L(s) = 1 | + i·2-s − 4-s + (2.89 − 1.67i)5-s + (0.268 + 2.63i)7-s − i·8-s + (1.67 + 2.89i)10-s + (−4.36 + 2.51i)11-s + (−1.92 + 3.04i)13-s + (−2.63 + 0.268i)14-s + 16-s − 3.73·17-s + (−5.08 − 2.93i)19-s + (−2.89 + 1.67i)20-s + (−2.51 − 4.36i)22-s − 3.78·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + (1.29 − 0.747i)5-s + (0.101 + 0.994i)7-s − 0.353i·8-s + (0.528 + 0.915i)10-s + (−1.31 + 0.759i)11-s + (−0.534 + 0.845i)13-s + (−0.703 + 0.0717i)14-s + 0.250·16-s − 0.905·17-s + (−1.16 − 0.673i)19-s + (−0.647 + 0.373i)20-s + (−0.536 − 0.929i)22-s − 0.788·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0105i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0105i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8388454131\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8388454131\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.268 - 2.63i)T \) |
| 13 | \( 1 + (1.92 - 3.04i)T \) |
good | 5 | \( 1 + (-2.89 + 1.67i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (4.36 - 2.51i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + 3.73T + 17T^{2} \) |
| 19 | \( 1 + (5.08 + 2.93i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 3.78T + 23T^{2} \) |
| 29 | \( 1 + (3.36 - 5.82i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.884 - 0.510i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 0.428iT - 37T^{2} \) |
| 41 | \( 1 + (0.917 + 0.529i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.65 - 2.85i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.60 + 2.65i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.15 + 2.00i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 8.08iT - 59T^{2} \) |
| 61 | \( 1 + (-5.05 + 8.74i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (11.5 - 6.64i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2.35 - 1.36i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-6.88 - 3.97i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.07 - 12.2i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 9.17iT - 83T^{2} \) |
| 89 | \( 1 + 5.41iT - 89T^{2} \) |
| 97 | \( 1 + (-14.8 + 8.58i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.562531578668273731449756118422, −8.905456568654641531678206707054, −8.422916886861167247965175690752, −7.28148516981999454709897949743, −6.47864958763206881299988622566, −5.64986357945052701745845442046, −5.03462742292499302420380665187, −4.39632426436519404685954629497, −2.45559234265956590040531492023, −1.94206849175731114054303946154,
0.28269469057865518328761252392, 1.99998729437413821619969306774, 2.63212343594646767611592022943, 3.70340545974070490752080315825, 4.77294810924351625628654748911, 5.78286128389676591003155567784, 6.34143265982009221639335980240, 7.55806949754952114302135999678, 8.148393926471587425393975743406, 9.244217384456642427183874897887