Properties

Label 162.8.c.q.109.3
Level $162$
Weight $8$
Character 162.109
Analytic conductor $50.606$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,8,Mod(55,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.55"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-32,0,-256,-528] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.6063741284\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 518x^{5} + 53377x^{4} + 11940x^{3} + 3528x^{2} + 1563408x + 346406544 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{18} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.3
Root \(11.0098 + 11.0098i\) of defining polynomial
Character \(\chi\) \(=\) 162.109
Dual form 162.8.c.q.55.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 - 6.92820i) q^{2} +(-32.0000 + 55.4256i) q^{4} +(-5.62316 + 9.73960i) q^{5} +(-719.735 - 1246.62i) q^{7} +512.000 q^{8} +89.9705 q^{10} +(-2216.31 - 3838.77i) q^{11} +(3615.49 - 6262.21i) q^{13} +(-5757.88 + 9972.94i) q^{14} +(-2048.00 - 3547.24i) q^{16} +13221.1 q^{17} +13506.6 q^{19} +(-359.882 - 623.334i) q^{20} +(-17730.5 + 30710.1i) q^{22} +(32869.3 - 56931.3i) q^{23} +(38999.3 + 67548.7i) q^{25} -57847.8 q^{26} +92126.0 q^{28} +(-74249.1 - 128603. i) q^{29} +(-69431.2 + 120258. i) q^{31} +(-16384.0 + 28377.9i) q^{32} +(-52884.4 - 91598.4i) q^{34} +16188.7 q^{35} -121532. q^{37} +(-54026.5 - 93576.6i) q^{38} +(-2879.06 + 4986.67i) q^{40} +(-26393.4 + 45714.8i) q^{41} +(-375862. - 651012. i) q^{43} +283688. q^{44} -525909. q^{46} +(-491796. - 851816. i) q^{47} +(-624264. + 1.08126e6i) q^{49} +(311994. - 540390. i) q^{50} +(231391. + 400781. i) q^{52} -621759. q^{53} +49850.7 q^{55} +(-368504. - 638268. i) q^{56} +(-593992. + 1.02883e6i) q^{58} +(-407108. + 705132. i) q^{59} +(1.23477e6 + 2.13868e6i) q^{61} +1.11090e6 q^{62} +262144. q^{64} +(40660.9 + 70426.8i) q^{65} +(-1.72741e6 + 2.99196e6i) q^{67} +(-423075. + 732788. i) q^{68} +(-64754.9 - 112159. i) q^{70} +3.64076e6 q^{71} -5.55060e6 q^{73} +(486126. + 841995. i) q^{74} +(-432212. + 748613. i) q^{76} +(-3.19032e6 + 5.52579e6i) q^{77} +(1.02318e6 + 1.77220e6i) q^{79} +46064.9 q^{80} +422295. q^{82} +(-5.13258e6 - 8.88989e6i) q^{83} +(-74344.3 + 128768. i) q^{85} +(-3.00690e6 + 5.20810e6i) q^{86} +(-1.13475e6 - 1.96545e6i) q^{88} +8.12374e6 q^{89} -1.04088e7 q^{91} +(2.10364e6 + 3.64360e6i) q^{92} +(-3.93437e6 + 6.81453e6i) q^{94} +(-75949.9 + 131549. i) q^{95} +(6.64660e6 + 1.15122e7i) q^{97} +9.98823e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 32 q^{2} - 256 q^{4} - 528 q^{5} - 560 q^{7} + 4096 q^{8} + 8448 q^{10} - 2160 q^{11} - 13460 q^{13} - 4480 q^{14} - 16384 q^{16} + 45120 q^{17} + 73408 q^{19} - 33792 q^{20} - 17280 q^{22} - 62640 q^{23}+ \cdots + 23190336 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 6.92820i −0.353553 0.612372i
\(3\) 0 0
\(4\) −32.0000 + 55.4256i −0.250000 + 0.433013i
\(5\) −5.62316 + 9.73960i −0.0201180 + 0.0348454i −0.875909 0.482476i \(-0.839738\pi\)
0.855791 + 0.517322i \(0.173071\pi\)
\(6\) 0 0
\(7\) −719.735 1246.62i −0.793102 1.37369i −0.924037 0.382303i \(-0.875131\pi\)
0.130935 0.991391i \(-0.458202\pi\)
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) 89.9705 0.0284512
\(11\) −2216.31 3838.77i −0.502061 0.869596i −0.999997 0.00238204i \(-0.999242\pi\)
0.497936 0.867214i \(-0.334092\pi\)
\(12\) 0 0
\(13\) 3615.49 6262.21i 0.456420 0.790543i −0.542348 0.840154i \(-0.682465\pi\)
0.998769 + 0.0496105i \(0.0157980\pi\)
\(14\) −5757.88 + 9972.94i −0.560808 + 0.971348i
\(15\) 0 0
\(16\) −2048.00 3547.24i −0.125000 0.216506i
\(17\) 13221.1 0.652674 0.326337 0.945254i \(-0.394186\pi\)
0.326337 + 0.945254i \(0.394186\pi\)
\(18\) 0 0
\(19\) 13506.6 0.451761 0.225881 0.974155i \(-0.427474\pi\)
0.225881 + 0.974155i \(0.427474\pi\)
\(20\) −359.882 623.334i −0.0100590 0.0174227i
\(21\) 0 0
\(22\) −17730.5 + 30710.1i −0.355011 + 0.614897i
\(23\) 32869.3 56931.3i 0.563304 0.975672i −0.433901 0.900961i \(-0.642863\pi\)
0.997205 0.0747111i \(-0.0238034\pi\)
\(24\) 0 0
\(25\) 38999.3 + 67548.7i 0.499191 + 0.864623i
\(26\) −57847.8 −0.645476
\(27\) 0 0
\(28\) 92126.0 0.793102
\(29\) −74249.1 128603.i −0.565325 0.979171i −0.997019 0.0771513i \(-0.975418\pi\)
0.431695 0.902020i \(-0.357916\pi\)
\(30\) 0 0
\(31\) −69431.2 + 120258.i −0.418590 + 0.725019i −0.995798 0.0915783i \(-0.970809\pi\)
0.577208 + 0.816597i \(0.304142\pi\)
\(32\) −16384.0 + 28377.9i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −52884.4 91598.4i −0.230755 0.399679i
\(35\) 16188.7 0.0638226
\(36\) 0 0
\(37\) −121532. −0.394442 −0.197221 0.980359i \(-0.563192\pi\)
−0.197221 + 0.980359i \(0.563192\pi\)
\(38\) −54026.5 93576.6i −0.159722 0.276646i
\(39\) 0 0
\(40\) −2879.06 + 4986.67i −0.00711279 + 0.0123197i
\(41\) −26393.4 + 45714.8i −0.0598070 + 0.103589i −0.894379 0.447311i \(-0.852382\pi\)
0.834572 + 0.550899i \(0.185715\pi\)
\(42\) 0 0
\(43\) −375862. 651012.i −0.720923 1.24868i −0.960630 0.277830i \(-0.910385\pi\)
0.239707 0.970845i \(-0.422949\pi\)
\(44\) 283688. 0.502061
\(45\) 0 0
\(46\) −525909. −0.796633
\(47\) −491796. 851816.i −0.690944 1.19675i −0.971529 0.236921i \(-0.923862\pi\)
0.280585 0.959829i \(-0.409472\pi\)
\(48\) 0 0
\(49\) −624264. + 1.08126e6i −0.758023 + 1.31293i
\(50\) 311994. 540390.i 0.352981 0.611381i
\(51\) 0 0
\(52\) 231391. + 400781.i 0.228210 + 0.395272i
\(53\) −621759. −0.573663 −0.286831 0.957981i \(-0.592602\pi\)
−0.286831 + 0.957981i \(0.592602\pi\)
\(54\) 0 0
\(55\) 49850.7 0.0404019
\(56\) −368504. 638268.i −0.280404 0.485674i
\(57\) 0 0
\(58\) −593992. + 1.02883e6i −0.399745 + 0.692378i
\(59\) −407108. + 705132.i −0.258064 + 0.446980i −0.965723 0.259574i \(-0.916418\pi\)
0.707659 + 0.706554i \(0.249751\pi\)
\(60\) 0 0
\(61\) 1.23477e6 + 2.13868e6i 0.696514 + 1.20640i 0.969668 + 0.244428i \(0.0786001\pi\)
−0.273153 + 0.961971i \(0.588067\pi\)
\(62\) 1.11090e6 0.591975
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 40660.9 + 70426.8i 0.0183646 + 0.0318083i
\(66\) 0 0
\(67\) −1.72741e6 + 2.99196e6i −0.701671 + 1.21533i 0.266209 + 0.963915i \(0.414229\pi\)
−0.967880 + 0.251414i \(0.919105\pi\)
\(68\) −423075. + 732788.i −0.163168 + 0.282616i
\(69\) 0 0
\(70\) −64754.9 112159.i −0.0225647 0.0390832i
\(71\) 3.64076e6 1.20722 0.603612 0.797278i \(-0.293728\pi\)
0.603612 + 0.797278i \(0.293728\pi\)
\(72\) 0 0
\(73\) −5.55060e6 −1.66997 −0.834987 0.550269i \(-0.814525\pi\)
−0.834987 + 0.550269i \(0.814525\pi\)
\(74\) 486126. + 841995.i 0.139456 + 0.241545i
\(75\) 0 0
\(76\) −432212. + 748613.i −0.112940 + 0.195618i
\(77\) −3.19032e6 + 5.52579e6i −0.796372 + 1.37936i
\(78\) 0 0
\(79\) 1.02318e6 + 1.77220e6i 0.233484 + 0.404407i 0.958831 0.283977i \(-0.0916539\pi\)
−0.725347 + 0.688384i \(0.758321\pi\)
\(80\) 46064.9 0.0100590
\(81\) 0 0
\(82\) 422295. 0.0845799
\(83\) −5.13258e6 8.88989e6i −0.985286 1.70657i −0.640657 0.767827i \(-0.721338\pi\)
−0.344630 0.938739i \(-0.611995\pi\)
\(84\) 0 0
\(85\) −74344.3 + 128768.i −0.0131305 + 0.0227427i
\(86\) −3.00690e6 + 5.20810e6i −0.509770 + 0.882947i
\(87\) 0 0
\(88\) −1.13475e6 1.96545e6i −0.177506 0.307449i
\(89\) 8.12374e6 1.22149 0.610747 0.791826i \(-0.290869\pi\)
0.610747 + 0.791826i \(0.290869\pi\)
\(90\) 0 0
\(91\) −1.04088e7 −1.44795
\(92\) 2.10364e6 + 3.64360e6i 0.281652 + 0.487836i
\(93\) 0 0
\(94\) −3.93437e6 + 6.81453e6i −0.488571 + 0.846230i
\(95\) −75949.9 + 131549.i −0.00908854 + 0.0157418i
\(96\) 0 0
\(97\) 6.64660e6 + 1.15122e7i 0.739432 + 1.28073i 0.952751 + 0.303752i \(0.0982394\pi\)
−0.213319 + 0.976983i \(0.568427\pi\)
\(98\) 9.98823e6 1.07201
\(99\) 0 0
\(100\) −4.99191e6 −0.499191
\(101\) 6.68327e6 + 1.15758e7i 0.645452 + 1.11796i 0.984197 + 0.177078i \(0.0566644\pi\)
−0.338745 + 0.940878i \(0.610002\pi\)
\(102\) 0 0
\(103\) −6.76614e6 + 1.17193e7i −0.610114 + 1.05675i 0.381107 + 0.924531i \(0.375543\pi\)
−0.991221 + 0.132217i \(0.957790\pi\)
\(104\) 1.85113e6 3.20625e6i 0.161369 0.279499i
\(105\) 0 0
\(106\) 2.48704e6 + 4.30767e6i 0.202820 + 0.351295i
\(107\) −1.89550e7 −1.49583 −0.747914 0.663796i \(-0.768944\pi\)
−0.747914 + 0.663796i \(0.768944\pi\)
\(108\) 0 0
\(109\) −1.33257e7 −0.985589 −0.492794 0.870146i \(-0.664025\pi\)
−0.492794 + 0.870146i \(0.664025\pi\)
\(110\) −199403. 345376.i −0.0142842 0.0247410i
\(111\) 0 0
\(112\) −2.94803e6 + 5.10614e6i −0.198276 + 0.343423i
\(113\) −1.02134e7 + 1.76901e7i −0.665878 + 1.15333i 0.313168 + 0.949698i \(0.398610\pi\)
−0.979046 + 0.203637i \(0.934724\pi\)
\(114\) 0 0
\(115\) 369659. + 640267.i 0.0226651 + 0.0392572i
\(116\) 9.50388e6 0.565325
\(117\) 0 0
\(118\) 6.51373e6 0.364958
\(119\) −9.51568e6 1.64816e7i −0.517637 0.896574i
\(120\) 0 0
\(121\) −80510.7 + 139449.i −0.00413147 + 0.00715592i
\(122\) 9.87812e6 1.71094e7i 0.492510 0.853052i
\(123\) 0 0
\(124\) −4.44360e6 7.69653e6i −0.209295 0.362509i
\(125\) −1.75581e6 −0.0804069
\(126\) 0 0
\(127\) 1.13846e7 0.493178 0.246589 0.969120i \(-0.420690\pi\)
0.246589 + 0.969120i \(0.420690\pi\)
\(128\) −1.04858e6 1.81619e6i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 325287. 563414.i 0.0129857 0.0224919i
\(131\) −2.64090e6 + 4.57417e6i −0.102636 + 0.177772i −0.912770 0.408474i \(-0.866061\pi\)
0.810134 + 0.586245i \(0.199395\pi\)
\(132\) 0 0
\(133\) −9.72118e6 1.68376e7i −0.358293 0.620582i
\(134\) 2.76385e7 0.992312
\(135\) 0 0
\(136\) 6.76920e6 0.230755
\(137\) −2.45057e7 4.24451e7i −0.814226 1.41028i −0.909882 0.414866i \(-0.863828\pi\)
0.0956566 0.995414i \(-0.469505\pi\)
\(138\) 0 0
\(139\) 9.43972e6 1.63501e7i 0.298131 0.516378i −0.677577 0.735452i \(-0.736970\pi\)
0.975708 + 0.219073i \(0.0703034\pi\)
\(140\) −518039. + 897270.i −0.0159557 + 0.0276360i
\(141\) 0 0
\(142\) −1.45630e7 2.52239e7i −0.426818 0.739270i
\(143\) −3.20522e7 −0.916604
\(144\) 0 0
\(145\) 1.67006e6 0.0454929
\(146\) 2.22024e7 + 3.84557e7i 0.590425 + 1.02265i
\(147\) 0 0
\(148\) 3.88901e6 6.73596e6i 0.0986105 0.170798i
\(149\) 1.44249e7 2.49846e7i 0.357240 0.618758i −0.630259 0.776385i \(-0.717051\pi\)
0.987499 + 0.157627i \(0.0503845\pi\)
\(150\) 0 0
\(151\) 1.79766e7 + 3.11364e7i 0.424902 + 0.735952i 0.996411 0.0846435i \(-0.0269751\pi\)
−0.571509 + 0.820596i \(0.693642\pi\)
\(152\) 6.91539e6 0.159722
\(153\) 0 0
\(154\) 5.10451e7 1.12624
\(155\) −780845. 1.35246e6i −0.0168424 0.0291719i
\(156\) 0 0
\(157\) 2.89045e7 5.00641e7i 0.596097 1.03247i −0.397294 0.917691i \(-0.630051\pi\)
0.993391 0.114779i \(-0.0366159\pi\)
\(158\) 8.18545e6 1.41776e7i 0.165098 0.285959i
\(159\) 0 0
\(160\) −184260. 319147.i −0.00355640 0.00615986i
\(161\) −9.46287e7 −1.78703
\(162\) 0 0
\(163\) 3.23536e7 0.585148 0.292574 0.956243i \(-0.405488\pi\)
0.292574 + 0.956243i \(0.405488\pi\)
\(164\) −1.68918e6 2.92574e6i −0.0299035 0.0517944i
\(165\) 0 0
\(166\) −4.10606e7 + 7.11191e7i −0.696703 + 1.20672i
\(167\) 4.33872e7 7.51489e7i 0.720866 1.24858i −0.239788 0.970825i \(-0.577078\pi\)
0.960653 0.277751i \(-0.0895889\pi\)
\(168\) 0 0
\(169\) 5.23077e6 + 9.05996e6i 0.0833608 + 0.144385i
\(170\) 1.18951e6 0.0185693
\(171\) 0 0
\(172\) 4.81103e7 0.720923
\(173\) 5.38618e6 + 9.32914e6i 0.0790897 + 0.136987i 0.902857 0.429940i \(-0.141465\pi\)
−0.823768 + 0.566927i \(0.808132\pi\)
\(174\) 0 0
\(175\) 5.61382e7 9.72343e7i 0.791818 1.37147i
\(176\) −9.07802e6 + 1.57236e7i −0.125515 + 0.217399i
\(177\) 0 0
\(178\) −3.24950e7 5.62829e7i −0.431863 0.748009i
\(179\) −3.61175e7 −0.470687 −0.235343 0.971912i \(-0.575621\pi\)
−0.235343 + 0.971912i \(0.575621\pi\)
\(180\) 0 0
\(181\) 2.78118e7 0.348621 0.174310 0.984691i \(-0.444230\pi\)
0.174310 + 0.984691i \(0.444230\pi\)
\(182\) 4.16351e7 + 7.21140e7i 0.511928 + 0.886686i
\(183\) 0 0
\(184\) 1.68291e7 2.91488e7i 0.199158 0.344952i
\(185\) 683391. 1.18367e6i 0.00793539 0.0137445i
\(186\) 0 0
\(187\) −2.93021e7 5.07527e7i −0.327682 0.567563i
\(188\) 6.29499e7 0.690944
\(189\) 0 0
\(190\) 1.21520e6 0.0128531
\(191\) 4.73127e7 + 8.19480e7i 0.491316 + 0.850984i 0.999950 0.00999867i \(-0.00318273\pi\)
−0.508634 + 0.860983i \(0.669849\pi\)
\(192\) 0 0
\(193\) 6.11115e7 1.05848e8i 0.611889 1.05982i −0.379033 0.925383i \(-0.623743\pi\)
0.990922 0.134439i \(-0.0429234\pi\)
\(194\) 5.31728e7 9.20980e7i 0.522858 0.905616i
\(195\) 0 0
\(196\) −3.99529e7 6.92005e7i −0.379011 0.656467i
\(197\) −1.37768e8 −1.28385 −0.641926 0.766766i \(-0.721864\pi\)
−0.641926 + 0.766766i \(0.721864\pi\)
\(198\) 0 0
\(199\) −1.62646e8 −1.46305 −0.731524 0.681815i \(-0.761191\pi\)
−0.731524 + 0.681815i \(0.761191\pi\)
\(200\) 1.99676e7 + 3.45849e7i 0.176491 + 0.305691i
\(201\) 0 0
\(202\) 5.34662e7 9.26061e7i 0.456404 0.790514i
\(203\) −1.06879e8 + 1.85120e8i −0.896721 + 1.55317i
\(204\) 0 0
\(205\) −296829. 514123.i −0.00240640 0.00416800i
\(206\) 1.08258e8 0.862831
\(207\) 0 0
\(208\) −2.96181e7 −0.228210
\(209\) −2.99349e7 5.18488e7i −0.226812 0.392850i
\(210\) 0 0
\(211\) 7.77889e7 1.34734e8i 0.570071 0.987392i −0.426487 0.904494i \(-0.640249\pi\)
0.996558 0.0828986i \(-0.0264178\pi\)
\(212\) 1.98963e7 3.44614e7i 0.143416 0.248403i
\(213\) 0 0
\(214\) 7.58202e7 + 1.31324e8i 0.528855 + 0.916003i
\(215\) 8.45413e6 0.0580142
\(216\) 0 0
\(217\) 1.99888e8 1.32794
\(218\) 5.33026e7 + 9.23228e7i 0.348458 + 0.603547i
\(219\) 0 0
\(220\) −1.59522e6 + 2.76301e6i −0.0101005 + 0.0174946i
\(221\) 4.78007e7 8.27932e7i 0.297894 0.515967i
\(222\) 0 0
\(223\) 6.19714e7 + 1.07338e8i 0.374218 + 0.648164i 0.990210 0.139588i \(-0.0445779\pi\)
−0.615992 + 0.787752i \(0.711245\pi\)
\(224\) 4.71685e7 0.280404
\(225\) 0 0
\(226\) 1.63414e8 0.941694
\(227\) 6.88520e7 + 1.19255e8i 0.390685 + 0.676685i 0.992540 0.121920i \(-0.0389050\pi\)
−0.601855 + 0.798605i \(0.705572\pi\)
\(228\) 0 0
\(229\) −1.17560e8 + 2.03621e8i −0.646899 + 1.12046i 0.336960 + 0.941519i \(0.390601\pi\)
−0.983859 + 0.178944i \(0.942732\pi\)
\(230\) 2.95727e6 5.12214e6i 0.0160267 0.0277590i
\(231\) 0 0
\(232\) −3.80155e7 6.58448e7i −0.199872 0.346189i
\(233\) −1.44039e8 −0.745992 −0.372996 0.927833i \(-0.621670\pi\)
−0.372996 + 0.927833i \(0.621670\pi\)
\(234\) 0 0
\(235\) 1.10618e7 0.0556017
\(236\) −2.60549e7 4.51284e7i −0.129032 0.223490i
\(237\) 0 0
\(238\) −7.61254e7 + 1.31853e8i −0.366025 + 0.633974i
\(239\) −3.65693e7 + 6.33399e7i −0.173270 + 0.300113i −0.939561 0.342381i \(-0.888767\pi\)
0.766291 + 0.642494i \(0.222100\pi\)
\(240\) 0 0
\(241\) 6.14199e7 + 1.06382e8i 0.282650 + 0.489564i 0.972037 0.234829i \(-0.0754531\pi\)
−0.689386 + 0.724394i \(0.742120\pi\)
\(242\) 1.28817e6 0.00584278
\(243\) 0 0
\(244\) −1.58050e8 −0.696514
\(245\) −7.02067e6 1.21602e7i −0.0304998 0.0528273i
\(246\) 0 0
\(247\) 4.88330e7 8.45812e7i 0.206193 0.357137i
\(248\) −3.55488e7 + 6.15723e7i −0.147994 + 0.256333i
\(249\) 0 0
\(250\) 7.02326e6 + 1.21646e7i 0.0284281 + 0.0492390i
\(251\) 7.30348e7 0.291522 0.145761 0.989320i \(-0.453437\pi\)
0.145761 + 0.989320i \(0.453437\pi\)
\(252\) 0 0
\(253\) −2.91395e8 −1.13125
\(254\) −4.55383e7 7.88746e7i −0.174365 0.302009i
\(255\) 0 0
\(256\) −8.38861e6 + 1.45295e7i −0.0312500 + 0.0541266i
\(257\) −6.69979e7 + 1.16044e8i −0.246204 + 0.426438i −0.962469 0.271390i \(-0.912517\pi\)
0.716265 + 0.697828i \(0.245850\pi\)
\(258\) 0 0
\(259\) 8.74705e7 + 1.51503e8i 0.312833 + 0.541842i
\(260\) −5.20460e6 −0.0183646
\(261\) 0 0
\(262\) 4.22543e7 0.145150
\(263\) −1.90065e8 3.29202e8i −0.644253 1.11588i −0.984473 0.175534i \(-0.943835\pi\)
0.340220 0.940346i \(-0.389498\pi\)
\(264\) 0 0
\(265\) 3.49625e6 6.05568e6i 0.0115410 0.0199895i
\(266\) −7.77695e7 + 1.34701e8i −0.253351 + 0.438818i
\(267\) 0 0
\(268\) −1.10554e8 1.91485e8i −0.350835 0.607664i
\(269\) 5.57685e8 1.74685 0.873426 0.486958i \(-0.161893\pi\)
0.873426 + 0.486958i \(0.161893\pi\)
\(270\) 0 0
\(271\) −9.65793e7 −0.294776 −0.147388 0.989079i \(-0.547087\pi\)
−0.147388 + 0.989079i \(0.547087\pi\)
\(272\) −2.70768e7 4.68984e7i −0.0815842 0.141308i
\(273\) 0 0
\(274\) −1.96045e8 + 3.39561e8i −0.575745 + 0.997219i
\(275\) 1.72869e8 2.99418e8i 0.501249 0.868188i
\(276\) 0 0
\(277\) −2.82900e8 4.89997e8i −0.799749 1.38521i −0.919779 0.392436i \(-0.871633\pi\)
0.120030 0.992770i \(-0.461701\pi\)
\(278\) −1.51035e8 −0.421621
\(279\) 0 0
\(280\) 8.28863e6 0.0225647
\(281\) −1.99775e8 3.46020e8i −0.537117 0.930314i −0.999058 0.0434033i \(-0.986180\pi\)
0.461940 0.886911i \(-0.347153\pi\)
\(282\) 0 0
\(283\) −3.39361e8 + 5.87791e8i −0.890040 + 1.54160i −0.0502152 + 0.998738i \(0.515991\pi\)
−0.839825 + 0.542857i \(0.817343\pi\)
\(284\) −1.16504e8 + 2.01791e8i −0.301806 + 0.522743i
\(285\) 0 0
\(286\) 1.28209e8 + 2.22064e8i 0.324069 + 0.561303i
\(287\) 7.59851e7 0.189732
\(288\) 0 0
\(289\) −2.35541e8 −0.574017
\(290\) −6.68023e6 1.15705e7i −0.0160842 0.0278586i
\(291\) 0 0
\(292\) 1.77619e8 3.07645e8i 0.417494 0.723120i
\(293\) −5.58695e7 + 9.67688e7i −0.129759 + 0.224750i −0.923583 0.383398i \(-0.874754\pi\)
0.793824 + 0.608148i \(0.208087\pi\)
\(294\) 0 0
\(295\) −4.57847e6 7.93014e6i −0.0103835 0.0179847i
\(296\) −6.22242e7 −0.139456
\(297\) 0 0
\(298\) −2.30798e8 −0.505214
\(299\) −2.37677e8 4.11669e8i −0.514207 0.890633i
\(300\) 0 0
\(301\) −5.41042e8 + 9.37112e8i −1.14353 + 1.98065i
\(302\) 1.43813e8 2.49092e8i 0.300451 0.520397i
\(303\) 0 0
\(304\) −2.76616e7 4.79112e7i −0.0564702 0.0978092i
\(305\) −2.77731e7 −0.0560500
\(306\) 0 0
\(307\) −1.53022e8 −0.301835 −0.150917 0.988546i \(-0.548223\pi\)
−0.150917 + 0.988546i \(0.548223\pi\)
\(308\) −2.04180e8 3.53651e8i −0.398186 0.689679i
\(309\) 0 0
\(310\) −6.24676e6 + 1.08197e7i −0.0119094 + 0.0206276i
\(311\) 1.14184e8 1.97772e8i 0.215250 0.372825i −0.738100 0.674692i \(-0.764277\pi\)
0.953350 + 0.301867i \(0.0976099\pi\)
\(312\) 0 0
\(313\) 3.51372e8 + 6.08594e8i 0.647682 + 1.12182i 0.983675 + 0.179954i \(0.0575950\pi\)
−0.335993 + 0.941865i \(0.609072\pi\)
\(314\) −4.62472e8 −0.843008
\(315\) 0 0
\(316\) −1.30967e8 −0.233484
\(317\) 5.20588e8 + 9.01686e8i 0.917883 + 1.58982i 0.802625 + 0.596484i \(0.203436\pi\)
0.115257 + 0.993336i \(0.463231\pi\)
\(318\) 0 0
\(319\) −3.29118e8 + 5.70050e8i −0.567655 + 0.983208i
\(320\) −1.47408e6 + 2.55318e6i −0.00251475 + 0.00435568i
\(321\) 0 0
\(322\) 3.78515e8 + 6.55607e8i 0.631811 + 1.09433i
\(323\) 1.78572e8 0.294853
\(324\) 0 0
\(325\) 5.64005e8 0.911363
\(326\) −1.29414e8 2.24152e8i −0.206881 0.358328i
\(327\) 0 0
\(328\) −1.35134e7 + 2.34060e7i −0.0211450 + 0.0366242i
\(329\) −7.07926e8 + 1.22616e9i −1.09598 + 1.89829i
\(330\) 0 0
\(331\) −1.60638e8 2.78233e8i −0.243472 0.421706i 0.718229 0.695807i \(-0.244953\pi\)
−0.961701 + 0.274101i \(0.911620\pi\)
\(332\) 6.56970e8 0.985286
\(333\) 0 0
\(334\) −6.94196e8 −1.01946
\(335\) −1.94270e7 3.36485e7i −0.0282324 0.0489000i
\(336\) 0 0
\(337\) 4.56823e8 7.91241e8i 0.650194 1.12617i −0.332881 0.942969i \(-0.608021\pi\)
0.983075 0.183201i \(-0.0586459\pi\)
\(338\) 4.18462e7 7.24797e7i 0.0589450 0.102096i
\(339\) 0 0
\(340\) −4.75804e6 8.24116e6i −0.00656525 0.0113714i
\(341\) 6.15525e8 0.840631
\(342\) 0 0
\(343\) 6.11754e8 0.818554
\(344\) −1.92441e8 3.33318e8i −0.254885 0.441473i
\(345\) 0 0
\(346\) 4.30895e7 7.46331e7i 0.0559248 0.0968646i
\(347\) 2.98992e8 5.17869e8i 0.384155 0.665376i −0.607497 0.794322i \(-0.707826\pi\)
0.991652 + 0.128946i \(0.0411595\pi\)
\(348\) 0 0
\(349\) −3.25273e8 5.63390e8i −0.409599 0.709447i 0.585245 0.810856i \(-0.300998\pi\)
−0.994845 + 0.101409i \(0.967665\pi\)
\(350\) −8.98212e8 −1.11980
\(351\) 0 0
\(352\) 1.45248e8 0.177506
\(353\) 3.08623e7 + 5.34551e7i 0.0373437 + 0.0646811i 0.884093 0.467311i \(-0.154777\pi\)
−0.846750 + 0.531992i \(0.821444\pi\)
\(354\) 0 0
\(355\) −2.04726e7 + 3.54595e7i −0.0242869 + 0.0420662i
\(356\) −2.59960e8 + 4.50264e8i −0.305373 + 0.528922i
\(357\) 0 0
\(358\) 1.44470e8 + 2.50229e8i 0.166413 + 0.288235i
\(359\) 1.70542e9 1.94537 0.972683 0.232137i \(-0.0745719\pi\)
0.972683 + 0.232137i \(0.0745719\pi\)
\(360\) 0 0
\(361\) −7.11443e8 −0.795912
\(362\) −1.11247e8 1.92686e8i −0.123256 0.213486i
\(363\) 0 0
\(364\) 3.33080e8 5.76912e8i 0.361988 0.626982i
\(365\) 3.12119e7 5.40606e7i 0.0335966 0.0581910i
\(366\) 0 0
\(367\) −1.21509e8 2.10460e8i −0.128315 0.222248i 0.794709 0.606991i \(-0.207624\pi\)
−0.923024 + 0.384743i \(0.874290\pi\)
\(368\) −2.69265e8 −0.281652
\(369\) 0 0
\(370\) −1.09343e7 −0.0112223
\(371\) 4.47501e8 + 7.75095e8i 0.454973 + 0.788037i
\(372\) 0 0
\(373\) 3.29270e8 5.70313e8i 0.328528 0.569026i −0.653692 0.756760i \(-0.726781\pi\)
0.982220 + 0.187734i \(0.0601143\pi\)
\(374\) −2.34417e8 + 4.06022e8i −0.231706 + 0.401327i
\(375\) 0 0
\(376\) −2.51800e8 4.36130e8i −0.244286 0.423115i
\(377\) −1.07379e9 −1.03210
\(378\) 0 0
\(379\) 1.55665e7 0.0146877 0.00734387 0.999973i \(-0.497662\pi\)
0.00734387 + 0.999973i \(0.497662\pi\)
\(380\) −4.86079e6 8.41914e6i −0.00454427 0.00787091i
\(381\) 0 0
\(382\) 3.78501e8 6.55584e8i 0.347413 0.601737i
\(383\) 4.33940e8 7.51606e8i 0.394670 0.683588i −0.598389 0.801206i \(-0.704192\pi\)
0.993059 + 0.117617i \(0.0375256\pi\)
\(384\) 0 0
\(385\) −3.58793e7 6.21448e7i −0.0320429 0.0554999i
\(386\) −9.77784e8 −0.865342
\(387\) 0 0
\(388\) −8.50765e8 −0.739432
\(389\) 8.92558e8 + 1.54596e9i 0.768799 + 1.33160i 0.938215 + 0.346054i \(0.112479\pi\)
−0.169416 + 0.985545i \(0.554188\pi\)
\(390\) 0 0
\(391\) 4.34568e8 7.52694e8i 0.367654 0.636795i
\(392\) −3.19623e8 + 5.53604e8i −0.268002 + 0.464192i
\(393\) 0 0
\(394\) 5.51070e8 + 9.54481e8i 0.453910 + 0.786196i
\(395\) −2.30140e7 −0.0187890
\(396\) 0 0
\(397\) 1.49554e9 1.19958 0.599792 0.800156i \(-0.295250\pi\)
0.599792 + 0.800156i \(0.295250\pi\)
\(398\) 6.50586e8 + 1.12685e9i 0.517266 + 0.895931i
\(399\) 0 0
\(400\) 1.59741e8 2.76679e8i 0.124798 0.216156i
\(401\) 5.21084e8 9.02543e8i 0.403554 0.698977i −0.590598 0.806966i \(-0.701108\pi\)
0.994152 + 0.107989i \(0.0344413\pi\)
\(402\) 0 0
\(403\) 5.02055e8 + 8.69585e8i 0.382106 + 0.661827i
\(404\) −8.55458e8 −0.645452
\(405\) 0 0
\(406\) 1.71007e9 1.26815
\(407\) 2.69352e8 + 4.66532e8i 0.198034 + 0.343005i
\(408\) 0 0
\(409\) −6.94223e8 + 1.20243e9i −0.501727 + 0.869017i 0.498271 + 0.867021i \(0.333968\pi\)
−0.999998 + 0.00199527i \(0.999365\pi\)
\(410\) −2.37463e6 + 4.11298e6i −0.00170158 + 0.00294722i
\(411\) 0 0
\(412\) −4.33033e8 7.50035e8i −0.305057 0.528374i
\(413\) 1.17204e9 0.818685
\(414\) 0 0
\(415\) 1.15445e8 0.0792880
\(416\) 1.18472e8 + 2.05200e8i 0.0806845 + 0.139750i
\(417\) 0 0
\(418\) −2.39479e8 + 4.14790e8i −0.160380 + 0.277787i
\(419\) 5.35466e8 9.27454e8i 0.355617 0.615947i −0.631606 0.775289i \(-0.717604\pi\)
0.987223 + 0.159342i \(0.0509373\pi\)
\(420\) 0 0
\(421\) −3.33942e8 5.78405e8i −0.218114 0.377785i 0.736117 0.676854i \(-0.236657\pi\)
−0.954231 + 0.299069i \(0.903324\pi\)
\(422\) −1.24462e9 −0.806203
\(423\) 0 0
\(424\) −3.18341e8 −0.202820
\(425\) 5.15613e8 + 8.93068e8i 0.325809 + 0.564317i
\(426\) 0 0
\(427\) 1.77741e9 3.07856e9i 1.10481 1.91359i
\(428\) 6.06561e8 1.05059e9i 0.373957 0.647712i
\(429\) 0 0
\(430\) −3.38165e7 5.85719e7i −0.0205111 0.0355263i
\(431\) −8.88266e8 −0.534408 −0.267204 0.963640i \(-0.586100\pi\)
−0.267204 + 0.963640i \(0.586100\pi\)
\(432\) 0 0
\(433\) 1.04197e9 0.616806 0.308403 0.951256i \(-0.400205\pi\)
0.308403 + 0.951256i \(0.400205\pi\)
\(434\) −7.99552e8 1.38487e9i −0.469497 0.813193i
\(435\) 0 0
\(436\) 4.26421e8 7.38583e8i 0.246397 0.426772i
\(437\) 4.43953e8 7.68949e8i 0.254479 0.440771i
\(438\) 0 0
\(439\) −1.36180e9 2.35870e9i −0.768223 1.33060i −0.938526 0.345209i \(-0.887808\pi\)
0.170303 0.985392i \(-0.445525\pi\)
\(440\) 2.55236e7 0.0142842
\(441\) 0 0
\(442\) −7.64811e8 −0.421285
\(443\) −7.09330e8 1.22860e9i −0.387646 0.671422i 0.604487 0.796615i \(-0.293378\pi\)
−0.992132 + 0.125193i \(0.960045\pi\)
\(444\) 0 0
\(445\) −4.56811e7 + 7.91220e7i −0.0245740 + 0.0425635i
\(446\) 4.95771e8 8.58701e8i 0.264612 0.458321i
\(447\) 0 0
\(448\) −1.88674e8 3.26793e8i −0.0991378 0.171712i
\(449\) −3.79133e9 −1.97665 −0.988324 0.152368i \(-0.951310\pi\)
−0.988324 + 0.152368i \(0.951310\pi\)
\(450\) 0 0
\(451\) 2.33984e8 0.120107
\(452\) −6.53656e8 1.13217e9i −0.332939 0.576667i
\(453\) 0 0
\(454\) 5.50816e8 9.54042e8i 0.276256 0.478489i
\(455\) 5.85301e7 1.01377e8i 0.0291299 0.0504545i
\(456\) 0 0
\(457\) −9.36482e8 1.62204e9i −0.458979 0.794975i 0.539928 0.841711i \(-0.318451\pi\)
−0.998907 + 0.0467359i \(0.985118\pi\)
\(458\) 1.88097e9 0.914854
\(459\) 0 0
\(460\) −4.73163e7 −0.0226651
\(461\) −2.73697e8 4.74057e8i −0.130112 0.225360i 0.793608 0.608430i \(-0.208200\pi\)
−0.923719 + 0.383070i \(0.874867\pi\)
\(462\) 0 0
\(463\) 5.61388e8 9.72353e8i 0.262863 0.455292i −0.704138 0.710063i \(-0.748667\pi\)
0.967002 + 0.254770i \(0.0819999\pi\)
\(464\) −3.04124e8 + 5.26758e8i −0.141331 + 0.244793i
\(465\) 0 0
\(466\) 5.76156e8 + 9.97931e8i 0.263748 + 0.456825i
\(467\) 2.32612e9 1.05687 0.528436 0.848973i \(-0.322779\pi\)
0.528436 + 0.848973i \(0.322779\pi\)
\(468\) 0 0
\(469\) 4.97310e9 2.22599
\(470\) −4.42472e7 7.66384e7i −0.0196582 0.0340489i
\(471\) 0 0
\(472\) −2.08439e8 + 3.61028e8i −0.0912395 + 0.158031i
\(473\) −1.66606e9 + 2.88570e9i −0.723895 + 1.25382i
\(474\) 0 0
\(475\) 5.26748e8 + 9.12355e8i 0.225515 + 0.390603i
\(476\) 1.21801e9 0.517637
\(477\) 0 0
\(478\) 5.85109e8 0.245041
\(479\) 8.84067e8 + 1.53125e9i 0.367545 + 0.636607i 0.989181 0.146699i \(-0.0468649\pi\)
−0.621636 + 0.783306i \(0.713532\pi\)
\(480\) 0 0
\(481\) −4.39396e8 + 7.61056e8i −0.180031 + 0.311823i
\(482\) 4.91359e8 8.51059e8i 0.199864 0.346174i
\(483\) 0 0
\(484\) −5.15268e6 8.92471e6i −0.00206573 0.00357796i
\(485\) −1.49500e8 −0.0595037
\(486\) 0 0
\(487\) −1.97414e9 −0.774509 −0.387254 0.921973i \(-0.626577\pi\)
−0.387254 + 0.921973i \(0.626577\pi\)
\(488\) 6.32200e8 + 1.09500e9i 0.246255 + 0.426526i
\(489\) 0 0
\(490\) −5.61654e7 + 9.72813e7i −0.0215666 + 0.0373545i
\(491\) 1.75190e9 3.03438e9i 0.667920 1.15687i −0.310564 0.950552i \(-0.600518\pi\)
0.978485 0.206320i \(-0.0661487\pi\)
\(492\) 0 0
\(493\) −9.81654e8 1.70027e9i −0.368973 0.639079i
\(494\) −7.81328e8 −0.291601
\(495\) 0 0
\(496\) 5.68780e8 0.209295
\(497\) −2.62038e9 4.53863e9i −0.957452 1.65836i
\(498\) 0 0
\(499\) −4.37327e8 + 7.57473e8i −0.157563 + 0.272907i −0.933989 0.357301i \(-0.883697\pi\)
0.776426 + 0.630208i \(0.217030\pi\)
\(500\) 5.61861e7 9.73171e7i 0.0201017 0.0348172i
\(501\) 0 0
\(502\) −2.92139e8 5.06000e8i −0.103069 0.178520i
\(503\) −2.61478e9 −0.916111 −0.458055 0.888924i \(-0.651454\pi\)
−0.458055 + 0.888924i \(0.651454\pi\)
\(504\) 0 0
\(505\) −1.50324e8 −0.0519409
\(506\) 1.16558e9 + 2.01884e9i 0.399959 + 0.692748i
\(507\) 0 0
\(508\) −3.64306e8 + 6.30997e8i −0.123294 + 0.213552i
\(509\) −4.26286e8 + 7.38349e8i −0.143281 + 0.248170i −0.928730 0.370756i \(-0.879099\pi\)
0.785449 + 0.618926i \(0.212432\pi\)
\(510\) 0 0
\(511\) 3.99496e9 + 6.91947e9i 1.32446 + 2.29403i
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) 1.07197e9 0.348185
\(515\) −7.60942e7 1.31799e8i −0.0245486 0.0425194i
\(516\) 0 0
\(517\) −2.17995e9 + 3.77578e9i −0.693793 + 1.20168i
\(518\) 6.99764e8 1.21203e9i 0.221206 0.383140i
\(519\) 0 0
\(520\) 2.08184e7 + 3.60585e7i 0.00649285 + 0.0112459i
\(521\) −2.66940e9 −0.826954 −0.413477 0.910515i \(-0.635686\pi\)
−0.413477 + 0.910515i \(0.635686\pi\)
\(522\) 0 0
\(523\) −4.41770e9 −1.35033 −0.675165 0.737667i \(-0.735928\pi\)
−0.675165 + 0.737667i \(0.735928\pi\)
\(524\) −1.69017e8 2.92747e8i −0.0513182 0.0888858i
\(525\) 0 0
\(526\) −1.52052e9 + 2.63362e9i −0.455556 + 0.789046i
\(527\) −9.17956e8 + 1.58995e9i −0.273203 + 0.473201i
\(528\) 0 0
\(529\) −4.58369e8 7.93919e8i −0.134623 0.233175i
\(530\) −5.59400e7 −0.0163214
\(531\) 0 0
\(532\) 1.24431e9 0.358293
\(533\) 1.90850e8 + 3.30562e8i 0.0545943 + 0.0945601i
\(534\) 0 0
\(535\) 1.06587e8 1.84614e8i 0.0300931 0.0521228i
\(536\) −8.84433e8 + 1.53188e9i −0.248078 + 0.429684i
\(537\) 0 0
\(538\) −2.23074e9 3.86375e9i −0.617605 1.06972i
\(539\) 5.53426e9 1.52230
\(540\) 0 0
\(541\) −3.86240e9 −1.04874 −0.524368 0.851492i \(-0.675699\pi\)
−0.524368 + 0.851492i \(0.675699\pi\)
\(542\) 3.86317e8 + 6.69121e8i 0.104219 + 0.180513i
\(543\) 0 0
\(544\) −2.16614e8 + 3.75187e8i −0.0576888 + 0.0999199i
\(545\) 7.49323e7 1.29786e8i 0.0198281 0.0343433i
\(546\) 0 0
\(547\) 1.08461e9 + 1.87859e9i 0.283346 + 0.490769i 0.972207 0.234124i \(-0.0752223\pi\)
−0.688861 + 0.724894i \(0.741889\pi\)
\(548\) 3.13673e9 0.814226
\(549\) 0 0
\(550\) −2.76591e9 −0.708873
\(551\) −1.00285e9 1.73699e9i −0.255392 0.442352i
\(552\) 0 0
\(553\) 1.47284e9 2.55103e9i 0.370354 0.641472i
\(554\) −2.26320e9 + 3.91998e9i −0.565508 + 0.979489i
\(555\) 0 0
\(556\) 6.04142e8 + 1.04640e9i 0.149066 + 0.258189i
\(557\) 2.25645e8 0.0553265 0.0276632 0.999617i \(-0.491193\pi\)
0.0276632 + 0.999617i \(0.491193\pi\)
\(558\) 0 0
\(559\) −5.43570e9 −1.31618
\(560\) −3.31545e7 5.74253e7i −0.00797783 0.0138180i
\(561\) 0 0
\(562\) −1.59820e9 + 2.76816e9i −0.379799 + 0.657831i
\(563\) −3.90401e8 + 6.76194e8i −0.0922001 + 0.159695i −0.908437 0.418023i \(-0.862723\pi\)
0.816237 + 0.577718i \(0.196057\pi\)
\(564\) 0 0
\(565\) −1.14863e8 1.98948e8i −0.0267923 0.0464056i
\(566\) 5.42978e9 1.25871
\(567\) 0 0
\(568\) 1.86407e9 0.426818
\(569\) 3.34607e8 + 5.79557e8i 0.0761452 + 0.131887i 0.901584 0.432605i \(-0.142405\pi\)
−0.825439 + 0.564492i \(0.809072\pi\)
\(570\) 0 0
\(571\) 6.68261e8 1.15746e9i 0.150217 0.260184i −0.781090 0.624418i \(-0.785336\pi\)
0.931307 + 0.364235i \(0.118669\pi\)
\(572\) 1.02567e9 1.77651e9i 0.229151 0.396901i
\(573\) 0 0
\(574\) −3.03940e8 5.26440e8i −0.0670805 0.116187i
\(575\) 5.12751e9 1.12478
\(576\) 0 0
\(577\) −7.13624e9 −1.54651 −0.773257 0.634092i \(-0.781374\pi\)
−0.773257 + 0.634092i \(0.781374\pi\)
\(578\) 9.42165e8 + 1.63188e9i 0.202946 + 0.351512i
\(579\) 0 0
\(580\) −5.34418e7 + 9.25639e7i −0.0113732 + 0.0196990i
\(581\) −7.38819e9 + 1.27967e10i −1.56287 + 2.70696i
\(582\) 0 0
\(583\) 1.37801e9 + 2.38679e9i 0.288014 + 0.498855i
\(584\) −2.84191e9 −0.590425
\(585\) 0 0
\(586\) 8.93912e8 0.183507
\(587\) −1.42735e9 2.47224e9i −0.291271 0.504496i 0.682839 0.730568i \(-0.260745\pi\)
−0.974111 + 0.226072i \(0.927411\pi\)
\(588\) 0 0
\(589\) −9.37781e8 + 1.62428e9i −0.189103 + 0.327535i
\(590\) −3.66277e7 + 6.34411e7i −0.00734223 + 0.0127171i
\(591\) 0 0
\(592\) 2.48897e8 + 4.31102e8i 0.0493052 + 0.0853992i
\(593\) −6.55017e9 −1.28991 −0.644957 0.764219i \(-0.723125\pi\)
−0.644957 + 0.764219i \(0.723125\pi\)
\(594\) 0 0
\(595\) 2.14033e8 0.0416553
\(596\) 9.23192e8 + 1.59902e9i 0.178620 + 0.309379i
\(597\) 0 0
\(598\) −1.90142e9 + 3.29335e9i −0.363599 + 0.629773i
\(599\) 3.75708e9 6.50744e9i 0.714259 1.23713i −0.248985 0.968507i \(-0.580097\pi\)
0.963244 0.268626i \(-0.0865697\pi\)
\(600\) 0 0
\(601\) 1.70371e9 + 2.95092e9i 0.320137 + 0.554493i 0.980516 0.196439i \(-0.0629378\pi\)
−0.660379 + 0.750932i \(0.729604\pi\)
\(602\) 8.65667e9 1.61720
\(603\) 0 0
\(604\) −2.30101e9 −0.424902
\(605\) −905448. 1.56828e6i −0.000166234 0.000287926i
\(606\) 0 0
\(607\) −2.47151e9 + 4.28078e9i −0.448540 + 0.776895i −0.998291 0.0584338i \(-0.981389\pi\)
0.549751 + 0.835329i \(0.314723\pi\)
\(608\) −2.21292e8 + 3.83290e8i −0.0399304 + 0.0691616i
\(609\) 0 0
\(610\) 1.11093e8 + 1.92418e8i 0.0198167 + 0.0343235i
\(611\) −7.11233e9 −1.26144
\(612\) 0 0
\(613\) 4.05250e9 0.710577 0.355288 0.934757i \(-0.384383\pi\)
0.355288 + 0.934757i \(0.384383\pi\)
\(614\) 6.12087e8 + 1.06017e9i 0.106715 + 0.184835i
\(615\) 0 0
\(616\) −1.63344e9 + 2.82920e9i −0.281560 + 0.487676i
\(617\) −3.07794e9 + 5.33115e9i −0.527549 + 0.913741i 0.471936 + 0.881633i \(0.343555\pi\)
−0.999484 + 0.0321082i \(0.989778\pi\)
\(618\) 0 0
\(619\) −1.82063e8 3.15342e8i −0.0308534 0.0534397i 0.850186 0.526482i \(-0.176489\pi\)
−0.881040 + 0.473042i \(0.843156\pi\)
\(620\) 9.99482e7 0.0168424
\(621\) 0 0
\(622\) −1.82694e9 −0.304410
\(623\) −5.84694e9 1.01272e10i −0.968770 1.67796i
\(624\) 0 0
\(625\) −3.03694e9 + 5.26014e9i −0.497573 + 0.861822i
\(626\) 2.81098e9 4.86875e9i 0.457981 0.793246i
\(627\) 0 0
\(628\) 1.84989e9 + 3.20410e9i 0.298048 + 0.516235i
\(629\) −1.60678e9 −0.257442
\(630\) 0 0
\(631\) 3.22087e9 0.510353 0.255177 0.966894i \(-0.417866\pi\)
0.255177 + 0.966894i \(0.417866\pi\)
\(632\) 5.23869e8 + 9.07368e8i 0.0825492 + 0.142979i
\(633\) 0 0
\(634\) 4.16471e9 7.21349e9i 0.649041 1.12417i
\(635\) −6.40172e7 + 1.10881e8i −0.00992176 + 0.0171850i
\(636\) 0 0
\(637\) 4.51404e9 + 7.81855e9i 0.691954 + 1.19850i
\(638\) 5.26590e9 0.802786
\(639\) 0 0
\(640\) 2.35852e7 0.00355640
\(641\) 6.22206e9 + 1.07769e10i 0.933106 + 1.61619i 0.777978 + 0.628292i \(0.216246\pi\)
0.155128 + 0.987894i \(0.450421\pi\)
\(642\) 0 0
\(643\) 2.41505e8 4.18298e8i 0.0358251 0.0620509i −0.847557 0.530704i \(-0.821927\pi\)
0.883382 + 0.468654i \(0.155261\pi\)
\(644\) 3.02812e9 5.24485e9i 0.446758 0.773808i
\(645\) 0 0
\(646\) −7.14289e8 1.23719e9i −0.104246 0.180560i
\(647\) 4.60241e9 0.668068 0.334034 0.942561i \(-0.391590\pi\)
0.334034 + 0.942561i \(0.391590\pi\)
\(648\) 0 0
\(649\) 3.60912e9 0.518256
\(650\) −2.25602e9 3.90754e9i −0.322215 0.558094i
\(651\) 0 0
\(652\) −1.03531e9 + 1.79322e9i −0.146287 + 0.253376i
\(653\) −2.84182e9 + 4.92218e9i −0.399393 + 0.691769i −0.993651 0.112505i \(-0.964113\pi\)
0.594258 + 0.804275i \(0.297446\pi\)
\(654\) 0 0
\(655\) −2.97003e7 5.14425e7i −0.00412969 0.00715282i
\(656\) 2.16215e8 0.0299035
\(657\) 0 0
\(658\) 1.13268e10 1.54995
\(659\) −2.25571e9 3.90700e9i −0.307032 0.531796i 0.670679 0.741747i \(-0.266003\pi\)
−0.977712 + 0.209952i \(0.932669\pi\)
\(660\) 0 0
\(661\) −4.88093e8 + 8.45401e8i −0.0657351 + 0.113856i −0.897020 0.441990i \(-0.854273\pi\)
0.831285 + 0.555847i \(0.187606\pi\)
\(662\) −1.28510e9 + 2.22586e9i −0.172161 + 0.298191i
\(663\) 0 0
\(664\) −2.62788e9 4.55162e9i −0.348351 0.603362i
\(665\) 2.18655e8 0.0288326
\(666\) 0 0
\(667\) −9.76206e9 −1.27380
\(668\) 2.77678e9 + 4.80953e9i 0.360433 + 0.624288i
\(669\) 0 0
\(670\) −1.55416e8 + 2.69188e8i −0.0199634 + 0.0345775i
\(671\) 5.47326e9 9.47996e9i 0.699386 1.21137i
\(672\) 0 0
\(673\) −6.26231e9 1.08466e10i −0.791921 1.37165i −0.924776 0.380513i \(-0.875748\pi\)
0.132854 0.991136i \(-0.457586\pi\)
\(674\) −7.30917e9 −0.919514
\(675\) 0 0
\(676\) −6.69539e8 −0.0833608
\(677\) −5.22456e9 9.04920e9i −0.647126 1.12086i −0.983806 0.179237i \(-0.942637\pi\)
0.336680 0.941619i \(-0.390696\pi\)
\(678\) 0 0
\(679\) 9.56758e9 1.65715e10i 1.17289 2.03151i
\(680\) −3.80643e7 + 6.59293e7i −0.00464234 + 0.00804076i
\(681\) 0 0
\(682\) −2.46210e9 4.26448e9i −0.297208 0.514779i
\(683\) 1.12280e9 0.134844 0.0674218 0.997725i \(-0.478523\pi\)
0.0674218 + 0.997725i \(0.478523\pi\)
\(684\) 0 0
\(685\) 5.51197e8 0.0655225
\(686\) −2.44702e9 4.23836e9i −0.289403 0.501260i
\(687\) 0 0
\(688\) −1.53953e9 + 2.66655e9i −0.180231 + 0.312169i
\(689\) −2.24796e9 + 3.89358e9i −0.261831 + 0.453505i
\(690\) 0 0
\(691\) −3.73022e9 6.46092e9i −0.430091 0.744940i 0.566789 0.823863i \(-0.308185\pi\)
−0.996881 + 0.0789226i \(0.974852\pi\)
\(692\) −6.89431e8 −0.0790897
\(693\) 0 0
\(694\) −4.78387e9 −0.543277
\(695\) 1.06162e8 + 1.83878e8i 0.0119956 + 0.0207770i
\(696\) 0 0
\(697\) −3.48950e8 + 6.04399e8i −0.0390345 + 0.0676097i
\(698\) −2.60219e9 + 4.50712e9i −0.289631 + 0.501655i
\(699\) 0 0
\(700\) 3.59285e9 + 6.22299e9i 0.395909 + 0.685735i
\(701\) −1.79013e10 −1.96278 −0.981392 0.192014i \(-0.938498\pi\)
−0.981392 + 0.192014i \(0.938498\pi\)
\(702\) 0 0
\(703\) −1.64148e9 −0.178194
\(704\) −5.80993e8 1.00631e9i −0.0627577 0.108700i
\(705\) 0 0
\(706\) 2.46898e8 4.27641e8i 0.0264060 0.0457365i
\(707\) 9.62036e9 1.66630e10i 1.02382 1.77331i
\(708\) 0 0
\(709\) −3.77521e9 6.53885e9i −0.397813 0.689032i 0.595643 0.803249i \(-0.296897\pi\)
−0.993456 + 0.114217i \(0.963564\pi\)
\(710\) 3.27561e8 0.0343469
\(711\) 0 0
\(712\) 4.15936e9 0.431863
\(713\) 4.56431e9 + 7.90562e9i 0.471587 + 0.816812i
\(714\) 0 0
\(715\) 1.80235e8 3.12176e8i 0.0184403 0.0319395i
\(716\) 1.15576e9 2.00183e9i 0.117672 0.203813i
\(717\) 0 0
\(718\) −6.82169e9 1.18155e10i −0.687791 1.19129i
\(719\) −3.79868e9 −0.381137 −0.190569 0.981674i \(-0.561033\pi\)
−0.190569 + 0.981674i \(0.561033\pi\)
\(720\) 0 0
\(721\) 1.94793e10 1.93553
\(722\) 2.84577e9 + 4.92902e9i 0.281397 + 0.487394i
\(723\) 0 0
\(724\) −8.89976e8 + 1.54148e9i −0.0871552 + 0.150957i
\(725\) 5.79132e9 1.00309e10i 0.564409 0.977586i
\(726\) 0 0
\(727\) 1.96762e9 + 3.40802e9i 0.189920 + 0.328952i 0.945224 0.326424i \(-0.105844\pi\)
−0.755303 + 0.655376i \(0.772510\pi\)
\(728\) −5.32929e9 −0.511928
\(729\) 0 0
\(730\) −4.99390e8 −0.0475127
\(731\) −4.96931e9 8.60710e9i −0.470528 0.814978i
\(732\) 0 0
\(733\) 5.67457e9 9.82865e9i 0.532193 0.921785i −0.467100 0.884204i \(-0.654701\pi\)
0.999294 0.0375812i \(-0.0119653\pi\)
\(734\) −9.72073e8 + 1.68368e9i −0.0907325 + 0.157153i
\(735\) 0 0
\(736\) 1.07706e9 + 1.86552e9i 0.0995791 + 0.172476i
\(737\) 1.53139e10 1.40913
\(738\) 0 0
\(739\) 1.61420e10 1.47130 0.735652 0.677359i \(-0.236876\pi\)
0.735652 + 0.677359i \(0.236876\pi\)
\(740\) 4.37370e7 + 7.57548e7i 0.00396770 + 0.00687225i
\(741\) 0 0
\(742\) 3.58001e9 6.20076e9i 0.321715 0.557226i
\(743\) 2.96574e9 5.13681e9i 0.265260 0.459444i −0.702371 0.711811i \(-0.747875\pi\)
0.967632 + 0.252366i \(0.0812088\pi\)
\(744\) 0 0
\(745\) 1.62227e8 + 2.80985e8i 0.0143739 + 0.0248964i
\(746\) −5.26833e9 −0.464608
\(747\) 0 0
\(748\) 3.75067e9 0.327682
\(749\) 1.36426e10 + 2.36297e10i 1.18634 + 2.05481i
\(750\) 0 0
\(751\) 1.67463e9 2.90054e9i 0.144271 0.249885i −0.784830 0.619711i \(-0.787250\pi\)
0.929101 + 0.369827i \(0.120583\pi\)
\(752\) −2.01440e9 + 3.48904e9i −0.172736 + 0.299187i
\(753\) 0 0
\(754\) 4.29514e9 + 7.43941e9i 0.364903 + 0.632031i
\(755\) −4.04342e8 −0.0341928
\(756\) 0 0
\(757\) −3.71611e9 −0.311353 −0.155677 0.987808i \(-0.549756\pi\)
−0.155677 + 0.987808i \(0.549756\pi\)
\(758\) −6.22661e7 1.07848e8i −0.00519290 0.00899436i
\(759\) 0 0
\(760\) −3.88863e7 + 6.73531e7i −0.00321329 + 0.00556557i
\(761\) −7.21722e8 + 1.25006e9i −0.0593641 + 0.102822i −0.894180 0.447707i \(-0.852241\pi\)
0.834816 + 0.550529i \(0.185574\pi\)
\(762\) 0 0
\(763\) 9.59093e9 + 1.66120e10i 0.781673 + 1.35390i
\(764\) −6.05602e9 −0.491316
\(765\) 0 0
\(766\) −6.94304e9 −0.558148
\(767\) 2.94379e9 + 5.09879e9i 0.235572 + 0.408022i
\(768\) 0 0
\(769\) −5.12495e9 + 8.87668e9i −0.406394 + 0.703895i −0.994483 0.104901i \(-0.966547\pi\)
0.588088 + 0.808797i \(0.299881\pi\)
\(770\) −2.87034e8 + 4.97158e8i −0.0226577 + 0.0392443i
\(771\) 0 0
\(772\) 3.91114e9 + 6.77429e9i 0.305944 + 0.529911i
\(773\) −2.47581e10 −1.92792 −0.963959 0.266049i \(-0.914282\pi\)
−0.963959 + 0.266049i \(0.914282\pi\)
\(774\) 0 0
\(775\) −1.08311e10 −0.835824
\(776\) 3.40306e9 + 5.89427e9i 0.261429 + 0.452808i
\(777\) 0 0
\(778\) 7.14046e9 1.23676e10i 0.543623 0.941583i
\(779\) −3.56486e8 + 6.17452e8i −0.0270185 + 0.0467974i
\(780\) 0 0
\(781\) −8.06906e9 1.39760e10i −0.606100 1.04980i
\(782\) −6.95309e9 −0.519941
\(783\) 0 0
\(784\) 5.11397e9 0.379011
\(785\) 3.25069e8 + 5.63036e8i 0.0239846 + 0.0415425i
\(786\) 0 0
\(787\) 1.04848e10 1.81603e10i 0.766744 1.32804i −0.172575 0.984996i \(-0.555209\pi\)
0.939319 0.343044i \(-0.111458\pi\)
\(788\) 4.40856e9 7.63585e9i 0.320963 0.555924i
\(789\) 0 0
\(790\) 9.20562e7 + 1.59446e8i 0.00664291 + 0.0115059i
\(791\) 2.94037e10 2.11244
\(792\) 0 0
\(793\) 1.78571e10 1.27161
\(794\) −5.98215e9 1.03614e10i −0.424117 0.734592i
\(795\) 0 0
\(796\) 5.20469e9 9.01478e9i 0.365762 0.633519i
\(797\) −8.17893e9 + 1.41663e10i −0.572259 + 0.991181i 0.424075 + 0.905627i \(0.360599\pi\)
−0.996334 + 0.0855541i \(0.972734\pi\)
\(798\) 0 0
\(799\) −6.50209e9 1.12619e10i −0.450961 0.781087i
\(800\) −2.55586e9 −0.176491
\(801\) 0 0
\(802\) −8.33734e9 −0.570712
\(803\) 1.23019e10 + 2.13075e10i 0.838430 + 1.45220i
\(804\) 0 0
\(805\) 5.32112e8 9.21645e8i 0.0359515 0.0622699i
\(806\) 4.01644e9 6.95668e9i 0.270190 0.467982i
\(807\) 0 0
\(808\) 3.42183e9 + 5.92679e9i 0.228202 + 0.395257i
\(809\) 8.79414e9 0.583947 0.291974 0.956426i \(-0.405688\pi\)
0.291974 + 0.956426i \(0.405688\pi\)
\(810\) 0 0
\(811\) 8.84977e8 0.0582585 0.0291292 0.999576i \(-0.490727\pi\)
0.0291292 + 0.999576i \(0.490727\pi\)
\(812\) −6.84027e9 1.18477e10i −0.448360 0.776583i
\(813\) 0 0
\(814\) 2.15482e9 3.73225e9i 0.140031 0.242541i
\(815\) −1.81929e8 + 3.15111e8i −0.0117720 + 0.0203897i
\(816\) 0 0
\(817\) −5.07663e9 8.79297e9i −0.325685 0.564103i
\(818\) 1.11076e10 0.709549
\(819\) 0 0
\(820\) 3.79941e7 0.00240640
\(821\) −1.02524e10 1.77577e10i −0.646584 1.11992i −0.983933 0.178537i \(-0.942864\pi\)
0.337349 0.941380i \(-0.390470\pi\)
\(822\) 0 0
\(823\) −2.42539e9 + 4.20090e9i −0.151664 + 0.262690i −0.931839 0.362871i \(-0.881797\pi\)
0.780175 + 0.625561i \(0.215130\pi\)
\(824\) −3.46426e9 + 6.00028e9i −0.215708 + 0.373617i
\(825\) 0 0
\(826\) −4.68816e9 8.12013e9i −0.289449 0.501340i
\(827\) 1.02887e10 0.632545 0.316272 0.948668i \(-0.397569\pi\)
0.316272 + 0.948668i \(0.397569\pi\)
\(828\) 0 0
\(829\) 3.17520e9 0.193566 0.0967832 0.995305i \(-0.469145\pi\)
0.0967832 + 0.995305i \(0.469145\pi\)
\(830\) −4.61781e8 7.99828e8i −0.0280326 0.0485538i
\(831\) 0 0
\(832\) 9.47778e8 1.64160e9i 0.0570525 0.0988179i
\(833\) −8.25346e9 + 1.42954e10i −0.494742 + 0.856918i
\(834\) 0 0
\(835\) 4.87947e8 + 8.45148e8i 0.0290048 + 0.0502378i
\(836\) 3.83167e9 0.226812
\(837\) 0 0
\(838\) −8.56746e9 −0.502919
\(839\) 1.22074e10 + 2.11438e10i 0.713601 + 1.23599i 0.963497 + 0.267720i \(0.0862702\pi\)
−0.249896 + 0.968273i \(0.580396\pi\)
\(840\) 0 0
\(841\) −2.40091e9 + 4.15849e9i −0.139184 + 0.241074i
\(842\) −2.67154e9 + 4.62724e9i −0.154230 + 0.267134i
\(843\) 0 0
\(844\) 4.97849e9 + 8.62300e9i 0.285036 + 0.493696i
\(845\) −1.17654e8 −0.00670822
\(846\) 0 0
\(847\) 2.31785e8 0.0131067
\(848\) 1.27336e9 + 2.20553e9i 0.0717078 + 0.124202i
\(849\) 0 0
\(850\) 4.12490e9 7.14454e9i 0.230381 0.399032i
\(851\) −3.99466e9 + 6.91895e9i −0.222191 + 0.384846i
\(852\) 0 0
\(853\) 1.05073e9 + 1.81991e9i 0.0579653 + 0.100399i 0.893552 0.448960i \(-0.148205\pi\)
−0.835587 + 0.549359i \(0.814872\pi\)
\(854\) −2.84385e10 −1.56244
\(855\) 0 0
\(856\) −9.70498e9 −0.528855
\(857\) 2.16795e9 + 3.75500e9i 0.117657 + 0.203787i 0.918839 0.394634i \(-0.129128\pi\)
−0.801182 + 0.598421i \(0.795795\pi\)
\(858\) 0 0
\(859\) −1.02072e10 + 1.76793e10i −0.549451 + 0.951677i 0.448861 + 0.893602i \(0.351830\pi\)
−0.998312 + 0.0580756i \(0.981504\pi\)
\(860\) −2.70532e8 + 4.68575e8i −0.0145035 + 0.0251209i
\(861\) 0 0
\(862\) 3.55306e9 + 6.15409e9i 0.188942 + 0.327257i
\(863\) 7.33916e9 0.388695 0.194347 0.980933i \(-0.437741\pi\)
0.194347 + 0.980933i \(0.437741\pi\)
\(864\) 0 0
\(865\) −1.21149e8 −0.00636451
\(866\) −4.16789e9 7.21900e9i −0.218074 0.377715i
\(867\) 0 0
\(868\) −6.39642e9 + 1.10789e10i −0.331985 + 0.575014i
\(869\) 4.53538e9 7.85551e9i 0.234447 0.406074i
\(870\) 0 0
\(871\) 1.24908e10 + 2.16348e10i 0.640513 + 1.10940i
\(872\) −6.82273e9 −0.348458
\(873\) 0 0
\(874\) −7.10325e9 −0.359888
\(875\) 1.26372e9 + 2.18883e9i 0.0637709 + 0.110455i
\(876\) 0 0
\(877\) −3.82404e9 + 6.62343e9i −0.191436 + 0.331577i −0.945726 0.324964i \(-0.894648\pi\)
0.754290 + 0.656541i \(0.227981\pi\)
\(878\) −1.08944e10 + 1.88696e10i −0.543215 + 0.940877i
\(879\) 0 0
\(880\) −1.02094e8 1.76833e8i −0.00505024 0.00874728i
\(881\) 2.38502e9 0.117511 0.0587553 0.998272i \(-0.481287\pi\)
0.0587553 + 0.998272i \(0.481287\pi\)
\(882\) 0 0
\(883\) −1.51552e10 −0.740797 −0.370399 0.928873i \(-0.620779\pi\)
−0.370399 + 0.928873i \(0.620779\pi\)
\(884\) 3.05924e9 + 5.29877e9i 0.148947 + 0.257983i
\(885\) 0 0
\(886\) −5.67464e9 + 9.82876e9i −0.274107 + 0.474767i
\(887\) 1.95358e10 3.38371e10i 0.939938 1.62802i 0.174357 0.984683i \(-0.444215\pi\)
0.765582 0.643339i \(-0.222451\pi\)
\(888\) 0 0
\(889\) −8.19387e9 1.41922e10i −0.391141 0.677475i
\(890\) 7.30898e8 0.0347529
\(891\) 0 0
\(892\) −7.93234e9 −0.374218
\(893\) −6.64251e9 1.15052e10i −0.312142 0.540645i
\(894\) 0 0
\(895\) 2.03094e8 3.51770e8i 0.00946928 0.0164013i
\(896\) −1.50939e9 + 2.61435e9i −0.0701010 + 0.121419i
\(897\) 0 0
\(898\) 1.51653e10 + 2.62671e10i 0.698850 + 1.21044i
\(899\) 2.06208e10 0.946557
\(900\) 0 0
\(901\) −8.22033e9 −0.374415
\(902\) −9.35938e8 1.62109e9i −0.0424643 0.0735504i
\(903\) 0 0
\(904\) −5.22925e9 + 9.05732e9i −0.235423 + 0.407765i
\(905\) −1.56390e8 + 2.70875e8i −0.00701356 + 0.0121478i
\(906\) 0 0
\(907\) 4.84063e9 + 8.38421e9i 0.215415 + 0.373110i 0.953401 0.301706i \(-0.0975562\pi\)
−0.737986 + 0.674816i \(0.764223\pi\)
\(908\) −8.81306e9 −0.390685
\(909\) 0 0
\(910\) −9.36482e8 −0.0411960
\(911\) −1.61408e9 2.79567e9i −0.0707312 0.122510i 0.828491 0.560003i \(-0.189200\pi\)
−0.899222 + 0.437493i \(0.855867\pi\)
\(912\) 0 0
\(913\) −2.27508e10 + 3.94056e10i −0.989349 + 1.71360i
\(914\) −7.49186e9 + 1.29763e10i −0.324547 + 0.562132i
\(915\) 0 0
\(916\) −7.52386e9 1.30317e10i −0.323450 0.560231i
\(917\) 7.60298e9 0.325605
\(918\) 0 0
\(919\) −2.75829e10 −1.17229 −0.586145 0.810206i \(-0.699355\pi\)
−0.586145 + 0.810206i \(0.699355\pi\)
\(920\) 1.89265e8 + 3.27817e8i 0.00801334 + 0.0138795i
\(921\) 0 0
\(922\) −2.18958e9 + 3.79246e9i −0.0920029 + 0.159354i
\(923\) 1.31631e10 2.27992e10i 0.551001 0.954362i
\(924\) 0 0
\(925\) −4.73964e9 8.20930e9i −0.196902 0.341044i
\(926\) −8.98221e9 −0.371745
\(927\) 0 0
\(928\) 4.86599e9 0.199872
\(929\) −1.30557e10 2.26132e10i −0.534251 0.925350i −0.999199 0.0400123i \(-0.987260\pi\)
0.464948 0.885338i \(-0.346073\pi\)
\(930\) 0 0
\(931\) −8.43170e9 + 1.46041e10i −0.342445 + 0.593133i
\(932\) 4.60925e9 7.98345e9i 0.186498 0.323024i
\(933\) 0 0
\(934\) −9.30447e9 1.61158e10i −0.373661 0.647199i
\(935\) 6.59081e8 0.0263693
\(936\) 0 0
\(937\) 2.33086e10 0.925608 0.462804 0.886461i \(-0.346843\pi\)
0.462804 + 0.886461i \(0.346843\pi\)
\(938\) −1.98924e10 3.44547e10i −0.787005 1.36313i
\(939\) 0 0
\(940\) −3.53977e8 + 6.13107e8i −0.0139004 + 0.0240762i
\(941\) −1.17469e10 + 2.03462e10i −0.459577 + 0.796011i −0.998939 0.0460632i \(-0.985332\pi\)
0.539361 + 0.842075i \(0.318666\pi\)
\(942\) 0 0
\(943\) 1.73507e9 + 3.00522e9i 0.0673791 + 0.116704i
\(944\) 3.33503e9 0.129032
\(945\) 0 0
\(946\) 2.66569e10 1.02374
\(947\) −1.67345e10 2.89850e10i −0.640306 1.10904i −0.985364 0.170462i \(-0.945474\pi\)
0.345058 0.938581i \(-0.387859\pi\)
\(948\) 0 0
\(949\) −2.00681e10 + 3.47590e10i −0.762210 + 1.32019i
\(950\) 4.21399e9 7.29884e9i 0.159463 0.276198i
\(951\) 0 0
\(952\) −4.87203e9 8.43860e9i −0.183012 0.316987i
\(953\) 3.61551e10 1.35315 0.676573 0.736375i \(-0.263464\pi\)
0.676573 + 0.736375i \(0.263464\pi\)
\(954\) 0 0
\(955\) −1.06419e9 −0.0395372
\(956\) −2.34044e9 4.05376e9i −0.0866352 0.150057i
\(957\) 0 0
\(958\) 7.07254e9 1.22500e10i 0.259894 0.450149i
\(959\) −3.52752e10 + 6.10984e10i −1.29153 + 2.23699i
\(960\) 0 0
\(961\) 4.11493e9 + 7.12726e9i 0.149565 + 0.259054i
\(962\) 7.03033e9 0.254603
\(963\) 0 0
\(964\) −7.86174e9 −0.282650
\(965\) 6.87280e8 + 1.19040e9i 0.0246200 + 0.0426431i
\(966\) 0 0
\(967\) 1.29346e10 2.24033e10i 0.460002 0.796746i −0.538959 0.842332i \(-0.681182\pi\)
0.998960 + 0.0455859i \(0.0145155\pi\)
\(968\) −4.12215e7 + 7.13977e7i −0.00146070 + 0.00253000i
\(969\) 0 0
\(970\) 5.97998e8 + 1.03576e9i 0.0210377 + 0.0364384i
\(971\) 2.99112e10 1.04850 0.524248 0.851565i \(-0.324346\pi\)
0.524248 + 0.851565i \(0.324346\pi\)
\(972\) 0 0
\(973\) −2.71764e10 −0.945794
\(974\) 7.89656e9 + 1.36772e10i 0.273830 + 0.474288i
\(975\) 0 0
\(976\) 5.05760e9 8.76002e9i 0.174129 0.301600i
\(977\) 1.47182e10 2.54927e10i 0.504921 0.874549i −0.495063 0.868857i \(-0.664855\pi\)
0.999984 0.00569161i \(-0.00181170\pi\)
\(978\) 0 0
\(979\) −1.80048e10 3.11852e10i −0.613265 1.06221i
\(980\) 8.98646e8 0.0304998
\(981\) 0 0
\(982\) −2.80304e10 −0.944582
\(983\) −2.48687e10 4.30739e10i −0.835057 1.44636i −0.893984 0.448099i \(-0.852101\pi\)
0.0589270 0.998262i \(-0.481232\pi\)
\(984\) 0 0
\(985\) 7.74689e8 1.34180e9i 0.0258286 0.0447364i
\(986\) −7.85323e9 + 1.36022e10i −0.260903 + 0.451897i
\(987\) 0 0
\(988\) 3.12531e9 + 5.41320e9i 0.103097 + 0.178568i
\(989\) −4.94173e10 −1.62440
\(990\) 0 0
\(991\) 3.46904e9 0.113227 0.0566137 0.998396i \(-0.481970\pi\)
0.0566137 + 0.998396i \(0.481970\pi\)
\(992\) −2.27512e9 3.94063e9i −0.0739969 0.128166i
\(993\) 0 0
\(994\) −2.09630e10 + 3.63091e10i −0.677021 + 1.17263i
\(995\) 9.14587e8 1.58411e9i 0.0294336 0.0509806i
\(996\) 0 0
\(997\) 1.71811e10 + 2.97586e10i 0.549058 + 0.950997i 0.998339 + 0.0576063i \(0.0183468\pi\)
−0.449281 + 0.893390i \(0.648320\pi\)
\(998\) 6.99723e9 0.222828
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.8.c.q.109.3 8
3.2 odd 2 162.8.c.r.109.2 8
9.2 odd 6 162.8.c.r.55.2 8
9.4 even 3 162.8.a.j.1.2 yes 4
9.5 odd 6 162.8.a.g.1.3 4
9.7 even 3 inner 162.8.c.q.55.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.8.a.g.1.3 4 9.5 odd 6
162.8.a.j.1.2 yes 4 9.4 even 3
162.8.c.q.55.3 8 9.7 even 3 inner
162.8.c.q.109.3 8 1.1 even 1 trivial
162.8.c.r.55.2 8 9.2 odd 6
162.8.c.r.109.2 8 3.2 odd 2