i 0.404417 + 0.914575i \(0.367474\pi\)
−0.404417 + 0.914575i \(0.632526\pi\)
\(464\) −6.72285 −0.312101
\(465\) −8.05596 −0.373586
\(466\) 8.58467i 0.397677i
\(467\) −2.99442 5.18650i −0.138565 0.240002i 0.788388 0.615178i \(-0.210916\pi\)
−0.926954 + 0.375175i \(0.877582\pi\)
\(468\) −4.28370 + 8.16841i −0.198014 + 0.377585i
\(469\) 0 0
\(470\) −15.3883 + 8.88446i −0.709811 + 0.409810i
\(471\) 6.14740 10.6476i 0.283257 0.490616i
\(472\) 4.04332 + 7.00324i 0.186109 + 0.322350i
\(473\) −14.4043 8.31631i −0.662309 0.382384i
\(474\) 33.3413i 1.53142i
\(475\) 31.4549 + 18.1605i 1.44325 + 0.833262i
\(476\) 0 0
\(477\) −2.96325 + 5.13251i −0.135678 + 0.235001i
\(478\) −0.586498 + 1.01584i −0.0268258 + 0.0464636i
\(479\) 13.6804i 0.625074i 0.949906 + 0.312537i \(0.101179\pi\)
−0.949906 + 0.312537i \(0.898821\pi\)
\(480\) −3.94204 + 6.82781i −0.179929 + 0.311645i
\(481\) −0.0626755 1.54271i −0.00285776 0.0703413i
\(482\) −24.3882 −1.11085
\(483\) 0 0
\(484\) −7.18332 12.4419i −0.326514 0.565539i
\(485\) 57.4367 2.60806
\(486\) 17.9768 + 10.3789i 0.815445 + 0.470798i
\(487\) 0.910007 0.525393i 0.0412364 0.0238078i −0.479240 0.877684i \(-0.659088\pi\)
0.520476 + 0.853876i \(0.325754\pi\)
\(488\) 10.1010i 0.457251i
\(489\) 29.4216i 1.33049i
\(490\) 0 0
\(491\) −13.7757 23.8602i −0.621688 1.07679i −0.989171 0.146765i \(-0.953114\pi\)
0.367484 0.930030i \(-0.380219\pi\)
\(492\) −2.16416 1.24948i −0.0975680 0.0563309i
\(493\) −12.5472 + 21.7324i −0.565097 + 0.978778i
\(494\) 21.1615 0.859730i 0.952103 0.0386811i
\(495\) 21.5433 + 37.3141i 0.968299 + 1.67714i
\(496\) −0.884906 + 0.510901i −0.0397335 + 0.0229401i
\(497\) 0 0
\(498\) −10.8196 + 18.7401i −0.484837 + 0.839763i
\(499\) 1.82233 1.05212i 0.0815788 0.0470995i −0.458656 0.888614i \(-0.651669\pi\)
0.540235 + 0.841515i \(0.318336\pi\)
\(500\) −3.42714 + 1.97866i −0.153267 + 0.0884885i
\(501\) 0.966477 0.557996i 0.0431790 0.0249294i
\(502\) −18.4721 + 10.6649i −0.824452 + 0.475998i
\(503\) −19.3301 + 33.4807i −0.861886 + 1.49283i 0.00822020 + 0.999966i \(0.497383\pi\)
−0.870106 + 0.492864i \(0.835950\pi\)
\(504\) 0 0
\(505\) 7.09046 4.09368i 0.315521 0.182166i
\(506\) −9.52837 16.5036i −0.423588 0.733675i
\(507\) −13.1206 + 27.6979i −0.582706 + 1.23011i
\(508\) 4.14641 7.18180i 0.183967 0.318641i
\(509\) 22.0326 + 12.7205i 0.976578 + 0.563828i 0.901235 0.433330i \(-0.142662\pi\)
0.0753428 + 0.997158i \(0.475995\pi\)
\(510\) 14.7145 + 25.4862i 0.651567 + 1.12855i
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 6.11903i 0.270162i
\(514\) −11.1363 + 6.42956i −0.491202 + 0.283596i
\(515\) −51.9233 29.9779i −2.28801 1.32099i
\(516\) 7.78564 0.342744
\(517\) 13.3806 + 23.1759i 0.588479 + 1.01928i
\(518\) 0 0
\(519\) −23.8870 −1.04852
\(520\) −5.59991 + 10.6782i −0.245572 + 0.468272i
\(521\) −7.99393 + 13.8459i −0.350221 + 0.606600i −0.986288 0.165034i \(-0.947227\pi\)
0.636067 + 0.771634i \(0.280560\pi\)
\(522\) 17.1980i 0.752736i
\(523\) 9.11459 15.7869i 0.398553 0.690315i −0.594994 0.803730i \(-0.702846\pi\)
0.993548 + 0.113415i \(0.0361790\pi\)
\(524\) −3.08084 + 5.33618i −0.134587 + 0.233112i
\(525\) 0 0
\(526\) −21.5295 12.4300i −0.938730 0.541976i
\(527\) 3.81408i 0.166144i
\(528\) 10.2832 + 5.93699i 0.447517 + 0.258374i
\(529\) 4.34179 + 7.52021i 0.188774 + 0.326966i
\(530\) −3.87374 + 6.70952i −0.168265 + 0.291443i
\(531\) −17.9153 + 10.3434i −0.777457 + 0.448865i
\(532\) 0 0
\(533\) −3.38460 1.77496i −0.146603 0.0768822i
\(534\) 6.38066 + 11.0516i 0.276118 + 0.478251i
\(535\) 33.1151i 1.43169i
\(536\) 13.2982 0.574395
\(537\) 25.2595 1.09003
\(538\) 20.6024i 0.888231i
\(539\) 0 0
\(540\) 3.01693 + 1.74183i 0.129828 + 0.0749563i
\(541\) −16.6334 + 9.60332i −0.715128 + 0.412879i −0.812957 0.582324i \(-0.802143\pi\)
0.0978290 + 0.995203i \(0.468810\pi\)
\(542\) −2.64072 4.57387i −0.113429 0.196464i
\(543\) −3.68598 −0.158181
\(544\) 3.23261 + 1.86635i 0.138597 + 0.0800191i
\(545\) −11.8981 −0.509658
\(546\) 0 0
\(547\) −12.3643 −0.528659 −0.264329 0.964432i \(-0.585151\pi\)
−0.264329 + 0.964432i \(0.585151\pi\)
\(548\) 6.44163 + 3.71908i 0.275173 + 0.158871i
\(549\) 25.8398 1.10282
\(550\) 15.5713 + 26.9703i 0.663964 + 1.15002i
\(551\) −34.1994 + 19.7450i −1.45694 + 0.841166i
\(552\) 7.72525 + 4.46017i 0.328808 + 0.189838i
\(553\) 0 0
\(554\) 5.25013i 0.223057i
\(555\) 3.37614 0.143309
\(556\) −4.88398 −0.207127
\(557\) 29.5462i 1.25191i 0.779858 + 0.625956i \(0.215291\pi\)
−0.779858 + 0.625956i \(0.784709\pi\)
\(558\) −1.30696 2.26371i −0.0553279 0.0958307i
\(559\) 11.8972 0.483345i 0.503196 0.0204433i
\(560\) 0 0
\(561\) 38.3840 22.1610i 1.62057 0.935638i
\(562\) −15.6575 + 27.1197i −0.660474 + 1.14397i
\(563\) −1.26155 2.18506i −0.0531678 0.0920894i 0.838217 0.545337i \(-0.183598\pi\)
−0.891384 + 0.453248i \(0.850265\pi\)
\(564\) −10.8485 6.26339i −0.456805 0.263736i
\(565\) 16.3501i 0.687854i
\(566\) 6.68606 + 3.86020i 0.281036 + 0.162256i
\(567\) 0 0
\(568\) 1.36113 2.35754i 0.0571115 0.0989201i
\(569\) −5.21623 + 9.03478i −0.218676 + 0.378758i −0.954403 0.298520i \(-0.903507\pi\)
0.735728 + 0.677278i \(0.236840\pi\)
\(570\) 46.3111i 1.93976i
\(571\) 0.0728934 0.126255i 0.00305049 0.00528361i −0.864496 0.502639i \(-0.832362\pi\)
0.867547 + 0.497356i \(0.165696\pi\)
\(572\) 16.0822 + 8.43385i 0.672429 + 0.352637i
\(573\) −22.1451 −0.925124
\(574\) 0 0
\(575\) 11.6980 + 20.2615i 0.487840 + 0.844964i
\(576\) −2.55814 −0.106589
\(577\) 19.4377 + 11.2223i 0.809201 + 0.467192i 0.846678 0.532105i \(-0.178599\pi\)
−0.0374775 + 0.999297i \(0.511932\pi\)
\(578\) −2.65605 + 1.53347i −0.110477 + 0.0637840i
\(579\) 21.5951i 0.897461i
\(580\) 22.4822i 0.933524i
\(581\) 0 0
\(582\) 20.2459 + 35.0670i 0.839221 + 1.45357i
\(583\) 10.1050 + 5.83413i 0.418507 + 0.241625i
\(584\) 3.97728 6.88886i 0.164581 0.285063i
\(585\) −27.3164 14.3253i −1.12940 0.592280i
\(586\) 10.6150 + 18.3856i 0.438500 + 0.759504i
\(587\) 18.2824 10.5554i 0.754596 0.435666i −0.0727563 0.997350i \(-0.523180\pi\)
0.827352 + 0.561684i \(0.189846\pi\)
\(588\) 0 0
\(589\) −3.00103 + 5.19794i −0.123655 + 0.214177i
\(590\) −23.4199 + 13.5215i −0.964183 + 0.556671i
\(591\) 31.6273 18.2600i 1.30097 0.751116i
\(592\) 0.370851 0.214111i 0.0152419 0.00879992i
\(593\) −25.8339 + 14.9152i −1.06087 + 0.612494i −0.925673 0.378324i \(-0.876500\pi\)
−0.135198 + 0.990819i \(0.543167\pi\)
\(594\) 2.62332 4.54372i 0.107636 0.186431i
\(595\) 0 0
\(596\) 4.86592 2.80934i 0.199316 0.115075i
\(597\) −6.46431 11.1965i −0.264566 0.458243i
\(598\) 12.0818 + 6.33595i 0.494060 + 0.259096i
\(599\) −16.7520 + 29.0153i −0.684469 + 1.18553i 0.289135 + 0.957288i \(0.406632\pi\)
−0.973603 + 0.228246i \(0.926701\pi\)
\(600\) −12.6247 7.28885i −0.515400 0.297566i
\(601\) −18.9681 32.8537i −0.773724 1.34013i −0.935509 0.353303i \(-0.885058\pi\)
0.161785 0.986826i \(-0.448275\pi\)
\(602\) 0 0
\(603\) 34.0187i 1.38535i
\(604\) 8.30978i 0.338120i
\(605\) 41.6075 24.0221i 1.69159 0.976637i
\(606\) 4.99865 + 2.88597i 0.203056 + 0.117235i
\(607\) −35.8671 −1.45580 −0.727900 0.685684i \(-0.759503\pi\)
−0.727900 + 0.685684i \(0.759503\pi\)
\(608\) 2.93700 + 5.08703i 0.119111 + 0.206306i
\(609\) 0 0
\(610\) 33.7793 1.36768
\(611\) −16.9663 8.89753i −0.686385 0.359956i
\(612\) −4.77439 + 8.26948i −0.192993 + 0.334274i
\(613\) 12.6512i 0.510979i −0.966812 0.255489i \(-0.917763\pi\)
0.966812 0.255489i \(-0.0822366\pi\)
\(614\) 16.9969 29.4395i 0.685939 1.18808i
\(615\) 4.17845 7.23729i 0.168491 0.291836i
\(616\) 0 0
\(617\) 34.6231 + 19.9896i 1.39387 + 0.804753i 0.993741 0.111705i \(-0.0356312\pi\)
0.400131 + 0.916458i \(0.368965\pi\)
\(618\) 42.2679i 1.70026i
\(619\) −8.58564 4.95692i −0.345086 0.199235i 0.317433 0.948281i \(-0.397179\pi\)
−0.662519 + 0.749045i \(0.730513\pi\)
\(620\) −1.70853 2.95926i −0.0686162 0.118847i
\(621\) 1.97077 3.41348i 0.0790843 0.136978i
\(622\) −0.633728 + 0.365883i −0.0254102 + 0.0146706i
\(623\) 0 0
\(624\) −8.49334 + 0.345059i −0.340006 + 0.0138134i
\(625\) 8.84144 + 15.3138i 0.353658 + 0.612553i
\(626\) 7.36717i 0.294451i
\(627\) 69.7477 2.78546
\(628\) 5.21503 0.208102
\(629\) 1.59843i 0.0637334i
\(630\) 0 0
\(631\) 21.7056 + 12.5318i 0.864088 + 0.498881i 0.865379 0.501118i \(-0.167078\pi\)
−0.00129129 + 0.999999i \(0.500411\pi\)
\(632\) 12.2475 7.07112i 0.487181 0.281274i
\(633\) −6.00550 10.4018i −0.238697 0.413436i
\(634\) −28.4070 −1.12819
\(635\) 24.0170 + 13.8662i 0.953087 + 0.550265i
\(636\) −5.46184 −0.216576
\(637\) 0 0
\(638\) −33.8598 −1.34052
\(639\) 6.03091 + 3.48195i 0.238579 + 0.137744i
\(640\) −3.34415 −0.132189
\(641\) 4.01506 + 6.95429i 0.158585 + 0.274678i 0.934359 0.356334i \(-0.115973\pi\)
−0.775773 + 0.631012i \(0.782640\pi\)
\(642\) −20.2179 + 11.6728i −0.797935 + 0.460688i
\(643\) 13.3951 + 7.73367i 0.528251 + 0.304986i 0.740304 0.672272i \(-0.234682\pi\)
−0.212053 + 0.977258i \(0.568015\pi\)
\(644\) 0 0
\(645\) 26.0364i 1.02518i
\(646\) 21.9259 0.862662
\(647\) −6.69236 −0.263104 −0.131552 0.991309i \(-0.541996\pi\)
−0.131552 + 0.991309i \(0.541996\pi\)
\(648\) 10.1303i 0.397957i
\(649\) 20.3643 + 35.2720i 0.799370 + 1.38455i
\(650\) −19.7441 10.3543i −0.774428 0.406127i
\(651\) 0 0
\(652\) 10.8077 6.23982i 0.423262 0.244370i
\(653\) 12.0804 20.9238i 0.472741 0.818811i −0.526772 0.850006i \(-0.676598\pi\)
0.999513 + 0.0311950i \(0.00993128\pi\)
\(654\) −4.19398 7.26418i −0.163997 0.284052i
\(655\) −17.8450 10.3028i −0.697261 0.402564i
\(656\) 1.05997i 0.0413850i
\(657\) 17.6227 + 10.1745i 0.687526 + 0.396943i
\(658\) 0 0
\(659\) −6.47769 + 11.2197i −0.252335 + 0.437057i −0.964168 0.265291i \(-0.914532\pi\)
0.711833 + 0.702349i \(0.247865\pi\)
\(660\) −19.8542 + 34.3885i −0.772823 + 1.33857i
\(661\) 19.2892i 0.750263i 0.926972 + 0.375132i \(0.122402\pi\)
−0.926972 + 0.375132i \(0.877598\pi\)
\(662\) 10.1489 17.5783i 0.394446 0.683201i
\(663\) −14.7361 + 28.0997i −0.572303 + 1.09130i
\(664\) −9.17859 −0.356198
\(665\) 0 0
\(666\) 0.547726 + 0.948690i 0.0212240 + 0.0367610i
\(667\) −25.4373 −0.984935
\(668\) 0.409946 + 0.236682i 0.0158613 + 0.00915752i
\(669\) 20.4016 11.7789i 0.788772 0.455398i
\(670\) 44.4712i 1.71807i
\(671\) 50.8740i 1.96397i
\(672\) 0 0
\(673\) −14.7943 25.6245i −0.570279 0.987752i −0.996537 0.0831505i \(-0.973502\pi\)
0.426258 0.904602i \(-0.359832\pi\)
\(674\) 7.66966 + 4.42808i 0.295424 + 0.170563i
\(675\) −3.22065 + 5.57833i −0.123963 + 0.214710i
\(676\) −12.9572 + 1.05456i −0.498352 + 0.0405600i
\(677\) −6.92108 11.9877i −0.265999 0.460723i 0.701826 0.712348i \(-0.252368\pi\)
−0.967825 + 0.251625i \(0.919035\pi\)
\(678\) −9.98228 + 5.76327i −0.383367 + 0.221337i
\(679\) 0 0
\(680\) −6.24136 + 10.8104i −0.239345 + 0.414558i
\(681\) −26.9804 + 15.5771i −1.03389 + 0.596918i
\(682\) −4.45686 + 2.57317i −0.170662 + 0.0985317i
\(683\) −30.9323 + 17.8588i −1.18359 + 0.683347i −0.956843 0.290607i \(-0.906143\pi\)
−0.226749 + 0.973953i \(0.572810\pi\)
\(684\) −13.0133 + 7.51326i −0.497578 + 0.287277i
\(685\) −12.4372 + 21.5418i −0.475200 + 0.823070i
\(686\) 0 0
\(687\) −20.3352 + 11.7405i −0.775837 + 0.447929i
\(688\) 1.65120 + 2.85996i 0.0629514 + 0.109035i
\(689\) −8.34619 + 0.339080i −0.317964 + 0.0129179i
\(690\) −14.9155 + 25.8344i −0.567824 + 0.983499i
\(691\) −22.5221 13.0031i −0.856782 0.494663i 0.00615160 0.999981i \(-0.498042\pi\)
−0.862933 + 0.505318i \(0.831375\pi\)
\(692\) −5.06601 8.77459i −0.192581 0.333560i
\(693\) 0 0
\(694\) 6.89722i 0.261815i
\(695\) 16.3328i 0.619537i
\(696\) 13.7262 7.92480i 0.520289 0.300389i
\(697\) −3.42648 1.97828i −0.129787 0.0749327i
\(698\) −4.19507 −0.158786
\(699\) −10.1195 17.5275i −0.382754 0.662949i
\(700\) 0 0
\(701\) 24.7068 0.933164 0.466582 0.884478i \(-0.345485\pi\)
0.466582 + 0.884478i \(0.345485\pi\)
\(702\) 0.152467 + 3.75286i 0.00575451 + 0.141643i
\(703\) 1.25769 2.17838i 0.0474346 0.0821592i
\(704\) 5.03653i 0.189821i
\(705\) 20.9457 36.2791i 0.788863 1.36635i
\(706\) 12.5343 21.7100i 0.471734 0.817067i
\(707\) 0 0
\(708\) −16.5106 9.53242i −0.620508 0.358250i
\(709\) 22.3951i 0.841064i −0.907278 0.420532i \(-0.861843\pi\)
0.907278 0.420532i \(-0.138157\pi\)
\(710\) 7.88397 + 4.55181i 0.295880 + 0.170826i
\(711\) 18.0889 + 31.3309i 0.678387 + 1.17500i
\(712\) −2.70646 + 4.68772i −0.101429 + 0.175680i
\(713\) −3.34822 + 1.93310i −0.125392 + 0.0723951i
\(714\) 0 0
\(715\) −28.2041 + 53.7812i −1.05477 + 2.01130i
\(716\) 5.35710 + 9.27876i 0.200204 + 0.346764i
\(717\) 2.76542i 0.103277i
\(718\) 19.8743 0.741703
\(719\) 25.2842 0.942943 0.471472 0.881881i \(-0.343723\pi\)
0.471472 + 0.881881i \(0.343723\pi\)
\(720\) 8.55481i 0.318819i
\(721\) 0 0
\(722\) 13.4267 + 7.75193i 0.499691 + 0.288497i
\(723\) 49.7937 28.7484i 1.85185 1.06917i
\(724\) −0.781733 1.35400i −0.0290529 0.0503211i
\(725\) 41.5698 1.54386
\(726\) 29.3326 + 16.9352i 1.08863 + 0.628523i
\(727\) 39.9649 1.48221 0.741107 0.671386i \(-0.234301\pi\)
0.741107 + 0.671386i \(0.234301\pi\)
\(728\) 0 0
\(729\) −18.5471 −0.686929
\(730\) 23.0374 + 13.3006i 0.852652 + 0.492279i
\(731\) 12.3269 0.455926
\(732\) 11.9069 + 20.6234i 0.440093 + 0.762263i
\(733\) −20.8858 + 12.0584i −0.771433 + 0.445387i −0.833386 0.552692i \(-0.813601\pi\)
0.0619525 + 0.998079i \(0.480267\pi\)
\(734\) 12.3085 + 7.10630i 0.454314 + 0.262298i
\(735\) 0 0
\(736\) 3.78370i 0.139469i
\(737\) 66.9768 2.46712
\(738\) 2.71156 0.0998138
\(739\) 28.5427i 1.04996i −0.851114 0.524980i \(-0.824073\pi\)
0.851114 0.524980i \(-0.175927\pi\)
\(740\) 0.716021 + 1.24018i 0.0263214 + 0.0455901i
\(741\) −42.1924 + 26.7002i −1.54998 + 0.980858i
\(742\) 0 0
\(743\) −37.9322 + 21.9001i −1.39160 + 0.803438i −0.993492 0.113902i \(-0.963665\pi\)
−0.398104 + 0.917340i \(0.630332\pi\)
\(744\) 1.20449 2.08623i 0.0441586 0.0764849i
\(745\) 9.39487 + 16.2724i 0.344201 + 0.596174i
\(746\) 27.0718 + 15.6299i 0.991171 + 0.572253i
\(747\) 23.4801i 0.859093i
\(748\) 16.2812 + 9.39993i 0.595298 + 0.343696i
\(749\) 0 0
\(750\) 4.66484 8.07974i 0.170336 0.295030i
\(751\) 20.2337 35.0458i 0.738338 1.27884i −0.214906 0.976635i \(-0.568944\pi\)
0.953243 0.302204i \(-0.0977223\pi\)
\(752\) 5.31343i 0.193761i
\(753\) 25.1433 43.5494i 0.916271 1.58703i
\(754\) 20.4828 12.9619i 0.745940 0.472046i
\(755\) −27.7892 −1.01135
\(756\) 0 0
\(757\) −6.36103 11.0176i −0.231196 0.400442i 0.726965 0.686675i \(-0.240930\pi\)
−0.958160 + 0.286232i \(0.907597\pi\)
\(758\) −21.9819 −0.798418
\(759\) 38.9084 + 22.4638i 1.41229 + 0.815384i
\(760\) −17.0118 + 9.82177i −0.617083 + 0.356273i
\(761\) 30.7371i 1.11422i 0.830439 + 0.557110i \(0.188090\pi\)
−0.830439 + 0.557110i \(0.811910\pi\)
\(762\) 19.5509i 0.708255i
\(763\) 0 0
\(764\) −4.69659 8.13473i −0.169917 0.294304i
\(765\) −27.6544 15.9663i −0.999847 0.577262i
\(766\) 2.43266 4.21349i 0.0878956 0.152240i
\(767\) −25.8215 13.5414i −0.932361 0.488951i
\(768\) −1.17879 2.04172i −0.0425358 0.0736741i
\(769\) 10.0887 5.82469i 0.363806 0.210044i −0.306943 0.951728i \(-0.599306\pi\)
0.670749 + 0.741684i \(0.265973\pi\)
\(770\) 0 0
\(771\) 15.1581 26.2547i 0.545907 0.945538i
\(772\) 7.93269 4.57994i 0.285504 0.164836i
\(773\) −24.5544 + 14.1765i −0.883159 + 0.509892i −0.871699 0.490042i \(-0.836981\pi\)
−0.0114603 + 0.999934i \(0.503648\pi\)
\(774\) −7.31618 + 4.22400i −0.262975 + 0.151829i
\(775\) 5.47169 3.15908i 0.196549 0.113478i
\(776\) −8.58763 + 14.8742i −0.308278 + 0.533953i
\(777\) 0 0
\(778\) −11.1526 + 6.43897i −0.399841 + 0.230848i
\(779\) −3.11314 5.39211i −0.111540 0.193193i
\(780\) −1.15393 28.4030i −0.0413173 1.01699i
\(781\) 6.85535 11.8738i 0.245304 0.424878i
\(782\) 12.2313 + 7.06172i 0.437389 + 0.252527i
\(783\) −3.50165 6.06503i −0.125139 0.216747i
\(784\) 0 0
\(785\) 17.4398i 0.622455i
\(786\) 14.5266i 0.518147i
\(787\) 1.85099 1.06867i 0.0659808 0.0380940i −0.466647 0.884444i \(-0.654538\pi\)
0.532627 + 0.846350i \(0.321205\pi\)
\(788\) 13.4152 + 7.74526i 0.477896 + 0.275914i
\(789\) 58.6094 2.08655
\(790\) 23.6469 + 40.9576i 0.841319 + 1.45721i
\(791\) 0 0
\(792\) −12.8842 −0.457818
\(793\) 19.4752 + 30.7752i 0.691584 + 1.09286i
\(794\) −14.9009 + 25.8091i −0.528814 + 0.915932i
\(795\) 18.2652i 0.647801i
\(796\) 2.74194 4.74917i 0.0971853 0.168330i
\(797\) 13.9817 24.2170i 0.495257 0.857810i −0.504728 0.863278i \(-0.668407\pi\)
0.999985 + 0.00546806i \(0.00174055\pi\)
\(798\) 0 0
\(799\) −17.1763 9.91672i −0.607653 0.350829i
\(800\) 6.18336i 0.218615i
\(801\) −11.9918 6.92349i −0.423711 0.244630i
\(802\) 4.92782 + 8.53523i 0.174007 + 0.301390i
\(803\) 20.0317 34.6959i 0.706904 1.22439i
\(804\) −27.1512 + 15.6757i −0.957547 + 0.552840i
\(805\) 0 0
\(806\) 1.71104 3.26272i 0.0602690 0.114924i
\(807\) −24.2858 42.0642i −0.854899 1.48073i
\(808\) 2.44826i 0.0861295i
\(809\) −48.7243 −1.71305 −0.856527 0.516102i \(-0.827383\pi\)
−0.856527 + 0.516102i \(0.827383\pi\)
\(810\) −33.8774 −1.19033
\(811\) 31.9965i 1.12355i −0.827290 0.561774i \(-0.810119\pi\)
0.827290 0.561774i \(-0.189881\pi\)
\(812\) 0 0
\(813\) 10.7832 + 6.22569i 0.378184 + 0.218345i
\(814\) 1.86780 1.07838i 0.0654665 0.0377971i
\(815\) 20.8669 + 36.1426i 0.730936 + 1.26602i
\(816\) −8.80011 −0.308065
\(817\) 16.7994 + 9.69914i 0.587737 + 0.339330i
\(818\) −25.4173 −0.888696
\(819\) 0 0
\(820\) 3.54471 0.123787
\(821\) 10.8028 + 6.23701i 0.377021 + 0.217673i 0.676521 0.736423i \(-0.263487\pi\)
−0.299500 + 0.954096i \(0.596820\pi\)
\(822\) −17.5360 −0.611638
\(823\) 8.01300 + 13.8789i 0.279316 + 0.483789i 0.971215 0.238205i \(-0.0765591\pi\)
−0.691899 + 0.721994i \(0.743226\pi\)
\(824\) 15.5266 8.96428i 0.540894 0.312286i
\(825\) −63.5845 36.7105i −2.21373 1.27810i
\(826\) 0 0
\(827\) 6.94225i 0.241406i −0.992689 0.120703i \(-0.961485\pi\)
0.992689 0.120703i \(-0.0385148\pi\)
\(828\) −9.67924 −0.336377
\(829\) 9.08891 0.315671 0.157835 0.987465i \(-0.449548\pi\)
0.157835 + 0.987465i \(0.449548\pi\)
\(830\) 30.6946i 1.06543i
\(831\) −6.18877 10.7193i −0.214686 0.371847i
\(832\) −1.92804 3.04674i −0.0668429 0.105627i
\(833\) 0 0
\(834\) 9.97169 5.75716i 0.345291 0.199354i
\(835\) −0.791502 + 1.37092i −0.0273911 + 0.0474427i
\(836\) 14.7923 + 25.6210i 0.511602 + 0.886120i
\(837\) −0.921821 0.532213i −0.0318628 0.0183960i
\(838\) 31.1174i 1.07493i
\(839\) 15.8840 + 9.17062i 0.548376 + 0.316605i 0.748467 0.663173i \(-0.230790\pi\)
−0.200091 + 0.979777i \(0.564124\pi\)
\(840\) 0 0
\(841\) −8.09837 + 14.0268i −0.279254 + 0.483683i
\(842\) −6.90450 + 11.9589i −0.237945 + 0.412132i
\(843\) 73.8275i 2.54276i
\(844\) 2.54733 4.41210i 0.0876826 0.151871i
\(845\) −3.52661 43.3307i −0.121319 1.49062i
\(846\) 13.5925 0.467320
\(847\) 0 0
\(848\) −1.15836 2.00634i −0.0397783 0.0688981i
\(849\) −18.2014 −0.624670
\(850\) −19.9884 11.5403i −0.685597 0.395829i
\(851\) 1.40319 0.810133i 0.0481008 0.0277710i
\(852\) 6.41790i 0.219874i
\(853\) 53.7617i 1.84077i 0.391018 + 0.920383i \(0.372123\pi\)
−0.391018 + 0.920383i \(0.627877\pi\)
\(854\) 0 0
\(855\) −25.1255 43.5186i −0.859273 1.48830i
\(856\) −8.57572 4.95119i −0.293112 0.169228i
\(857\) 19.1290 33.1324i 0.653434 1.13178i −0.328850 0.944382i \(-0.606661\pi\)
0.982284 0.187399i \(-0.0600056\pi\)
\(858\) −42.7769 + 1.73790i −1.46038 + 0.0593309i
\(859\) −7.89494 13.6744i −0.269372 0.466566i 0.699328 0.714801i \(-0.253483\pi\)
−0.968700 + 0.248235i \(0.920149\pi\)
\(860\) −9.56414 + 5.52186i −0.326135 + 0.188294i
\(861\) 0 0
\(862\) 15.8394 27.4347i 0.539492 0.934428i
\(863\) −38.6063 + 22.2894i −1.31417 + 0.758739i −0.982785 0.184755i \(-0.940851\pi\)
−0.331390 + 0.943494i \(0.607518\pi\)
\(864\) −0.902152 + 0.520858i −0.0306918 + 0.0177199i
\(865\) 29.3436 16.9415i 0.997711 0.576029i
\(866\) −23.7695 + 13.7233i −0.807720 + 0.466337i
\(867\) 3.61527 6.26182i 0.122781 0.212663i
\(868\) 0 0
\(869\) 61.6851 35.6139i 2.09252 1.20812i
\(870\) 26.5017 + 45.9024i 0.898493 + 1.55624i
\(871\) −40.5162 + 25.6395i −1.37284 + 0.868761i
\(872\) 1.77894 3.08121i 0.0602425 0.104343i
\(873\) −38.0503 21.9684i −1.28781 0.743516i
\(874\) 11.1127 + 19.2478i 0.375894 + 0.651067i
\(875\) 0 0
\(876\) 18.7535i 0.633621i
\(877\) 0.139993i 0.00472721i 0.999997 + 0.00236361i \(0.000752360\pi\)
−0.999997 + 0.00236361i \(0.999248\pi\)
\(878\) −10.5502 + 6.09116i −0.356052 + 0.205567i
\(879\) −43.3455 25.0255i −1.46201 0.844090i
\(880\) −16.8429 −0.567775
\(881\) 22.6522 + 39.2347i 0.763172 + 1.32185i 0.941208 + 0.337828i \(0.109692\pi\)
−0.178036 + 0.984024i \(0.556974\pi\)
\(882\) 0 0
\(883\) −46.5419 −1.56626 −0.783130 0.621858i \(-0.786378\pi\)
−0.783130 + 0.621858i \(0.786378\pi\)
\(884\) −13.4474 + 0.546325i −0.452283 + 0.0183749i
\(885\) 31.8779 55.2141i 1.07156 1.85600i
\(886\) 29.9063i 1.00472i
\(887\) 24.4650 42.3746i 0.821453 1.42280i −0.0831471 0.996537i \(-0.526497\pi\)
0.904600 0.426261i \(-0.140170\pi\)
\(888\) −0.504782 + 0.874309i −0.0169394 + 0.0293399i
\(889\) 0 0
\(890\) −15.6764 9.05080i −0.525476 0.303383i
\(891\) 51.0218i 1.70929i
\(892\) 8.65366 + 4.99619i 0.289746 + 0.167285i
\(893\) −15.6055 27.0296i −0.522220 0.904511i
\(894\) −6.62322 + 11.4718i −0.221514 + 0.383673i
\(895\) −31.0296 + 17.9149i −1.03721 + 0.598831i
\(896\) 0 0
\(897\) −32.1363 + 1.30560i −1.07300 + 0.0435927i
\(898\) −17.7079 30.6709i −0.590919 1.02350i
\(899\) 6.86942i 0.229108i
\(900\) 15.8179 0.527263
\(901\) −8.64764 −0.288095
\(902\) 5.33858i 0.177755i
\(903\) 0 0
\(904\) −4.23414 2.44458i −0.140825 0.0813056i
\(905\) 4.52799 2.61424i 0.150515 0.0869001i
\(906\) −9.79545 16.9662i −0.325432 0.563665i
\(907\) 49.9846 1.65971 0.829856 0.557978i \(-0.188423\pi\)
0.829856 + 0.557978i \(0.188423\pi\)
\(908\) −11.4442 6.60729i −0.379788 0.219271i
\(909\) −6.26299 −0.207730
\(910\) 0 0
\(911\) 17.2655 0.572033 0.286016 0.958225i \(-0.407669\pi\)
0.286016 + 0.958225i \(0.407669\pi\)
\(912\) −11.9930 6.92418i −0.397129 0.229283i
\(913\) −46.2282 −1.52993
\(914\) −10.2558 17.7635i −0.339231 0.587565i
\(915\) −68.9678 + 39.8186i −2.28000 + 1.31636i
\(916\) −8.62549 4.97993i −0.284994 0.164542i
\(917\) 0 0
\(918\) 3.88841i 0.128337i
\(919\) 15.9097 0.524813 0.262407 0.964957i \(-0.415484\pi\)
0.262407 + 0.964957i \(0.415484\pi\)
\(920\) −12.6533 −0.417166
\(921\) 80.1427i 2.64079i
\(922\) −1.69858 2.94204i −0.0559399 0.0968908i
\(923\) 0.398434 + 9.80712i 0.0131146 + 0.322805i
\(924\) 0 0
\(925\) −2.29311 + 1.32393i −0.0753969 + 0.0435304i
\(926\) 19.6793 34.0856i 0.646702 1.12012i
\(927\) 22.9319 + 39.7192i 0.753182 + 1.30455i
\(928\) 5.82216 + 3.36143i 0.191122 + 0.110344i
\(929\) 22.6619i 0.743511i 0.928331 + 0.371756i \(0.121244\pi\)
−0.928331 + 0.371756i \(0.878756\pi\)
\(930\) 6.97667 + 4.02798i 0.228774 + 0.132083i
\(931\) 0 0
\(932\) 4.29233 7.43454i 0.140600 0.243527i
\(933\) 0.862595 1.49406i 0.0282401 0.0489133i
\(934\) 5.98885i 0.195961i
\(935\) −31.4348 + 54.4467i −1.02803 + 1.78060i
\(936\) 7.79400 4.93220i 0.254755 0.161214i
\(937\) 22.3601 0.730473 0.365237 0.930915i \(-0.380988\pi\)
0.365237 + 0.930915i \(0.380988\pi\)
\(938\) 0 0
\(939\) −8.68432 15.0417i −0.283402 0.490867i
\(940\) 17.7689 0.579558
\(941\) 24.4378 + 14.1092i 0.796650 + 0.459946i 0.842298 0.539012i \(-0.181202\pi\)
−0.0456486 + 0.998958i \(0.514535\pi\)
\(942\) −10.6476 + 6.14740i −0.346918 + 0.200293i
\(943\) 4.01062i 0.130604i
\(944\) 8.08665i 0.263198i
\(945\) 0 0
\(946\) 8.31631 + 14.4043i 0.270387 + 0.468323i
\(947\) 5.51380 + 3.18339i 0.179174 + 0.103446i 0.586905 0.809656i \(-0.300346\pi\)
−0.407730 + 0.913102i \(0.633680\pi\)
\(948\) −16.6707 + 28.8744i −0.541438 + 0.937798i
\(949\) 1.16425 + 28.6570i 0.0377930 + 0.930244i
\(950\) −18.1605 31.4549i −0.589205 1.02053i
\(951\) 57.9990 33.4858i 1.88075 1.08585i
\(952\) 0 0
\(953\) 1.16258 2.01365i 0.0376597 0.0652285i −0.846581 0.532260i \(-0.821343\pi\)
0.884241 + 0.467031i \(0.154676\pi\)
\(954\) 5.13251 2.96325i 0.166171 0.0959389i
\(955\) 27.2038 15.7061i 0.880293 0.508238i
\(956\) 1.01584 0.586498i 0.0328547 0.0189687i
\(957\) 69.1322 39.9135i 2.23473 1.29022i
\(958\) 6.84021 11.8476i 0.220997 0.382778i
\(959\) 0 0
\(960\) 6.82781 3.94204i 0.220367 0.127229i
\(961\) −14.9780 25.9426i −0.483160 0.836858i
\(962\) −0.717074 + 1.36736i −0.0231194 + 0.0440854i
\(963\) 12.6658 21.9379i 0.408151 0.706939i
\(964\) 21.1208 + 12.1941i 0.680254 + 0.392745i
\(965\) 15.3160 + 26.5281i 0.493040 + 0.853971i
\(966\) 0 0
\(967\) 58.7262i 1.88851i −0.329219 0.944254i \(-0.606785\pi\)
0.329219 0.944254i \(-0.393215\pi\)
\(968\) 14.3666i 0.461761i
\(969\) −44.7664 + 25.8459i −1.43810 + 0.830290i
\(970\) −49.7416 28.7183i −1.59711 0.922090i
\(971\) 10.0699 0.323160 0.161580 0.986860i \(-0.448341\pi\)
0.161580 + 0.986860i \(0.448341\pi\)
\(972\) −10.3789 17.9768i −0.332904 0.576607i
\(973\) 0 0
\(974\) −1.05079 −0.0336693
\(975\) 52.5173 2.13362i 1.68190 0.0683306i
\(976\) −5.05050 + 8.74773i −0.161663 + 0.280008i
\(977\) 48.8242i 1.56202i −0.624517 0.781012i \(-0.714704\pi\)
0.624517 0.781012i \(-0.285296\pi\)
\(978\) −14.7108 + 25.4799i −0.470400 + 0.814757i
\(979\) −13.6311 + 23.6098i −0.435653 + 0.754573i
\(980\) 0 0
\(981\) 7.88218 + 4.55078i 0.251658 + 0.145295i
\(982\) 27.5514i 0.879199i
\(983\) −5.74087 3.31449i −0.183105 0.105716i 0.405646 0.914030i \(-0.367047\pi\)
−0.588751 + 0.808315i \(0.700380\pi\)
\(984\) 1.24948 + 2.16416i 0.0398320 + 0.0689910i
\(985\) −25.9013 + 44.8624i −0.825285 + 1.42944i
\(986\) 21.7324 12.5472i 0.692100 0.399584i
\(987\) 0 0
\(988\) −18.7563 9.83622i −0.596717 0.312932i
\(989\) 6.24765 + 10.8212i 0.198664 + 0.344096i
\(990\) 43.0866i 1.36938i
\(991\) 24.9693 0.793177 0.396589 0.917996i \(-0.370194\pi\)
0.396589 + 0.917996i \(0.370194\pi\)
\(992\) 1.02180 0.0324422
\(993\) 47.8533i 1.51858i
\(994\) 0 0
\(995\) 15.8820 + 9.16945i 0.503492 + 0.290691i
\(996\) 18.7401 10.8196i 0.593802 0.342832i
\(997\) −19.7584 34.2225i −0.625754 1.08384i −0.988394 0.151909i \(-0.951458\pi\)
0.362640 0.931929i \(-0.381875\pi\)
\(998\) −2.10425 −0.0666088
\(999\) 0.386322 + 0.223043i 0.0122227 + 0.00705677i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.v.h.361.4 20
7.2 even 3 1274.2.o.h.569.7 20
7.3 odd 6 1274.2.m.g.491.9 20
7.4 even 3 1274.2.m.f.491.7 20
7.5 odd 6 182.2.o.a.23.9 20
7.6 odd 2 182.2.v.a.179.2 yes 20
13.4 even 6 1274.2.o.h.459.2 20
21.5 even 6 1638.2.dt.c.1297.5 20
21.20 even 2 1638.2.cr.c.361.6 20
91.4 even 6 1274.2.m.f.589.7 20
91.17 odd 6 1274.2.m.g.589.9 20
91.30 even 6 inner 1274.2.v.h.667.4 20
91.69 odd 6 182.2.o.a.95.4 yes 20
91.82 odd 6 182.2.v.a.121.2 yes 20
273.173 even 6 1638.2.cr.c.667.6 20
273.251 even 6 1638.2.dt.c.1369.10 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.o.a.23.9 20 7.5 odd 6
182.2.o.a.95.4 yes 20 91.69 odd 6
182.2.v.a.121.2 yes 20 91.82 odd 6
182.2.v.a.179.2 yes 20 7.6 odd 2
1274.2.m.f.491.7 20 7.4 even 3
1274.2.m.f.589.7 20 91.4 even 6
1274.2.m.g.491.9 20 7.3 odd 6
1274.2.m.g.589.9 20 91.17 odd 6
1274.2.o.h.459.2 20 13.4 even 6
1274.2.o.h.569.7 20 7.2 even 3
1274.2.v.h.361.4 20 1.1 even 1 trivial
1274.2.v.h.667.4 20 91.30 even 6 inner
1638.2.cr.c.361.6 20 21.20 even 2
1638.2.cr.c.667.6 20 273.173 even 6
1638.2.dt.c.1297.5 20 21.5 even 6
1638.2.dt.c.1369.10 20 273.251 even 6