Properties

Label 162.8.a.j.1.2
Level $162$
Weight $8$
Character 162.1
Self dual yes
Analytic conductor $50.606$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,8,Mod(1,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,32,0,256,528] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.6063741284\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.43103376.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 383x^{2} + 384x + 18612 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{8} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(8.05976\) of defining polynomial
Character \(\chi\) \(=\) 162.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{2} +64.0000 q^{4} +11.2463 q^{5} +1439.47 q^{7} +512.000 q^{8} +89.9705 q^{10} +4432.63 q^{11} -7230.97 q^{13} +11515.8 q^{14} +4096.00 q^{16} +13221.1 q^{17} +13506.6 q^{19} +719.764 q^{20} +35461.0 q^{22} -65738.6 q^{23} -77998.5 q^{25} -57847.8 q^{26} +92126.0 q^{28} +148498. q^{29} +138862. q^{31} +32768.0 q^{32} +105769. q^{34} +16188.7 q^{35} -121532. q^{37} +108053. q^{38} +5758.11 q^{40} +52786.9 q^{41} +751724. q^{43} +283688. q^{44} -525909. q^{46} +983593. q^{47} +1.24853e6 q^{49} -623988. q^{50} -462782. q^{52} -621759. q^{53} +49850.7 q^{55} +737008. q^{56} +1.18798e6 q^{58} +814216. q^{59} -2.46953e6 q^{61} +1.11090e6 q^{62} +262144. q^{64} -81321.8 q^{65} +3.45482e6 q^{67} +846150. q^{68} +129510. q^{70} +3.64076e6 q^{71} -5.55060e6 q^{73} -972253. q^{74} +864424. q^{76} +6.38063e6 q^{77} -2.04636e6 q^{79} +46064.9 q^{80} +422295. q^{82} +1.02652e7 q^{83} +148689. q^{85} +6.01379e6 q^{86} +2.26951e6 q^{88} +8.12374e6 q^{89} -1.04088e7 q^{91} -4.20727e6 q^{92} +7.86874e6 q^{94} +151900. q^{95} -1.32932e7 q^{97} +9.98823e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 32 q^{2} + 256 q^{4} + 528 q^{5} + 560 q^{7} + 2048 q^{8} + 4224 q^{10} + 2160 q^{11} + 13460 q^{13} + 4480 q^{14} + 16384 q^{16} + 22560 q^{17} + 36704 q^{19} + 33792 q^{20} + 17280 q^{22} + 62640 q^{23}+ \cdots + 11595168 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 0.707107
\(3\) 0 0
\(4\) 64.0000 0.500000
\(5\) 11.2463 0.0402360 0.0201180 0.999798i \(-0.493596\pi\)
0.0201180 + 0.999798i \(0.493596\pi\)
\(6\) 0 0
\(7\) 1439.47 1.58620 0.793102 0.609088i \(-0.208465\pi\)
0.793102 + 0.609088i \(0.208465\pi\)
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) 89.9705 0.0284512
\(11\) 4432.63 1.00412 0.502061 0.864832i \(-0.332575\pi\)
0.502061 + 0.864832i \(0.332575\pi\)
\(12\) 0 0
\(13\) −7230.97 −0.912841 −0.456420 0.889764i \(-0.650869\pi\)
−0.456420 + 0.889764i \(0.650869\pi\)
\(14\) 11515.8 1.12162
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) 13221.1 0.652674 0.326337 0.945254i \(-0.394186\pi\)
0.326337 + 0.945254i \(0.394186\pi\)
\(18\) 0 0
\(19\) 13506.6 0.451761 0.225881 0.974155i \(-0.427474\pi\)
0.225881 + 0.974155i \(0.427474\pi\)
\(20\) 719.764 0.0201180
\(21\) 0 0
\(22\) 35461.0 0.710022
\(23\) −65738.6 −1.12661 −0.563304 0.826250i \(-0.690470\pi\)
−0.563304 + 0.826250i \(0.690470\pi\)
\(24\) 0 0
\(25\) −77998.5 −0.998381
\(26\) −57847.8 −0.645476
\(27\) 0 0
\(28\) 92126.0 0.793102
\(29\) 148498. 1.13065 0.565325 0.824868i \(-0.308751\pi\)
0.565325 + 0.824868i \(0.308751\pi\)
\(30\) 0 0
\(31\) 138862. 0.837180 0.418590 0.908175i \(-0.362525\pi\)
0.418590 + 0.908175i \(0.362525\pi\)
\(32\) 32768.0 0.176777
\(33\) 0 0
\(34\) 105769. 0.461510
\(35\) 16188.7 0.0638226
\(36\) 0 0
\(37\) −121532. −0.394442 −0.197221 0.980359i \(-0.563192\pi\)
−0.197221 + 0.980359i \(0.563192\pi\)
\(38\) 108053. 0.319444
\(39\) 0 0
\(40\) 5758.11 0.0142256
\(41\) 52786.9 0.119614 0.0598070 0.998210i \(-0.480951\pi\)
0.0598070 + 0.998210i \(0.480951\pi\)
\(42\) 0 0
\(43\) 751724. 1.44185 0.720923 0.693015i \(-0.243718\pi\)
0.720923 + 0.693015i \(0.243718\pi\)
\(44\) 283688. 0.502061
\(45\) 0 0
\(46\) −525909. −0.796633
\(47\) 983593. 1.38189 0.690944 0.722908i \(-0.257195\pi\)
0.690944 + 0.722908i \(0.257195\pi\)
\(48\) 0 0
\(49\) 1.24853e6 1.51605
\(50\) −623988. −0.705962
\(51\) 0 0
\(52\) −462782. −0.456420
\(53\) −621759. −0.573663 −0.286831 0.957981i \(-0.592602\pi\)
−0.286831 + 0.957981i \(0.592602\pi\)
\(54\) 0 0
\(55\) 49850.7 0.0404019
\(56\) 737008. 0.560808
\(57\) 0 0
\(58\) 1.18798e6 0.799490
\(59\) 814216. 0.516128 0.258064 0.966128i \(-0.416915\pi\)
0.258064 + 0.966128i \(0.416915\pi\)
\(60\) 0 0
\(61\) −2.46953e6 −1.39303 −0.696514 0.717543i \(-0.745267\pi\)
−0.696514 + 0.717543i \(0.745267\pi\)
\(62\) 1.11090e6 0.591975
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −81321.8 −0.0367291
\(66\) 0 0
\(67\) 3.45482e6 1.40334 0.701671 0.712502i \(-0.252438\pi\)
0.701671 + 0.712502i \(0.252438\pi\)
\(68\) 846150. 0.326337
\(69\) 0 0
\(70\) 129510. 0.0451294
\(71\) 3.64076e6 1.20722 0.603612 0.797278i \(-0.293728\pi\)
0.603612 + 0.797278i \(0.293728\pi\)
\(72\) 0 0
\(73\) −5.55060e6 −1.66997 −0.834987 0.550269i \(-0.814525\pi\)
−0.834987 + 0.550269i \(0.814525\pi\)
\(74\) −972253. −0.278913
\(75\) 0 0
\(76\) 864424. 0.225881
\(77\) 6.38063e6 1.59274
\(78\) 0 0
\(79\) −2.04636e6 −0.466969 −0.233484 0.972361i \(-0.575013\pi\)
−0.233484 + 0.972361i \(0.575013\pi\)
\(80\) 46064.9 0.0100590
\(81\) 0 0
\(82\) 422295. 0.0845799
\(83\) 1.02652e7 1.97057 0.985286 0.170911i \(-0.0546712\pi\)
0.985286 + 0.170911i \(0.0546712\pi\)
\(84\) 0 0
\(85\) 148689. 0.0262610
\(86\) 6.01379e6 1.01954
\(87\) 0 0
\(88\) 2.26951e6 0.355011
\(89\) 8.12374e6 1.22149 0.610747 0.791826i \(-0.290869\pi\)
0.610747 + 0.791826i \(0.290869\pi\)
\(90\) 0 0
\(91\) −1.04088e7 −1.44795
\(92\) −4.20727e6 −0.563304
\(93\) 0 0
\(94\) 7.86874e6 0.977142
\(95\) 151900. 0.0181771
\(96\) 0 0
\(97\) −1.32932e7 −1.47886 −0.739432 0.673231i \(-0.764906\pi\)
−0.739432 + 0.673231i \(0.764906\pi\)
\(98\) 9.98823e6 1.07201
\(99\) 0 0
\(100\) −4.99191e6 −0.499191
\(101\) −1.33665e7 −1.29090 −0.645452 0.763801i \(-0.723331\pi\)
−0.645452 + 0.763801i \(0.723331\pi\)
\(102\) 0 0
\(103\) 1.35323e7 1.22023 0.610114 0.792314i \(-0.291124\pi\)
0.610114 + 0.792314i \(0.291124\pi\)
\(104\) −3.70226e6 −0.322738
\(105\) 0 0
\(106\) −4.97407e6 −0.405641
\(107\) −1.89550e7 −1.49583 −0.747914 0.663796i \(-0.768944\pi\)
−0.747914 + 0.663796i \(0.768944\pi\)
\(108\) 0 0
\(109\) −1.33257e7 −0.985589 −0.492794 0.870146i \(-0.664025\pi\)
−0.492794 + 0.870146i \(0.664025\pi\)
\(110\) 398806. 0.0285685
\(111\) 0 0
\(112\) 5.89607e6 0.396551
\(113\) 2.04267e7 1.33176 0.665878 0.746061i \(-0.268057\pi\)
0.665878 + 0.746061i \(0.268057\pi\)
\(114\) 0 0
\(115\) −739317. −0.0453303
\(116\) 9.50388e6 0.565325
\(117\) 0 0
\(118\) 6.51373e6 0.364958
\(119\) 1.90314e7 1.03527
\(120\) 0 0
\(121\) 161021. 0.00826294
\(122\) −1.97562e7 −0.985020
\(123\) 0 0
\(124\) 8.88719e6 0.418590
\(125\) −1.75581e6 −0.0804069
\(126\) 0 0
\(127\) 1.13846e7 0.493178 0.246589 0.969120i \(-0.420690\pi\)
0.246589 + 0.969120i \(0.420690\pi\)
\(128\) 2.09715e6 0.0883883
\(129\) 0 0
\(130\) −650574. −0.0259714
\(131\) 5.28179e6 0.205273 0.102636 0.994719i \(-0.467272\pi\)
0.102636 + 0.994719i \(0.467272\pi\)
\(132\) 0 0
\(133\) 1.94424e7 0.716586
\(134\) 2.76385e7 0.992312
\(135\) 0 0
\(136\) 6.76920e6 0.230755
\(137\) 4.90114e7 1.62845 0.814226 0.580548i \(-0.197162\pi\)
0.814226 + 0.580548i \(0.197162\pi\)
\(138\) 0 0
\(139\) −1.88794e7 −0.596262 −0.298131 0.954525i \(-0.596363\pi\)
−0.298131 + 0.954525i \(0.596363\pi\)
\(140\) 1.03608e6 0.0319113
\(141\) 0 0
\(142\) 2.91261e7 0.853636
\(143\) −3.20522e7 −0.916604
\(144\) 0 0
\(145\) 1.67006e6 0.0454929
\(146\) −4.44048e7 −1.18085
\(147\) 0 0
\(148\) −7.77802e6 −0.197221
\(149\) −2.88497e7 −0.714480 −0.357240 0.934013i \(-0.616282\pi\)
−0.357240 + 0.934013i \(0.616282\pi\)
\(150\) 0 0
\(151\) −3.59533e7 −0.849804 −0.424902 0.905239i \(-0.639692\pi\)
−0.424902 + 0.905239i \(0.639692\pi\)
\(152\) 6.91539e6 0.159722
\(153\) 0 0
\(154\) 5.10451e7 1.12624
\(155\) 1.56169e6 0.0336848
\(156\) 0 0
\(157\) −5.78090e7 −1.19219 −0.596097 0.802913i \(-0.703283\pi\)
−0.596097 + 0.802913i \(0.703283\pi\)
\(158\) −1.63709e7 −0.330197
\(159\) 0 0
\(160\) 368519. 0.00711279
\(161\) −9.46287e7 −1.78703
\(162\) 0 0
\(163\) 3.23536e7 0.585148 0.292574 0.956243i \(-0.405488\pi\)
0.292574 + 0.956243i \(0.405488\pi\)
\(164\) 3.37836e6 0.0598070
\(165\) 0 0
\(166\) 8.21213e7 1.39341
\(167\) −8.67745e7 −1.44173 −0.720866 0.693075i \(-0.756256\pi\)
−0.720866 + 0.693075i \(0.756256\pi\)
\(168\) 0 0
\(169\) −1.04615e7 −0.166722
\(170\) 1.18951e6 0.0185693
\(171\) 0 0
\(172\) 4.81103e7 0.720923
\(173\) −1.07724e7 −0.158179 −0.0790897 0.996868i \(-0.525201\pi\)
−0.0790897 + 0.996868i \(0.525201\pi\)
\(174\) 0 0
\(175\) −1.12276e8 −1.58364
\(176\) 1.81560e7 0.251031
\(177\) 0 0
\(178\) 6.49900e7 0.863726
\(179\) −3.61175e7 −0.470687 −0.235343 0.971912i \(-0.575621\pi\)
−0.235343 + 0.971912i \(0.575621\pi\)
\(180\) 0 0
\(181\) 2.78118e7 0.348621 0.174310 0.984691i \(-0.444230\pi\)
0.174310 + 0.984691i \(0.444230\pi\)
\(182\) −8.32701e7 −1.02386
\(183\) 0 0
\(184\) −3.36582e7 −0.398316
\(185\) −1.36678e6 −0.0158708
\(186\) 0 0
\(187\) 5.86042e7 0.655365
\(188\) 6.29499e7 0.690944
\(189\) 0 0
\(190\) 1.21520e6 0.0128531
\(191\) −9.46254e7 −0.982632 −0.491316 0.870981i \(-0.663484\pi\)
−0.491316 + 0.870981i \(0.663484\pi\)
\(192\) 0 0
\(193\) −1.22223e8 −1.22378 −0.611889 0.790944i \(-0.709590\pi\)
−0.611889 + 0.790944i \(0.709590\pi\)
\(194\) −1.06346e8 −1.04572
\(195\) 0 0
\(196\) 7.99058e7 0.758023
\(197\) −1.37768e8 −1.28385 −0.641926 0.766766i \(-0.721864\pi\)
−0.641926 + 0.766766i \(0.721864\pi\)
\(198\) 0 0
\(199\) −1.62646e8 −1.46305 −0.731524 0.681815i \(-0.761191\pi\)
−0.731524 + 0.681815i \(0.761191\pi\)
\(200\) −3.99352e7 −0.352981
\(201\) 0 0
\(202\) −1.06932e8 −0.912807
\(203\) 2.13758e8 1.79344
\(204\) 0 0
\(205\) 593658. 0.00481280
\(206\) 1.08258e8 0.862831
\(207\) 0 0
\(208\) −2.96181e7 −0.228210
\(209\) 5.98698e7 0.453624
\(210\) 0 0
\(211\) −1.55578e8 −1.14014 −0.570071 0.821595i \(-0.693084\pi\)
−0.570071 + 0.821595i \(0.693084\pi\)
\(212\) −3.97926e7 −0.286831
\(213\) 0 0
\(214\) −1.51640e8 −1.05771
\(215\) 8.45413e6 0.0580142
\(216\) 0 0
\(217\) 1.99888e8 1.32794
\(218\) −1.06605e8 −0.696917
\(219\) 0 0
\(220\) 3.19045e6 0.0202010
\(221\) −9.56014e7 −0.595787
\(222\) 0 0
\(223\) −1.23943e8 −0.748435 −0.374218 0.927341i \(-0.622089\pi\)
−0.374218 + 0.927341i \(0.622089\pi\)
\(224\) 4.71685e7 0.280404
\(225\) 0 0
\(226\) 1.63414e8 0.941694
\(227\) −1.37704e8 −0.781369 −0.390685 0.920525i \(-0.627762\pi\)
−0.390685 + 0.920525i \(0.627762\pi\)
\(228\) 0 0
\(229\) 2.35121e8 1.29380 0.646899 0.762575i \(-0.276065\pi\)
0.646899 + 0.762575i \(0.276065\pi\)
\(230\) −5.91454e6 −0.0320533
\(231\) 0 0
\(232\) 7.60310e7 0.399745
\(233\) −1.44039e8 −0.745992 −0.372996 0.927833i \(-0.621670\pi\)
−0.372996 + 0.927833i \(0.621670\pi\)
\(234\) 0 0
\(235\) 1.10618e7 0.0556017
\(236\) 5.21098e7 0.258064
\(237\) 0 0
\(238\) 1.52251e8 0.732050
\(239\) 7.31386e7 0.346541 0.173270 0.984874i \(-0.444567\pi\)
0.173270 + 0.984874i \(0.444567\pi\)
\(240\) 0 0
\(241\) −1.22840e8 −0.565300 −0.282650 0.959223i \(-0.591214\pi\)
−0.282650 + 0.959223i \(0.591214\pi\)
\(242\) 1.28817e6 0.00584278
\(243\) 0 0
\(244\) −1.58050e8 −0.696514
\(245\) 1.40413e7 0.0609997
\(246\) 0 0
\(247\) −9.76660e7 −0.412386
\(248\) 7.10975e7 0.295988
\(249\) 0 0
\(250\) −1.40465e7 −0.0568563
\(251\) 7.30348e7 0.291522 0.145761 0.989320i \(-0.453437\pi\)
0.145761 + 0.989320i \(0.453437\pi\)
\(252\) 0 0
\(253\) −2.91395e8 −1.13125
\(254\) 9.10766e7 0.348729
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) 1.33996e8 0.492408 0.246204 0.969218i \(-0.420817\pi\)
0.246204 + 0.969218i \(0.420817\pi\)
\(258\) 0 0
\(259\) −1.74941e8 −0.625666
\(260\) −5.20460e6 −0.0183646
\(261\) 0 0
\(262\) 4.22543e7 0.145150
\(263\) 3.80130e8 1.28851 0.644253 0.764812i \(-0.277168\pi\)
0.644253 + 0.764812i \(0.277168\pi\)
\(264\) 0 0
\(265\) −6.99250e6 −0.0230819
\(266\) 1.55539e8 0.506703
\(267\) 0 0
\(268\) 2.21108e8 0.701671
\(269\) 5.57685e8 1.74685 0.873426 0.486958i \(-0.161893\pi\)
0.873426 + 0.486958i \(0.161893\pi\)
\(270\) 0 0
\(271\) −9.65793e7 −0.294776 −0.147388 0.989079i \(-0.547087\pi\)
−0.147388 + 0.989079i \(0.547087\pi\)
\(272\) 5.41536e7 0.163168
\(273\) 0 0
\(274\) 3.92091e8 1.15149
\(275\) −3.45738e8 −1.00250
\(276\) 0 0
\(277\) 5.65800e8 1.59950 0.799749 0.600334i \(-0.204966\pi\)
0.799749 + 0.600334i \(0.204966\pi\)
\(278\) −1.51035e8 −0.421621
\(279\) 0 0
\(280\) 8.28863e6 0.0225647
\(281\) 3.99550e8 1.07423 0.537117 0.843508i \(-0.319513\pi\)
0.537117 + 0.843508i \(0.319513\pi\)
\(282\) 0 0
\(283\) 6.78723e8 1.78008 0.890040 0.455882i \(-0.150676\pi\)
0.890040 + 0.455882i \(0.150676\pi\)
\(284\) 2.33009e8 0.603612
\(285\) 0 0
\(286\) −2.56418e8 −0.648137
\(287\) 7.59851e7 0.189732
\(288\) 0 0
\(289\) −2.35541e8 −0.574017
\(290\) 1.33605e7 0.0321683
\(291\) 0 0
\(292\) −3.55238e8 −0.834987
\(293\) 1.11739e8 0.259518 0.129759 0.991546i \(-0.458580\pi\)
0.129759 + 0.991546i \(0.458580\pi\)
\(294\) 0 0
\(295\) 9.15693e6 0.0207670
\(296\) −6.22242e7 −0.139456
\(297\) 0 0
\(298\) −2.30798e8 −0.505214
\(299\) 4.75354e8 1.02841
\(300\) 0 0
\(301\) 1.08208e9 2.28706
\(302\) −2.87626e8 −0.600903
\(303\) 0 0
\(304\) 5.53231e7 0.112940
\(305\) −2.77731e7 −0.0560500
\(306\) 0 0
\(307\) −1.53022e8 −0.301835 −0.150917 0.988546i \(-0.548223\pi\)
−0.150917 + 0.988546i \(0.548223\pi\)
\(308\) 4.08360e8 0.796372
\(309\) 0 0
\(310\) 1.24935e7 0.0238187
\(311\) −2.28368e8 −0.430501 −0.215250 0.976559i \(-0.569057\pi\)
−0.215250 + 0.976559i \(0.569057\pi\)
\(312\) 0 0
\(313\) −7.02744e8 −1.29536 −0.647682 0.761910i \(-0.724262\pi\)
−0.647682 + 0.761910i \(0.724262\pi\)
\(314\) −4.62472e8 −0.843008
\(315\) 0 0
\(316\) −1.30967e8 −0.233484
\(317\) −1.04118e9 −1.83577 −0.917883 0.396852i \(-0.870103\pi\)
−0.917883 + 0.396852i \(0.870103\pi\)
\(318\) 0 0
\(319\) 6.58237e8 1.13531
\(320\) 2.94815e6 0.00502951
\(321\) 0 0
\(322\) −7.57030e8 −1.26362
\(323\) 1.78572e8 0.294853
\(324\) 0 0
\(325\) 5.64005e8 0.911363
\(326\) 2.58829e8 0.413762
\(327\) 0 0
\(328\) 2.70269e7 0.0422900
\(329\) 1.41585e9 2.19196
\(330\) 0 0
\(331\) 3.21275e8 0.486944 0.243472 0.969908i \(-0.421714\pi\)
0.243472 + 0.969908i \(0.421714\pi\)
\(332\) 6.56970e8 0.985286
\(333\) 0 0
\(334\) −6.94196e8 −1.01946
\(335\) 3.88540e7 0.0564649
\(336\) 0 0
\(337\) −9.13646e8 −1.30039 −0.650194 0.759768i \(-0.725313\pi\)
−0.650194 + 0.759768i \(0.725313\pi\)
\(338\) −8.36923e7 −0.117890
\(339\) 0 0
\(340\) 9.51607e6 0.0131305
\(341\) 6.15525e8 0.840631
\(342\) 0 0
\(343\) 6.11754e8 0.818554
\(344\) 3.84883e8 0.509770
\(345\) 0 0
\(346\) −8.61789e7 −0.111850
\(347\) −5.97984e8 −0.768310 −0.384155 0.923269i \(-0.625507\pi\)
−0.384155 + 0.923269i \(0.625507\pi\)
\(348\) 0 0
\(349\) 6.50546e8 0.819199 0.409599 0.912265i \(-0.365668\pi\)
0.409599 + 0.912265i \(0.365668\pi\)
\(350\) −8.98212e8 −1.11980
\(351\) 0 0
\(352\) 1.45248e8 0.177506
\(353\) −6.17246e7 −0.0746873 −0.0373437 0.999302i \(-0.511890\pi\)
−0.0373437 + 0.999302i \(0.511890\pi\)
\(354\) 0 0
\(355\) 4.09451e7 0.0485739
\(356\) 5.19920e8 0.610747
\(357\) 0 0
\(358\) −2.88940e8 −0.332826
\(359\) 1.70542e9 1.94537 0.972683 0.232137i \(-0.0745719\pi\)
0.972683 + 0.232137i \(0.0745719\pi\)
\(360\) 0 0
\(361\) −7.11443e8 −0.795912
\(362\) 2.22494e8 0.246512
\(363\) 0 0
\(364\) −6.66161e8 −0.723976
\(365\) −6.24238e7 −0.0671932
\(366\) 0 0
\(367\) 2.43018e8 0.256630 0.128315 0.991733i \(-0.459043\pi\)
0.128315 + 0.991733i \(0.459043\pi\)
\(368\) −2.69265e8 −0.281652
\(369\) 0 0
\(370\) −1.09343e7 −0.0112223
\(371\) −8.95003e8 −0.909946
\(372\) 0 0
\(373\) −6.58541e8 −0.657055 −0.328528 0.944494i \(-0.606552\pi\)
−0.328528 + 0.944494i \(0.606552\pi\)
\(374\) 4.68834e8 0.463413
\(375\) 0 0
\(376\) 5.03599e8 0.488571
\(377\) −1.07379e9 −1.03210
\(378\) 0 0
\(379\) 1.55665e7 0.0146877 0.00734387 0.999973i \(-0.497662\pi\)
0.00734387 + 0.999973i \(0.497662\pi\)
\(380\) 9.72158e6 0.00908854
\(381\) 0 0
\(382\) −7.57003e8 −0.694826
\(383\) −8.67880e8 −0.789340 −0.394670 0.918823i \(-0.629141\pi\)
−0.394670 + 0.918823i \(0.629141\pi\)
\(384\) 0 0
\(385\) 7.17586e7 0.0640857
\(386\) −9.77784e8 −0.865342
\(387\) 0 0
\(388\) −8.50765e8 −0.739432
\(389\) −1.78512e9 −1.53760 −0.768799 0.639490i \(-0.779145\pi\)
−0.768799 + 0.639490i \(0.779145\pi\)
\(390\) 0 0
\(391\) −8.69136e8 −0.735308
\(392\) 6.39247e8 0.536003
\(393\) 0 0
\(394\) −1.10214e9 −0.907821
\(395\) −2.30140e7 −0.0187890
\(396\) 0 0
\(397\) 1.49554e9 1.19958 0.599792 0.800156i \(-0.295250\pi\)
0.599792 + 0.800156i \(0.295250\pi\)
\(398\) −1.30117e9 −1.03453
\(399\) 0 0
\(400\) −3.19482e8 −0.249595
\(401\) −1.04217e9 −0.807109 −0.403554 0.914956i \(-0.632225\pi\)
−0.403554 + 0.914956i \(0.632225\pi\)
\(402\) 0 0
\(403\) −1.00411e9 −0.764212
\(404\) −8.55458e8 −0.645452
\(405\) 0 0
\(406\) 1.71007e9 1.26815
\(407\) −5.38704e8 −0.396068
\(408\) 0 0
\(409\) 1.38845e9 1.00345 0.501727 0.865026i \(-0.332698\pi\)
0.501727 + 0.865026i \(0.332698\pi\)
\(410\) 4.74926e6 0.00340316
\(411\) 0 0
\(412\) 8.66066e8 0.610114
\(413\) 1.17204e9 0.818685
\(414\) 0 0
\(415\) 1.15445e8 0.0792880
\(416\) −2.36945e8 −0.161369
\(417\) 0 0
\(418\) 4.78959e8 0.320761
\(419\) −1.07093e9 −0.711235 −0.355617 0.934632i \(-0.615729\pi\)
−0.355617 + 0.934632i \(0.615729\pi\)
\(420\) 0 0
\(421\) 6.67885e8 0.436229 0.218114 0.975923i \(-0.430009\pi\)
0.218114 + 0.975923i \(0.430009\pi\)
\(422\) −1.24462e9 −0.806203
\(423\) 0 0
\(424\) −3.18341e8 −0.202820
\(425\) −1.03123e9 −0.651617
\(426\) 0 0
\(427\) −3.55481e9 −2.20963
\(428\) −1.21312e9 −0.747914
\(429\) 0 0
\(430\) 6.76330e7 0.0410222
\(431\) −8.88266e8 −0.534408 −0.267204 0.963640i \(-0.586100\pi\)
−0.267204 + 0.963640i \(0.586100\pi\)
\(432\) 0 0
\(433\) 1.04197e9 0.616806 0.308403 0.951256i \(-0.400205\pi\)
0.308403 + 0.951256i \(0.400205\pi\)
\(434\) 1.59910e9 0.938994
\(435\) 0 0
\(436\) −8.52842e8 −0.492794
\(437\) −8.87906e8 −0.508958
\(438\) 0 0
\(439\) 2.72360e9 1.53645 0.768223 0.640183i \(-0.221141\pi\)
0.768223 + 0.640183i \(0.221141\pi\)
\(440\) 2.55236e7 0.0142842
\(441\) 0 0
\(442\) −7.64811e8 −0.421285
\(443\) 1.41866e9 0.775292 0.387646 0.921808i \(-0.373288\pi\)
0.387646 + 0.921808i \(0.373288\pi\)
\(444\) 0 0
\(445\) 9.13622e7 0.0491481
\(446\) −9.91543e8 −0.529224
\(447\) 0 0
\(448\) 3.77348e8 0.198276
\(449\) −3.79133e9 −1.97665 −0.988324 0.152368i \(-0.951310\pi\)
−0.988324 + 0.152368i \(0.951310\pi\)
\(450\) 0 0
\(451\) 2.33984e8 0.120107
\(452\) 1.30731e9 0.665878
\(453\) 0 0
\(454\) −1.10163e9 −0.552511
\(455\) −1.17060e8 −0.0582599
\(456\) 0 0
\(457\) 1.87296e9 0.917958 0.458979 0.888447i \(-0.348215\pi\)
0.458979 + 0.888447i \(0.348215\pi\)
\(458\) 1.88097e9 0.914854
\(459\) 0 0
\(460\) −4.73163e7 −0.0226651
\(461\) 5.47394e8 0.260224 0.130112 0.991499i \(-0.458466\pi\)
0.130112 + 0.991499i \(0.458466\pi\)
\(462\) 0 0
\(463\) −1.12278e9 −0.525726 −0.262863 0.964833i \(-0.584667\pi\)
−0.262863 + 0.964833i \(0.584667\pi\)
\(464\) 6.08248e8 0.282662
\(465\) 0 0
\(466\) −1.15231e9 −0.527496
\(467\) 2.32612e9 1.05687 0.528436 0.848973i \(-0.322779\pi\)
0.528436 + 0.848973i \(0.322779\pi\)
\(468\) 0 0
\(469\) 4.97310e9 2.22599
\(470\) 8.84943e7 0.0393163
\(471\) 0 0
\(472\) 4.16879e8 0.182479
\(473\) 3.33211e9 1.44779
\(474\) 0 0
\(475\) −1.05350e9 −0.451030
\(476\) 1.21801e9 0.517637
\(477\) 0 0
\(478\) 5.85109e8 0.245041
\(479\) −1.76813e9 −0.735091 −0.367545 0.930006i \(-0.619802\pi\)
−0.367545 + 0.930006i \(0.619802\pi\)
\(480\) 0 0
\(481\) 8.78792e8 0.360063
\(482\) −9.82718e8 −0.399728
\(483\) 0 0
\(484\) 1.03054e7 0.00413147
\(485\) −1.49500e8 −0.0595037
\(486\) 0 0
\(487\) −1.97414e9 −0.774509 −0.387254 0.921973i \(-0.626577\pi\)
−0.387254 + 0.921973i \(0.626577\pi\)
\(488\) −1.26440e9 −0.492510
\(489\) 0 0
\(490\) 1.12331e8 0.0431333
\(491\) −3.50381e9 −1.33584 −0.667920 0.744233i \(-0.732815\pi\)
−0.667920 + 0.744233i \(0.732815\pi\)
\(492\) 0 0
\(493\) 1.96331e9 0.737945
\(494\) −7.81328e8 −0.291601
\(495\) 0 0
\(496\) 5.68780e8 0.209295
\(497\) 5.24076e9 1.91490
\(498\) 0 0
\(499\) 8.74654e8 0.315126 0.157563 0.987509i \(-0.449636\pi\)
0.157563 + 0.987509i \(0.449636\pi\)
\(500\) −1.12372e8 −0.0402035
\(501\) 0 0
\(502\) 5.84279e8 0.206137
\(503\) −2.61478e9 −0.916111 −0.458055 0.888924i \(-0.651454\pi\)
−0.458055 + 0.888924i \(0.651454\pi\)
\(504\) 0 0
\(505\) −1.50324e8 −0.0519409
\(506\) −2.33116e9 −0.799917
\(507\) 0 0
\(508\) 7.28612e8 0.246589
\(509\) 8.52572e8 0.286562 0.143281 0.989682i \(-0.454235\pi\)
0.143281 + 0.989682i \(0.454235\pi\)
\(510\) 0 0
\(511\) −7.98992e9 −2.64892
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) 1.07197e9 0.348185
\(515\) 1.52188e8 0.0490971
\(516\) 0 0
\(517\) 4.35990e9 1.38759
\(518\) −1.39953e9 −0.442412
\(519\) 0 0
\(520\) −4.16368e7 −0.0129857
\(521\) −2.66940e9 −0.826954 −0.413477 0.910515i \(-0.635686\pi\)
−0.413477 + 0.910515i \(0.635686\pi\)
\(522\) 0 0
\(523\) −4.41770e9 −1.35033 −0.675165 0.737667i \(-0.735928\pi\)
−0.675165 + 0.737667i \(0.735928\pi\)
\(524\) 3.38035e8 0.102636
\(525\) 0 0
\(526\) 3.04104e9 0.911112
\(527\) 1.83591e9 0.546405
\(528\) 0 0
\(529\) 9.16739e8 0.269247
\(530\) −5.59400e7 −0.0163214
\(531\) 0 0
\(532\) 1.24431e9 0.358293
\(533\) −3.81700e8 −0.109189
\(534\) 0 0
\(535\) −2.13174e8 −0.0601862
\(536\) 1.76887e9 0.496156
\(537\) 0 0
\(538\) 4.46148e9 1.23521
\(539\) 5.53426e9 1.52230
\(540\) 0 0
\(541\) −3.86240e9 −1.04874 −0.524368 0.851492i \(-0.675699\pi\)
−0.524368 + 0.851492i \(0.675699\pi\)
\(542\) −7.72635e8 −0.208438
\(543\) 0 0
\(544\) 4.33229e8 0.115378
\(545\) −1.49865e8 −0.0396562
\(546\) 0 0
\(547\) −2.16921e9 −0.566692 −0.283346 0.959018i \(-0.591444\pi\)
−0.283346 + 0.959018i \(0.591444\pi\)
\(548\) 3.13673e9 0.814226
\(549\) 0 0
\(550\) −2.76591e9 −0.708873
\(551\) 2.00571e9 0.510784
\(552\) 0 0
\(553\) −2.94568e9 −0.740708
\(554\) 4.52640e9 1.13102
\(555\) 0 0
\(556\) −1.20828e9 −0.298131
\(557\) 2.25645e8 0.0553265 0.0276632 0.999617i \(-0.491193\pi\)
0.0276632 + 0.999617i \(0.491193\pi\)
\(558\) 0 0
\(559\) −5.43570e9 −1.31618
\(560\) 6.63090e7 0.0159557
\(561\) 0 0
\(562\) 3.19640e9 0.759598
\(563\) 7.80802e8 0.184400 0.0922001 0.995740i \(-0.470610\pi\)
0.0922001 + 0.995740i \(0.470610\pi\)
\(564\) 0 0
\(565\) 2.29726e8 0.0535846
\(566\) 5.42978e9 1.25871
\(567\) 0 0
\(568\) 1.86407e9 0.426818
\(569\) −6.69214e8 −0.152290 −0.0761452 0.997097i \(-0.524261\pi\)
−0.0761452 + 0.997097i \(0.524261\pi\)
\(570\) 0 0
\(571\) −1.33652e9 −0.300435 −0.150217 0.988653i \(-0.547997\pi\)
−0.150217 + 0.988653i \(0.547997\pi\)
\(572\) −2.05134e9 −0.458302
\(573\) 0 0
\(574\) 6.07880e8 0.134161
\(575\) 5.12751e9 1.12478
\(576\) 0 0
\(577\) −7.13624e9 −1.54651 −0.773257 0.634092i \(-0.781374\pi\)
−0.773257 + 0.634092i \(0.781374\pi\)
\(578\) −1.88433e9 −0.405891
\(579\) 0 0
\(580\) 1.06884e8 0.0227464
\(581\) 1.47764e10 3.12573
\(582\) 0 0
\(583\) −2.75603e9 −0.576028
\(584\) −2.84191e9 −0.590425
\(585\) 0 0
\(586\) 8.93912e8 0.183507
\(587\) 2.85470e9 0.582542 0.291271 0.956641i \(-0.405922\pi\)
0.291271 + 0.956641i \(0.405922\pi\)
\(588\) 0 0
\(589\) 1.87556e9 0.378205
\(590\) 7.32555e7 0.0146845
\(591\) 0 0
\(592\) −4.97793e8 −0.0986105
\(593\) −6.55017e9 −1.28991 −0.644957 0.764219i \(-0.723125\pi\)
−0.644957 + 0.764219i \(0.723125\pi\)
\(594\) 0 0
\(595\) 2.14033e8 0.0416553
\(596\) −1.84638e9 −0.357240
\(597\) 0 0
\(598\) 3.80283e9 0.727199
\(599\) −7.51415e9 −1.42852 −0.714259 0.699881i \(-0.753236\pi\)
−0.714259 + 0.699881i \(0.753236\pi\)
\(600\) 0 0
\(601\) −3.40742e9 −0.640274 −0.320137 0.947371i \(-0.603729\pi\)
−0.320137 + 0.947371i \(0.603729\pi\)
\(602\) 8.65667e9 1.61720
\(603\) 0 0
\(604\) −2.30101e9 −0.424902
\(605\) 1.81090e6 0.000332468 0
\(606\) 0 0
\(607\) 4.94302e9 0.897081 0.448540 0.893763i \(-0.351944\pi\)
0.448540 + 0.893763i \(0.351944\pi\)
\(608\) 4.42585e8 0.0798609
\(609\) 0 0
\(610\) −2.22185e8 −0.0396333
\(611\) −7.11233e9 −1.26144
\(612\) 0 0
\(613\) 4.05250e9 0.710577 0.355288 0.934757i \(-0.384383\pi\)
0.355288 + 0.934757i \(0.384383\pi\)
\(614\) −1.22417e9 −0.213429
\(615\) 0 0
\(616\) 3.26688e9 0.563120
\(617\) 6.15589e9 1.05510 0.527549 0.849525i \(-0.323111\pi\)
0.527549 + 0.849525i \(0.323111\pi\)
\(618\) 0 0
\(619\) 3.64125e8 0.0617068 0.0308534 0.999524i \(-0.490177\pi\)
0.0308534 + 0.999524i \(0.490177\pi\)
\(620\) 9.99482e7 0.0168424
\(621\) 0 0
\(622\) −1.82694e9 −0.304410
\(623\) 1.16939e10 1.93754
\(624\) 0 0
\(625\) 6.07389e9 0.995146
\(626\) −5.62195e9 −0.915961
\(627\) 0 0
\(628\) −3.69978e9 −0.596097
\(629\) −1.60678e9 −0.257442
\(630\) 0 0
\(631\) 3.22087e9 0.510353 0.255177 0.966894i \(-0.417866\pi\)
0.255177 + 0.966894i \(0.417866\pi\)
\(632\) −1.04774e9 −0.165098
\(633\) 0 0
\(634\) −8.32942e9 −1.29808
\(635\) 1.28034e8 0.0198435
\(636\) 0 0
\(637\) −9.02808e9 −1.38391
\(638\) 5.26590e9 0.802786
\(639\) 0 0
\(640\) 2.35852e7 0.00355640
\(641\) −1.24441e10 −1.86621 −0.933106 0.359603i \(-0.882912\pi\)
−0.933106 + 0.359603i \(0.882912\pi\)
\(642\) 0 0
\(643\) −4.83009e8 −0.0716502 −0.0358251 0.999358i \(-0.511406\pi\)
−0.0358251 + 0.999358i \(0.511406\pi\)
\(644\) −6.05624e9 −0.893516
\(645\) 0 0
\(646\) 1.42858e9 0.208492
\(647\) 4.60241e9 0.668068 0.334034 0.942561i \(-0.391590\pi\)
0.334034 + 0.942561i \(0.391590\pi\)
\(648\) 0 0
\(649\) 3.60912e9 0.518256
\(650\) 4.51204e9 0.644431
\(651\) 0 0
\(652\) 2.07063e9 0.292574
\(653\) 5.68364e9 0.798787 0.399393 0.916780i \(-0.369221\pi\)
0.399393 + 0.916780i \(0.369221\pi\)
\(654\) 0 0
\(655\) 5.94007e7 0.00825937
\(656\) 2.16215e8 0.0299035
\(657\) 0 0
\(658\) 1.13268e10 1.54995
\(659\) 4.51142e9 0.614065 0.307032 0.951699i \(-0.400664\pi\)
0.307032 + 0.951699i \(0.400664\pi\)
\(660\) 0 0
\(661\) 9.76185e8 0.131470 0.0657351 0.997837i \(-0.479061\pi\)
0.0657351 + 0.997837i \(0.479061\pi\)
\(662\) 2.57020e9 0.344322
\(663\) 0 0
\(664\) 5.25576e9 0.696703
\(665\) 2.18655e8 0.0288326
\(666\) 0 0
\(667\) −9.76206e9 −1.27380
\(668\) −5.55357e9 −0.720866
\(669\) 0 0
\(670\) 3.10832e8 0.0399267
\(671\) −1.09465e10 −1.39877
\(672\) 0 0
\(673\) 1.25246e10 1.58384 0.791921 0.610623i \(-0.209081\pi\)
0.791921 + 0.610623i \(0.209081\pi\)
\(674\) −7.30917e9 −0.919514
\(675\) 0 0
\(676\) −6.69539e8 −0.0833608
\(677\) 1.04491e10 1.29425 0.647126 0.762383i \(-0.275971\pi\)
0.647126 + 0.762383i \(0.275971\pi\)
\(678\) 0 0
\(679\) −1.91352e10 −2.34578
\(680\) 7.61286e7 0.00928467
\(681\) 0 0
\(682\) 4.92420e9 0.594416
\(683\) 1.12280e9 0.134844 0.0674218 0.997725i \(-0.478523\pi\)
0.0674218 + 0.997725i \(0.478523\pi\)
\(684\) 0 0
\(685\) 5.51197e8 0.0655225
\(686\) 4.89403e9 0.578805
\(687\) 0 0
\(688\) 3.07906e9 0.360462
\(689\) 4.49592e9 0.523663
\(690\) 0 0
\(691\) 7.46043e9 0.860183 0.430091 0.902785i \(-0.358481\pi\)
0.430091 + 0.902785i \(0.358481\pi\)
\(692\) −6.89431e8 −0.0790897
\(693\) 0 0
\(694\) −4.78387e9 −0.543277
\(695\) −2.12324e8 −0.0239912
\(696\) 0 0
\(697\) 6.97900e8 0.0780690
\(698\) 5.20437e9 0.579261
\(699\) 0 0
\(700\) −7.18569e9 −0.791818
\(701\) −1.79013e10 −1.96278 −0.981392 0.192014i \(-0.938498\pi\)
−0.981392 + 0.192014i \(0.938498\pi\)
\(702\) 0 0
\(703\) −1.64148e9 −0.178194
\(704\) 1.16199e9 0.125515
\(705\) 0 0
\(706\) −4.93797e8 −0.0528119
\(707\) −1.92407e10 −2.04764
\(708\) 0 0
\(709\) 7.55041e9 0.795626 0.397813 0.917467i \(-0.369769\pi\)
0.397813 + 0.917467i \(0.369769\pi\)
\(710\) 3.27561e8 0.0343469
\(711\) 0 0
\(712\) 4.15936e9 0.431863
\(713\) −9.12862e9 −0.943174
\(714\) 0 0
\(715\) −3.60469e8 −0.0368805
\(716\) −2.31152e9 −0.235343
\(717\) 0 0
\(718\) 1.36434e10 1.37558
\(719\) −3.79868e9 −0.381137 −0.190569 0.981674i \(-0.561033\pi\)
−0.190569 + 0.981674i \(0.561033\pi\)
\(720\) 0 0
\(721\) 1.94793e10 1.93553
\(722\) −5.69154e9 −0.562795
\(723\) 0 0
\(724\) 1.77995e9 0.174310
\(725\) −1.15826e10 −1.12882
\(726\) 0 0
\(727\) −3.93525e9 −0.379841 −0.189920 0.981799i \(-0.560823\pi\)
−0.189920 + 0.981799i \(0.560823\pi\)
\(728\) −5.32929e9 −0.511928
\(729\) 0 0
\(730\) −4.99390e8 −0.0475127
\(731\) 9.93862e9 0.941055
\(732\) 0 0
\(733\) −1.13491e10 −1.06439 −0.532193 0.846623i \(-0.678632\pi\)
−0.532193 + 0.846623i \(0.678632\pi\)
\(734\) 1.94415e9 0.181465
\(735\) 0 0
\(736\) −2.15412e9 −0.199158
\(737\) 1.53139e10 1.40913
\(738\) 0 0
\(739\) 1.61420e10 1.47130 0.735652 0.677359i \(-0.236876\pi\)
0.735652 + 0.677359i \(0.236876\pi\)
\(740\) −8.74741e7 −0.00793539
\(741\) 0 0
\(742\) −7.16002e9 −0.643429
\(743\) −5.93148e9 −0.530521 −0.265260 0.964177i \(-0.585458\pi\)
−0.265260 + 0.964177i \(0.585458\pi\)
\(744\) 0 0
\(745\) −3.24453e8 −0.0287478
\(746\) −5.26833e9 −0.464608
\(747\) 0 0
\(748\) 3.75067e9 0.327682
\(749\) −2.72852e10 −2.37269
\(750\) 0 0
\(751\) −3.34926e9 −0.288542 −0.144271 0.989538i \(-0.546084\pi\)
−0.144271 + 0.989538i \(0.546084\pi\)
\(752\) 4.02880e9 0.345472
\(753\) 0 0
\(754\) −8.59029e9 −0.729807
\(755\) −4.04342e8 −0.0341928
\(756\) 0 0
\(757\) −3.71611e9 −0.311353 −0.155677 0.987808i \(-0.549756\pi\)
−0.155677 + 0.987808i \(0.549756\pi\)
\(758\) 1.24532e8 0.0103858
\(759\) 0 0
\(760\) 7.77727e7 0.00642657
\(761\) 1.44344e9 0.118728 0.0593641 0.998236i \(-0.481093\pi\)
0.0593641 + 0.998236i \(0.481093\pi\)
\(762\) 0 0
\(763\) −1.91819e10 −1.56335
\(764\) −6.05602e9 −0.491316
\(765\) 0 0
\(766\) −6.94304e9 −0.558148
\(767\) −5.88758e9 −0.471143
\(768\) 0 0
\(769\) 1.02499e10 0.812788 0.406394 0.913698i \(-0.366786\pi\)
0.406394 + 0.913698i \(0.366786\pi\)
\(770\) 5.74069e8 0.0453155
\(771\) 0 0
\(772\) −7.82228e9 −0.611889
\(773\) −2.47581e10 −1.92792 −0.963959 0.266049i \(-0.914282\pi\)
−0.963959 + 0.266049i \(0.914282\pi\)
\(774\) 0 0
\(775\) −1.08311e10 −0.835824
\(776\) −6.80612e9 −0.522858
\(777\) 0 0
\(778\) −1.42809e10 −1.08725
\(779\) 7.12972e8 0.0540370
\(780\) 0 0
\(781\) 1.61381e10 1.21220
\(782\) −6.95309e9 −0.519941
\(783\) 0 0
\(784\) 5.11397e9 0.379011
\(785\) −6.50139e8 −0.0479692
\(786\) 0 0
\(787\) −2.09697e10 −1.53349 −0.766744 0.641953i \(-0.778125\pi\)
−0.766744 + 0.641953i \(0.778125\pi\)
\(788\) −8.81712e9 −0.641926
\(789\) 0 0
\(790\) −1.84112e8 −0.0132858
\(791\) 2.94037e10 2.11244
\(792\) 0 0
\(793\) 1.78571e10 1.27161
\(794\) 1.19643e10 0.848234
\(795\) 0 0
\(796\) −1.04094e10 −0.731524
\(797\) 1.63579e10 1.14452 0.572259 0.820073i \(-0.306067\pi\)
0.572259 + 0.820073i \(0.306067\pi\)
\(798\) 0 0
\(799\) 1.30042e10 0.901922
\(800\) −2.55586e9 −0.176491
\(801\) 0 0
\(802\) −8.33734e9 −0.570712
\(803\) −2.46037e10 −1.67686
\(804\) 0 0
\(805\) −1.06422e9 −0.0719031
\(806\) −8.03288e9 −0.540379
\(807\) 0 0
\(808\) −6.84367e9 −0.456404
\(809\) 8.79414e9 0.583947 0.291974 0.956426i \(-0.405688\pi\)
0.291974 + 0.956426i \(0.405688\pi\)
\(810\) 0 0
\(811\) 8.84977e8 0.0582585 0.0291292 0.999576i \(-0.490727\pi\)
0.0291292 + 0.999576i \(0.490727\pi\)
\(812\) 1.36805e10 0.896721
\(813\) 0 0
\(814\) −4.30963e9 −0.280063
\(815\) 3.63859e8 0.0235440
\(816\) 0 0
\(817\) 1.01533e10 0.651370
\(818\) 1.11076e10 0.709549
\(819\) 0 0
\(820\) 3.79941e7 0.00240640
\(821\) 2.05048e10 1.29317 0.646584 0.762843i \(-0.276197\pi\)
0.646584 + 0.762843i \(0.276197\pi\)
\(822\) 0 0
\(823\) 4.85079e9 0.303328 0.151664 0.988432i \(-0.451537\pi\)
0.151664 + 0.988432i \(0.451537\pi\)
\(824\) 6.92853e9 0.431416
\(825\) 0 0
\(826\) 9.37631e9 0.578898
\(827\) 1.02887e10 0.632545 0.316272 0.948668i \(-0.397569\pi\)
0.316272 + 0.948668i \(0.397569\pi\)
\(828\) 0 0
\(829\) 3.17520e9 0.193566 0.0967832 0.995305i \(-0.469145\pi\)
0.0967832 + 0.995305i \(0.469145\pi\)
\(830\) 9.23562e8 0.0560651
\(831\) 0 0
\(832\) −1.89556e9 −0.114105
\(833\) 1.65069e10 0.989483
\(834\) 0 0
\(835\) −9.75893e8 −0.0580096
\(836\) 3.83167e9 0.226812
\(837\) 0 0
\(838\) −8.56746e9 −0.502919
\(839\) −2.44147e10 −1.42720 −0.713601 0.700553i \(-0.752937\pi\)
−0.713601 + 0.700553i \(0.752937\pi\)
\(840\) 0 0
\(841\) 4.80181e9 0.278368
\(842\) 5.34308e9 0.308460
\(843\) 0 0
\(844\) −9.95698e9 −0.570071
\(845\) −1.17654e8 −0.00670822
\(846\) 0 0
\(847\) 2.31785e8 0.0131067
\(848\) −2.54672e9 −0.143416
\(849\) 0 0
\(850\) −8.24981e9 −0.460763
\(851\) 7.98932e9 0.444382
\(852\) 0 0
\(853\) −2.10145e9 −0.115931 −0.0579653 0.998319i \(-0.518461\pi\)
−0.0579653 + 0.998319i \(0.518461\pi\)
\(854\) −2.84385e10 −1.56244
\(855\) 0 0
\(856\) −9.70498e9 −0.528855
\(857\) −4.33590e9 −0.235313 −0.117657 0.993054i \(-0.537538\pi\)
−0.117657 + 0.993054i \(0.537538\pi\)
\(858\) 0 0
\(859\) 2.04143e10 1.09890 0.549451 0.835526i \(-0.314837\pi\)
0.549451 + 0.835526i \(0.314837\pi\)
\(860\) 5.41064e8 0.0290071
\(861\) 0 0
\(862\) −7.10613e9 −0.377883
\(863\) 7.33916e9 0.388695 0.194347 0.980933i \(-0.437741\pi\)
0.194347 + 0.980933i \(0.437741\pi\)
\(864\) 0 0
\(865\) −1.21149e8 −0.00636451
\(866\) 8.33578e9 0.436148
\(867\) 0 0
\(868\) 1.27928e10 0.663969
\(869\) −9.07077e9 −0.468894
\(870\) 0 0
\(871\) −2.49817e10 −1.28103
\(872\) −6.82273e9 −0.348458
\(873\) 0 0
\(874\) −7.10325e9 −0.359888
\(875\) −2.52744e9 −0.127542
\(876\) 0 0
\(877\) 7.64808e9 0.382872 0.191436 0.981505i \(-0.438686\pi\)
0.191436 + 0.981505i \(0.438686\pi\)
\(878\) 2.17888e10 1.08643
\(879\) 0 0
\(880\) 2.04189e8 0.0101005
\(881\) 2.38502e9 0.117511 0.0587553 0.998272i \(-0.481287\pi\)
0.0587553 + 0.998272i \(0.481287\pi\)
\(882\) 0 0
\(883\) −1.51552e10 −0.740797 −0.370399 0.928873i \(-0.620779\pi\)
−0.370399 + 0.928873i \(0.620779\pi\)
\(884\) −6.11849e9 −0.297894
\(885\) 0 0
\(886\) 1.13493e10 0.548214
\(887\) −3.90717e10 −1.87988 −0.939938 0.341344i \(-0.889118\pi\)
−0.939938 + 0.341344i \(0.889118\pi\)
\(888\) 0 0
\(889\) 1.63877e10 0.782281
\(890\) 7.30898e8 0.0347529
\(891\) 0 0
\(892\) −7.93234e9 −0.374218
\(893\) 1.32850e10 0.624284
\(894\) 0 0
\(895\) −4.06189e8 −0.0189386
\(896\) 3.01879e9 0.140202
\(897\) 0 0
\(898\) −3.03306e10 −1.39770
\(899\) 2.06208e10 0.946557
\(900\) 0 0
\(901\) −8.22033e9 −0.374415
\(902\) 1.87188e9 0.0849286
\(903\) 0 0
\(904\) 1.04585e10 0.470847
\(905\) 3.12780e8 0.0140271
\(906\) 0 0
\(907\) −9.68126e9 −0.430830 −0.215415 0.976523i \(-0.569110\pi\)
−0.215415 + 0.976523i \(0.569110\pi\)
\(908\) −8.81306e9 −0.390685
\(909\) 0 0
\(910\) −9.36482e8 −0.0411960
\(911\) 3.22816e9 0.141462 0.0707312 0.997495i \(-0.477467\pi\)
0.0707312 + 0.997495i \(0.477467\pi\)
\(912\) 0 0
\(913\) 4.55016e10 1.97870
\(914\) 1.49837e10 0.649095
\(915\) 0 0
\(916\) 1.50477e10 0.646899
\(917\) 7.60298e9 0.325605
\(918\) 0 0
\(919\) −2.75829e10 −1.17229 −0.586145 0.810206i \(-0.699355\pi\)
−0.586145 + 0.810206i \(0.699355\pi\)
\(920\) −3.78530e8 −0.0160267
\(921\) 0 0
\(922\) 4.37915e9 0.184006
\(923\) −2.63262e10 −1.10200
\(924\) 0 0
\(925\) 9.47928e9 0.393803
\(926\) −8.98221e9 −0.371745
\(927\) 0 0
\(928\) 4.86599e9 0.199872
\(929\) 2.61114e10 1.06850 0.534251 0.845326i \(-0.320594\pi\)
0.534251 + 0.845326i \(0.320594\pi\)
\(930\) 0 0
\(931\) 1.68634e10 0.684891
\(932\) −9.21849e9 −0.372996
\(933\) 0 0
\(934\) 1.86089e10 0.747321
\(935\) 6.59081e8 0.0263693
\(936\) 0 0
\(937\) 2.33086e10 0.925608 0.462804 0.886461i \(-0.346843\pi\)
0.462804 + 0.886461i \(0.346843\pi\)
\(938\) 3.97848e10 1.57401
\(939\) 0 0
\(940\) 7.07955e8 0.0278008
\(941\) 2.34937e10 0.919155 0.459577 0.888138i \(-0.348001\pi\)
0.459577 + 0.888138i \(0.348001\pi\)
\(942\) 0 0
\(943\) −3.47013e9 −0.134758
\(944\) 3.33503e9 0.129032
\(945\) 0 0
\(946\) 2.66569e10 1.02374
\(947\) 3.34690e10 1.28061 0.640306 0.768120i \(-0.278807\pi\)
0.640306 + 0.768120i \(0.278807\pi\)
\(948\) 0 0
\(949\) 4.01362e10 1.52442
\(950\) −8.42797e9 −0.318926
\(951\) 0 0
\(952\) 9.74406e9 0.366025
\(953\) 3.61551e10 1.35315 0.676573 0.736375i \(-0.263464\pi\)
0.676573 + 0.736375i \(0.263464\pi\)
\(954\) 0 0
\(955\) −1.06419e9 −0.0395372
\(956\) 4.68087e9 0.173270
\(957\) 0 0
\(958\) −1.41451e10 −0.519788
\(959\) 7.05504e10 2.58306
\(960\) 0 0
\(961\) −8.22986e9 −0.299130
\(962\) 7.03033e9 0.254603
\(963\) 0 0
\(964\) −7.86174e9 −0.282650
\(965\) −1.37456e9 −0.0492400
\(966\) 0 0
\(967\) −2.58691e10 −0.920003 −0.460002 0.887918i \(-0.652151\pi\)
−0.460002 + 0.887918i \(0.652151\pi\)
\(968\) 8.24429e7 0.00292139
\(969\) 0 0
\(970\) −1.19600e9 −0.0420754
\(971\) 2.99112e10 1.04850 0.524248 0.851565i \(-0.324346\pi\)
0.524248 + 0.851565i \(0.324346\pi\)
\(972\) 0 0
\(973\) −2.71764e10 −0.945794
\(974\) −1.57931e10 −0.547660
\(975\) 0 0
\(976\) −1.01152e10 −0.348257
\(977\) −2.94364e10 −1.00984 −0.504921 0.863166i \(-0.668478\pi\)
−0.504921 + 0.863166i \(0.668478\pi\)
\(978\) 0 0
\(979\) 3.60095e10 1.22653
\(980\) 8.98646e8 0.0304998
\(981\) 0 0
\(982\) −2.80304e10 −0.944582
\(983\) 4.97374e10 1.67011 0.835057 0.550163i \(-0.185435\pi\)
0.835057 + 0.550163i \(0.185435\pi\)
\(984\) 0 0
\(985\) −1.54938e9 −0.0516571
\(986\) 1.57065e10 0.521806
\(987\) 0 0
\(988\) −6.25062e9 −0.206193
\(989\) −4.94173e10 −1.62440
\(990\) 0 0
\(991\) 3.46904e9 0.113227 0.0566137 0.998396i \(-0.481970\pi\)
0.0566137 + 0.998396i \(0.481970\pi\)
\(992\) 4.55024e9 0.147994
\(993\) 0 0
\(994\) 4.19261e10 1.35404
\(995\) −1.82917e9 −0.0588673
\(996\) 0 0
\(997\) −3.43622e10 −1.09812 −0.549058 0.835784i \(-0.685013\pi\)
−0.549058 + 0.835784i \(0.685013\pi\)
\(998\) 6.99723e9 0.222828
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.8.a.j.1.2 yes 4
3.2 odd 2 162.8.a.g.1.3 4
9.2 odd 6 162.8.c.r.109.2 8
9.4 even 3 162.8.c.q.55.3 8
9.5 odd 6 162.8.c.r.55.2 8
9.7 even 3 162.8.c.q.109.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.8.a.g.1.3 4 3.2 odd 2
162.8.a.j.1.2 yes 4 1.1 even 1 trivial
162.8.c.q.55.3 8 9.4 even 3
162.8.c.q.109.3 8 9.7 even 3
162.8.c.r.55.2 8 9.5 odd 6
162.8.c.r.109.2 8 9.2 odd 6