Properties

Label 162.8.a.g.1.3
Level $162$
Weight $8$
Character 162.1
Self dual yes
Analytic conductor $50.606$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,8,Mod(1,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.6063741284\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.43103376.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 383x^{2} + 384x + 18612 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{8} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-7.05976\) of defining polynomial
Character \(\chi\) \(=\) 162.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} +64.0000 q^{4} -11.2463 q^{5} +1439.47 q^{7} -512.000 q^{8} +89.9705 q^{10} -4432.63 q^{11} -7230.97 q^{13} -11515.8 q^{14} +4096.00 q^{16} -13221.1 q^{17} +13506.6 q^{19} -719.764 q^{20} +35461.0 q^{22} +65738.6 q^{23} -77998.5 q^{25} +57847.8 q^{26} +92126.0 q^{28} -148498. q^{29} +138862. q^{31} -32768.0 q^{32} +105769. q^{34} -16188.7 q^{35} -121532. q^{37} -108053. q^{38} +5758.11 q^{40} -52786.9 q^{41} +751724. q^{43} -283688. q^{44} -525909. q^{46} -983593. q^{47} +1.24853e6 q^{49} +623988. q^{50} -462782. q^{52} +621759. q^{53} +49850.7 q^{55} -737008. q^{56} +1.18798e6 q^{58} -814216. q^{59} -2.46953e6 q^{61} -1.11090e6 q^{62} +262144. q^{64} +81321.8 q^{65} +3.45482e6 q^{67} -846150. q^{68} +129510. q^{70} -3.64076e6 q^{71} -5.55060e6 q^{73} +972253. q^{74} +864424. q^{76} -6.38063e6 q^{77} -2.04636e6 q^{79} -46064.9 q^{80} +422295. q^{82} -1.02652e7 q^{83} +148689. q^{85} -6.01379e6 q^{86} +2.26951e6 q^{88} -8.12374e6 q^{89} -1.04088e7 q^{91} +4.20727e6 q^{92} +7.86874e6 q^{94} -151900. q^{95} -1.32932e7 q^{97} -9.98823e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{2} + 256 q^{4} - 528 q^{5} + 560 q^{7} - 2048 q^{8} + 4224 q^{10} - 2160 q^{11} + 13460 q^{13} - 4480 q^{14} + 16384 q^{16} - 22560 q^{17} + 36704 q^{19} - 33792 q^{20} + 17280 q^{22} - 62640 q^{23}+ \cdots - 11595168 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) 0 0
\(4\) 64.0000 0.500000
\(5\) −11.2463 −0.0402360 −0.0201180 0.999798i \(-0.506404\pi\)
−0.0201180 + 0.999798i \(0.506404\pi\)
\(6\) 0 0
\(7\) 1439.47 1.58620 0.793102 0.609088i \(-0.208465\pi\)
0.793102 + 0.609088i \(0.208465\pi\)
\(8\) −512.000 −0.353553
\(9\) 0 0
\(10\) 89.9705 0.0284512
\(11\) −4432.63 −1.00412 −0.502061 0.864832i \(-0.667425\pi\)
−0.502061 + 0.864832i \(0.667425\pi\)
\(12\) 0 0
\(13\) −7230.97 −0.912841 −0.456420 0.889764i \(-0.650869\pi\)
−0.456420 + 0.889764i \(0.650869\pi\)
\(14\) −11515.8 −1.12162
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) −13221.1 −0.652674 −0.326337 0.945254i \(-0.605814\pi\)
−0.326337 + 0.945254i \(0.605814\pi\)
\(18\) 0 0
\(19\) 13506.6 0.451761 0.225881 0.974155i \(-0.427474\pi\)
0.225881 + 0.974155i \(0.427474\pi\)
\(20\) −719.764 −0.0201180
\(21\) 0 0
\(22\) 35461.0 0.710022
\(23\) 65738.6 1.12661 0.563304 0.826250i \(-0.309530\pi\)
0.563304 + 0.826250i \(0.309530\pi\)
\(24\) 0 0
\(25\) −77998.5 −0.998381
\(26\) 57847.8 0.645476
\(27\) 0 0
\(28\) 92126.0 0.793102
\(29\) −148498. −1.13065 −0.565325 0.824868i \(-0.691249\pi\)
−0.565325 + 0.824868i \(0.691249\pi\)
\(30\) 0 0
\(31\) 138862. 0.837180 0.418590 0.908175i \(-0.362525\pi\)
0.418590 + 0.908175i \(0.362525\pi\)
\(32\) −32768.0 −0.176777
\(33\) 0 0
\(34\) 105769. 0.461510
\(35\) −16188.7 −0.0638226
\(36\) 0 0
\(37\) −121532. −0.394442 −0.197221 0.980359i \(-0.563192\pi\)
−0.197221 + 0.980359i \(0.563192\pi\)
\(38\) −108053. −0.319444
\(39\) 0 0
\(40\) 5758.11 0.0142256
\(41\) −52786.9 −0.119614 −0.0598070 0.998210i \(-0.519049\pi\)
−0.0598070 + 0.998210i \(0.519049\pi\)
\(42\) 0 0
\(43\) 751724. 1.44185 0.720923 0.693015i \(-0.243718\pi\)
0.720923 + 0.693015i \(0.243718\pi\)
\(44\) −283688. −0.502061
\(45\) 0 0
\(46\) −525909. −0.796633
\(47\) −983593. −1.38189 −0.690944 0.722908i \(-0.742805\pi\)
−0.690944 + 0.722908i \(0.742805\pi\)
\(48\) 0 0
\(49\) 1.24853e6 1.51605
\(50\) 623988. 0.705962
\(51\) 0 0
\(52\) −462782. −0.456420
\(53\) 621759. 0.573663 0.286831 0.957981i \(-0.407398\pi\)
0.286831 + 0.957981i \(0.407398\pi\)
\(54\) 0 0
\(55\) 49850.7 0.0404019
\(56\) −737008. −0.560808
\(57\) 0 0
\(58\) 1.18798e6 0.799490
\(59\) −814216. −0.516128 −0.258064 0.966128i \(-0.583085\pi\)
−0.258064 + 0.966128i \(0.583085\pi\)
\(60\) 0 0
\(61\) −2.46953e6 −1.39303 −0.696514 0.717543i \(-0.745267\pi\)
−0.696514 + 0.717543i \(0.745267\pi\)
\(62\) −1.11090e6 −0.591975
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 81321.8 0.0367291
\(66\) 0 0
\(67\) 3.45482e6 1.40334 0.701671 0.712502i \(-0.252438\pi\)
0.701671 + 0.712502i \(0.252438\pi\)
\(68\) −846150. −0.326337
\(69\) 0 0
\(70\) 129510. 0.0451294
\(71\) −3.64076e6 −1.20722 −0.603612 0.797278i \(-0.706272\pi\)
−0.603612 + 0.797278i \(0.706272\pi\)
\(72\) 0 0
\(73\) −5.55060e6 −1.66997 −0.834987 0.550269i \(-0.814525\pi\)
−0.834987 + 0.550269i \(0.814525\pi\)
\(74\) 972253. 0.278913
\(75\) 0 0
\(76\) 864424. 0.225881
\(77\) −6.38063e6 −1.59274
\(78\) 0 0
\(79\) −2.04636e6 −0.466969 −0.233484 0.972361i \(-0.575013\pi\)
−0.233484 + 0.972361i \(0.575013\pi\)
\(80\) −46064.9 −0.0100590
\(81\) 0 0
\(82\) 422295. 0.0845799
\(83\) −1.02652e7 −1.97057 −0.985286 0.170911i \(-0.945329\pi\)
−0.985286 + 0.170911i \(0.945329\pi\)
\(84\) 0 0
\(85\) 148689. 0.0262610
\(86\) −6.01379e6 −1.01954
\(87\) 0 0
\(88\) 2.26951e6 0.355011
\(89\) −8.12374e6 −1.22149 −0.610747 0.791826i \(-0.709131\pi\)
−0.610747 + 0.791826i \(0.709131\pi\)
\(90\) 0 0
\(91\) −1.04088e7 −1.44795
\(92\) 4.20727e6 0.563304
\(93\) 0 0
\(94\) 7.86874e6 0.977142
\(95\) −151900. −0.0181771
\(96\) 0 0
\(97\) −1.32932e7 −1.47886 −0.739432 0.673231i \(-0.764906\pi\)
−0.739432 + 0.673231i \(0.764906\pi\)
\(98\) −9.98823e6 −1.07201
\(99\) 0 0
\(100\) −4.99191e6 −0.499191
\(101\) 1.33665e7 1.29090 0.645452 0.763801i \(-0.276669\pi\)
0.645452 + 0.763801i \(0.276669\pi\)
\(102\) 0 0
\(103\) 1.35323e7 1.22023 0.610114 0.792314i \(-0.291124\pi\)
0.610114 + 0.792314i \(0.291124\pi\)
\(104\) 3.70226e6 0.322738
\(105\) 0 0
\(106\) −4.97407e6 −0.405641
\(107\) 1.89550e7 1.49583 0.747914 0.663796i \(-0.231056\pi\)
0.747914 + 0.663796i \(0.231056\pi\)
\(108\) 0 0
\(109\) −1.33257e7 −0.985589 −0.492794 0.870146i \(-0.664025\pi\)
−0.492794 + 0.870146i \(0.664025\pi\)
\(110\) −398806. −0.0285685
\(111\) 0 0
\(112\) 5.89607e6 0.396551
\(113\) −2.04267e7 −1.33176 −0.665878 0.746061i \(-0.731943\pi\)
−0.665878 + 0.746061i \(0.731943\pi\)
\(114\) 0 0
\(115\) −739317. −0.0453303
\(116\) −9.50388e6 −0.565325
\(117\) 0 0
\(118\) 6.51373e6 0.364958
\(119\) −1.90314e7 −1.03527
\(120\) 0 0
\(121\) 161021. 0.00826294
\(122\) 1.97562e7 0.985020
\(123\) 0 0
\(124\) 8.88719e6 0.418590
\(125\) 1.75581e6 0.0804069
\(126\) 0 0
\(127\) 1.13846e7 0.493178 0.246589 0.969120i \(-0.420690\pi\)
0.246589 + 0.969120i \(0.420690\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) 0 0
\(130\) −650574. −0.0259714
\(131\) −5.28179e6 −0.205273 −0.102636 0.994719i \(-0.532728\pi\)
−0.102636 + 0.994719i \(0.532728\pi\)
\(132\) 0 0
\(133\) 1.94424e7 0.716586
\(134\) −2.76385e7 −0.992312
\(135\) 0 0
\(136\) 6.76920e6 0.230755
\(137\) −4.90114e7 −1.62845 −0.814226 0.580548i \(-0.802838\pi\)
−0.814226 + 0.580548i \(0.802838\pi\)
\(138\) 0 0
\(139\) −1.88794e7 −0.596262 −0.298131 0.954525i \(-0.596363\pi\)
−0.298131 + 0.954525i \(0.596363\pi\)
\(140\) −1.03608e6 −0.0319113
\(141\) 0 0
\(142\) 2.91261e7 0.853636
\(143\) 3.20522e7 0.916604
\(144\) 0 0
\(145\) 1.67006e6 0.0454929
\(146\) 4.44048e7 1.18085
\(147\) 0 0
\(148\) −7.77802e6 −0.197221
\(149\) 2.88497e7 0.714480 0.357240 0.934013i \(-0.383718\pi\)
0.357240 + 0.934013i \(0.383718\pi\)
\(150\) 0 0
\(151\) −3.59533e7 −0.849804 −0.424902 0.905239i \(-0.639692\pi\)
−0.424902 + 0.905239i \(0.639692\pi\)
\(152\) −6.91539e6 −0.159722
\(153\) 0 0
\(154\) 5.10451e7 1.12624
\(155\) −1.56169e6 −0.0336848
\(156\) 0 0
\(157\) −5.78090e7 −1.19219 −0.596097 0.802913i \(-0.703283\pi\)
−0.596097 + 0.802913i \(0.703283\pi\)
\(158\) 1.63709e7 0.330197
\(159\) 0 0
\(160\) 368519. 0.00711279
\(161\) 9.46287e7 1.78703
\(162\) 0 0
\(163\) 3.23536e7 0.585148 0.292574 0.956243i \(-0.405488\pi\)
0.292574 + 0.956243i \(0.405488\pi\)
\(164\) −3.37836e6 −0.0598070
\(165\) 0 0
\(166\) 8.21213e7 1.39341
\(167\) 8.67745e7 1.44173 0.720866 0.693075i \(-0.243744\pi\)
0.720866 + 0.693075i \(0.243744\pi\)
\(168\) 0 0
\(169\) −1.04615e7 −0.166722
\(170\) −1.18951e6 −0.0185693
\(171\) 0 0
\(172\) 4.81103e7 0.720923
\(173\) 1.07724e7 0.158179 0.0790897 0.996868i \(-0.474799\pi\)
0.0790897 + 0.996868i \(0.474799\pi\)
\(174\) 0 0
\(175\) −1.12276e8 −1.58364
\(176\) −1.81560e7 −0.251031
\(177\) 0 0
\(178\) 6.49900e7 0.863726
\(179\) 3.61175e7 0.470687 0.235343 0.971912i \(-0.424379\pi\)
0.235343 + 0.971912i \(0.424379\pi\)
\(180\) 0 0
\(181\) 2.78118e7 0.348621 0.174310 0.984691i \(-0.444230\pi\)
0.174310 + 0.984691i \(0.444230\pi\)
\(182\) 8.32701e7 1.02386
\(183\) 0 0
\(184\) −3.36582e7 −0.398316
\(185\) 1.36678e6 0.0158708
\(186\) 0 0
\(187\) 5.86042e7 0.655365
\(188\) −6.29499e7 −0.690944
\(189\) 0 0
\(190\) 1.21520e6 0.0128531
\(191\) 9.46254e7 0.982632 0.491316 0.870981i \(-0.336516\pi\)
0.491316 + 0.870981i \(0.336516\pi\)
\(192\) 0 0
\(193\) −1.22223e8 −1.22378 −0.611889 0.790944i \(-0.709590\pi\)
−0.611889 + 0.790944i \(0.709590\pi\)
\(194\) 1.06346e8 1.04572
\(195\) 0 0
\(196\) 7.99058e7 0.758023
\(197\) 1.37768e8 1.28385 0.641926 0.766766i \(-0.278136\pi\)
0.641926 + 0.766766i \(0.278136\pi\)
\(198\) 0 0
\(199\) −1.62646e8 −1.46305 −0.731524 0.681815i \(-0.761191\pi\)
−0.731524 + 0.681815i \(0.761191\pi\)
\(200\) 3.99352e7 0.352981
\(201\) 0 0
\(202\) −1.06932e8 −0.912807
\(203\) −2.13758e8 −1.79344
\(204\) 0 0
\(205\) 593658. 0.00481280
\(206\) −1.08258e8 −0.862831
\(207\) 0 0
\(208\) −2.96181e7 −0.228210
\(209\) −5.98698e7 −0.453624
\(210\) 0 0
\(211\) −1.55578e8 −1.14014 −0.570071 0.821595i \(-0.693084\pi\)
−0.570071 + 0.821595i \(0.693084\pi\)
\(212\) 3.97926e7 0.286831
\(213\) 0 0
\(214\) −1.51640e8 −1.05771
\(215\) −8.45413e6 −0.0580142
\(216\) 0 0
\(217\) 1.99888e8 1.32794
\(218\) 1.06605e8 0.696917
\(219\) 0 0
\(220\) 3.19045e6 0.0202010
\(221\) 9.56014e7 0.595787
\(222\) 0 0
\(223\) −1.23943e8 −0.748435 −0.374218 0.927341i \(-0.622089\pi\)
−0.374218 + 0.927341i \(0.622089\pi\)
\(224\) −4.71685e7 −0.280404
\(225\) 0 0
\(226\) 1.63414e8 0.941694
\(227\) 1.37704e8 0.781369 0.390685 0.920525i \(-0.372238\pi\)
0.390685 + 0.920525i \(0.372238\pi\)
\(228\) 0 0
\(229\) 2.35121e8 1.29380 0.646899 0.762575i \(-0.276065\pi\)
0.646899 + 0.762575i \(0.276065\pi\)
\(230\) 5.91454e6 0.0320533
\(231\) 0 0
\(232\) 7.60310e7 0.399745
\(233\) 1.44039e8 0.745992 0.372996 0.927833i \(-0.378330\pi\)
0.372996 + 0.927833i \(0.378330\pi\)
\(234\) 0 0
\(235\) 1.10618e7 0.0556017
\(236\) −5.21098e7 −0.258064
\(237\) 0 0
\(238\) 1.52251e8 0.732050
\(239\) −7.31386e7 −0.346541 −0.173270 0.984874i \(-0.555433\pi\)
−0.173270 + 0.984874i \(0.555433\pi\)
\(240\) 0 0
\(241\) −1.22840e8 −0.565300 −0.282650 0.959223i \(-0.591214\pi\)
−0.282650 + 0.959223i \(0.591214\pi\)
\(242\) −1.28817e6 −0.00584278
\(243\) 0 0
\(244\) −1.58050e8 −0.696514
\(245\) −1.40413e7 −0.0609997
\(246\) 0 0
\(247\) −9.76660e7 −0.412386
\(248\) −7.10975e7 −0.295988
\(249\) 0 0
\(250\) −1.40465e7 −0.0568563
\(251\) −7.30348e7 −0.291522 −0.145761 0.989320i \(-0.546563\pi\)
−0.145761 + 0.989320i \(0.546563\pi\)
\(252\) 0 0
\(253\) −2.91395e8 −1.13125
\(254\) −9.10766e7 −0.348729
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) −1.33996e8 −0.492408 −0.246204 0.969218i \(-0.579183\pi\)
−0.246204 + 0.969218i \(0.579183\pi\)
\(258\) 0 0
\(259\) −1.74941e8 −0.625666
\(260\) 5.20460e6 0.0183646
\(261\) 0 0
\(262\) 4.22543e7 0.145150
\(263\) −3.80130e8 −1.28851 −0.644253 0.764812i \(-0.722832\pi\)
−0.644253 + 0.764812i \(0.722832\pi\)
\(264\) 0 0
\(265\) −6.99250e6 −0.0230819
\(266\) −1.55539e8 −0.506703
\(267\) 0 0
\(268\) 2.21108e8 0.701671
\(269\) −5.57685e8 −1.74685 −0.873426 0.486958i \(-0.838107\pi\)
−0.873426 + 0.486958i \(0.838107\pi\)
\(270\) 0 0
\(271\) −9.65793e7 −0.294776 −0.147388 0.989079i \(-0.547087\pi\)
−0.147388 + 0.989079i \(0.547087\pi\)
\(272\) −5.41536e7 −0.163168
\(273\) 0 0
\(274\) 3.92091e8 1.15149
\(275\) 3.45738e8 1.00250
\(276\) 0 0
\(277\) 5.65800e8 1.59950 0.799749 0.600334i \(-0.204966\pi\)
0.799749 + 0.600334i \(0.204966\pi\)
\(278\) 1.51035e8 0.421621
\(279\) 0 0
\(280\) 8.28863e6 0.0225647
\(281\) −3.99550e8 −1.07423 −0.537117 0.843508i \(-0.680487\pi\)
−0.537117 + 0.843508i \(0.680487\pi\)
\(282\) 0 0
\(283\) 6.78723e8 1.78008 0.890040 0.455882i \(-0.150676\pi\)
0.890040 + 0.455882i \(0.150676\pi\)
\(284\) −2.33009e8 −0.603612
\(285\) 0 0
\(286\) −2.56418e8 −0.648137
\(287\) −7.59851e7 −0.189732
\(288\) 0 0
\(289\) −2.35541e8 −0.574017
\(290\) −1.33605e7 −0.0321683
\(291\) 0 0
\(292\) −3.55238e8 −0.834987
\(293\) −1.11739e8 −0.259518 −0.129759 0.991546i \(-0.541420\pi\)
−0.129759 + 0.991546i \(0.541420\pi\)
\(294\) 0 0
\(295\) 9.15693e6 0.0207670
\(296\) 6.22242e7 0.139456
\(297\) 0 0
\(298\) −2.30798e8 −0.505214
\(299\) −4.75354e8 −1.02841
\(300\) 0 0
\(301\) 1.08208e9 2.28706
\(302\) 2.87626e8 0.600903
\(303\) 0 0
\(304\) 5.53231e7 0.112940
\(305\) 2.77731e7 0.0560500
\(306\) 0 0
\(307\) −1.53022e8 −0.301835 −0.150917 0.988546i \(-0.548223\pi\)
−0.150917 + 0.988546i \(0.548223\pi\)
\(308\) −4.08360e8 −0.796372
\(309\) 0 0
\(310\) 1.24935e7 0.0238187
\(311\) 2.28368e8 0.430501 0.215250 0.976559i \(-0.430943\pi\)
0.215250 + 0.976559i \(0.430943\pi\)
\(312\) 0 0
\(313\) −7.02744e8 −1.29536 −0.647682 0.761910i \(-0.724262\pi\)
−0.647682 + 0.761910i \(0.724262\pi\)
\(314\) 4.62472e8 0.843008
\(315\) 0 0
\(316\) −1.30967e8 −0.233484
\(317\) 1.04118e9 1.83577 0.917883 0.396852i \(-0.129897\pi\)
0.917883 + 0.396852i \(0.129897\pi\)
\(318\) 0 0
\(319\) 6.58237e8 1.13531
\(320\) −2.94815e6 −0.00502951
\(321\) 0 0
\(322\) −7.57030e8 −1.26362
\(323\) −1.78572e8 −0.294853
\(324\) 0 0
\(325\) 5.64005e8 0.911363
\(326\) −2.58829e8 −0.413762
\(327\) 0 0
\(328\) 2.70269e7 0.0422900
\(329\) −1.41585e9 −2.19196
\(330\) 0 0
\(331\) 3.21275e8 0.486944 0.243472 0.969908i \(-0.421714\pi\)
0.243472 + 0.969908i \(0.421714\pi\)
\(332\) −6.56970e8 −0.985286
\(333\) 0 0
\(334\) −6.94196e8 −1.01946
\(335\) −3.88540e7 −0.0564649
\(336\) 0 0
\(337\) −9.13646e8 −1.30039 −0.650194 0.759768i \(-0.725313\pi\)
−0.650194 + 0.759768i \(0.725313\pi\)
\(338\) 8.36923e7 0.117890
\(339\) 0 0
\(340\) 9.51607e6 0.0131305
\(341\) −6.15525e8 −0.840631
\(342\) 0 0
\(343\) 6.11754e8 0.818554
\(344\) −3.84883e8 −0.509770
\(345\) 0 0
\(346\) −8.61789e7 −0.111850
\(347\) 5.97984e8 0.768310 0.384155 0.923269i \(-0.374493\pi\)
0.384155 + 0.923269i \(0.374493\pi\)
\(348\) 0 0
\(349\) 6.50546e8 0.819199 0.409599 0.912265i \(-0.365668\pi\)
0.409599 + 0.912265i \(0.365668\pi\)
\(350\) 8.98212e8 1.11980
\(351\) 0 0
\(352\) 1.45248e8 0.177506
\(353\) 6.17246e7 0.0746873 0.0373437 0.999302i \(-0.488110\pi\)
0.0373437 + 0.999302i \(0.488110\pi\)
\(354\) 0 0
\(355\) 4.09451e7 0.0485739
\(356\) −5.19920e8 −0.610747
\(357\) 0 0
\(358\) −2.88940e8 −0.332826
\(359\) −1.70542e9 −1.94537 −0.972683 0.232137i \(-0.925428\pi\)
−0.972683 + 0.232137i \(0.925428\pi\)
\(360\) 0 0
\(361\) −7.11443e8 −0.795912
\(362\) −2.22494e8 −0.246512
\(363\) 0 0
\(364\) −6.66161e8 −0.723976
\(365\) 6.24238e7 0.0671932
\(366\) 0 0
\(367\) 2.43018e8 0.256630 0.128315 0.991733i \(-0.459043\pi\)
0.128315 + 0.991733i \(0.459043\pi\)
\(368\) 2.69265e8 0.281652
\(369\) 0 0
\(370\) −1.09343e7 −0.0112223
\(371\) 8.95003e8 0.909946
\(372\) 0 0
\(373\) −6.58541e8 −0.657055 −0.328528 0.944494i \(-0.606552\pi\)
−0.328528 + 0.944494i \(0.606552\pi\)
\(374\) −4.68834e8 −0.463413
\(375\) 0 0
\(376\) 5.03599e8 0.488571
\(377\) 1.07379e9 1.03210
\(378\) 0 0
\(379\) 1.55665e7 0.0146877 0.00734387 0.999973i \(-0.497662\pi\)
0.00734387 + 0.999973i \(0.497662\pi\)
\(380\) −9.72158e6 −0.00908854
\(381\) 0 0
\(382\) −7.57003e8 −0.694826
\(383\) 8.67880e8 0.789340 0.394670 0.918823i \(-0.370859\pi\)
0.394670 + 0.918823i \(0.370859\pi\)
\(384\) 0 0
\(385\) 7.17586e7 0.0640857
\(386\) 9.77784e8 0.865342
\(387\) 0 0
\(388\) −8.50765e8 −0.739432
\(389\) 1.78512e9 1.53760 0.768799 0.639490i \(-0.220855\pi\)
0.768799 + 0.639490i \(0.220855\pi\)
\(390\) 0 0
\(391\) −8.69136e8 −0.735308
\(392\) −6.39247e8 −0.536003
\(393\) 0 0
\(394\) −1.10214e9 −0.907821
\(395\) 2.30140e7 0.0187890
\(396\) 0 0
\(397\) 1.49554e9 1.19958 0.599792 0.800156i \(-0.295250\pi\)
0.599792 + 0.800156i \(0.295250\pi\)
\(398\) 1.30117e9 1.03453
\(399\) 0 0
\(400\) −3.19482e8 −0.249595
\(401\) 1.04217e9 0.807109 0.403554 0.914956i \(-0.367775\pi\)
0.403554 + 0.914956i \(0.367775\pi\)
\(402\) 0 0
\(403\) −1.00411e9 −0.764212
\(404\) 8.55458e8 0.645452
\(405\) 0 0
\(406\) 1.71007e9 1.26815
\(407\) 5.38704e8 0.396068
\(408\) 0 0
\(409\) 1.38845e9 1.00345 0.501727 0.865026i \(-0.332698\pi\)
0.501727 + 0.865026i \(0.332698\pi\)
\(410\) −4.74926e6 −0.00340316
\(411\) 0 0
\(412\) 8.66066e8 0.610114
\(413\) −1.17204e9 −0.818685
\(414\) 0 0
\(415\) 1.15445e8 0.0792880
\(416\) 2.36945e8 0.161369
\(417\) 0 0
\(418\) 4.78959e8 0.320761
\(419\) 1.07093e9 0.711235 0.355617 0.934632i \(-0.384271\pi\)
0.355617 + 0.934632i \(0.384271\pi\)
\(420\) 0 0
\(421\) 6.67885e8 0.436229 0.218114 0.975923i \(-0.430009\pi\)
0.218114 + 0.975923i \(0.430009\pi\)
\(422\) 1.24462e9 0.806203
\(423\) 0 0
\(424\) −3.18341e8 −0.202820
\(425\) 1.03123e9 0.651617
\(426\) 0 0
\(427\) −3.55481e9 −2.20963
\(428\) 1.21312e9 0.747914
\(429\) 0 0
\(430\) 6.76330e7 0.0410222
\(431\) 8.88266e8 0.534408 0.267204 0.963640i \(-0.413900\pi\)
0.267204 + 0.963640i \(0.413900\pi\)
\(432\) 0 0
\(433\) 1.04197e9 0.616806 0.308403 0.951256i \(-0.400205\pi\)
0.308403 + 0.951256i \(0.400205\pi\)
\(434\) −1.59910e9 −0.938994
\(435\) 0 0
\(436\) −8.52842e8 −0.492794
\(437\) 8.87906e8 0.508958
\(438\) 0 0
\(439\) 2.72360e9 1.53645 0.768223 0.640183i \(-0.221141\pi\)
0.768223 + 0.640183i \(0.221141\pi\)
\(440\) −2.55236e7 −0.0142842
\(441\) 0 0
\(442\) −7.64811e8 −0.421285
\(443\) −1.41866e9 −0.775292 −0.387646 0.921808i \(-0.626712\pi\)
−0.387646 + 0.921808i \(0.626712\pi\)
\(444\) 0 0
\(445\) 9.13622e7 0.0491481
\(446\) 9.91543e8 0.529224
\(447\) 0 0
\(448\) 3.77348e8 0.198276
\(449\) 3.79133e9 1.97665 0.988324 0.152368i \(-0.0486899\pi\)
0.988324 + 0.152368i \(0.0486899\pi\)
\(450\) 0 0
\(451\) 2.33984e8 0.120107
\(452\) −1.30731e9 −0.665878
\(453\) 0 0
\(454\) −1.10163e9 −0.552511
\(455\) 1.17060e8 0.0582599
\(456\) 0 0
\(457\) 1.87296e9 0.917958 0.458979 0.888447i \(-0.348215\pi\)
0.458979 + 0.888447i \(0.348215\pi\)
\(458\) −1.88097e9 −0.914854
\(459\) 0 0
\(460\) −4.73163e7 −0.0226651
\(461\) −5.47394e8 −0.260224 −0.130112 0.991499i \(-0.541534\pi\)
−0.130112 + 0.991499i \(0.541534\pi\)
\(462\) 0 0
\(463\) −1.12278e9 −0.525726 −0.262863 0.964833i \(-0.584667\pi\)
−0.262863 + 0.964833i \(0.584667\pi\)
\(464\) −6.08248e8 −0.282662
\(465\) 0 0
\(466\) −1.15231e9 −0.527496
\(467\) −2.32612e9 −1.05687 −0.528436 0.848973i \(-0.677221\pi\)
−0.528436 + 0.848973i \(0.677221\pi\)
\(468\) 0 0
\(469\) 4.97310e9 2.22599
\(470\) −8.84943e7 −0.0393163
\(471\) 0 0
\(472\) 4.16879e8 0.182479
\(473\) −3.33211e9 −1.44779
\(474\) 0 0
\(475\) −1.05350e9 −0.451030
\(476\) −1.21801e9 −0.517637
\(477\) 0 0
\(478\) 5.85109e8 0.245041
\(479\) 1.76813e9 0.735091 0.367545 0.930006i \(-0.380198\pi\)
0.367545 + 0.930006i \(0.380198\pi\)
\(480\) 0 0
\(481\) 8.78792e8 0.360063
\(482\) 9.82718e8 0.399728
\(483\) 0 0
\(484\) 1.03054e7 0.00413147
\(485\) 1.49500e8 0.0595037
\(486\) 0 0
\(487\) −1.97414e9 −0.774509 −0.387254 0.921973i \(-0.626577\pi\)
−0.387254 + 0.921973i \(0.626577\pi\)
\(488\) 1.26440e9 0.492510
\(489\) 0 0
\(490\) 1.12331e8 0.0431333
\(491\) 3.50381e9 1.33584 0.667920 0.744233i \(-0.267185\pi\)
0.667920 + 0.744233i \(0.267185\pi\)
\(492\) 0 0
\(493\) 1.96331e9 0.737945
\(494\) 7.81328e8 0.291601
\(495\) 0 0
\(496\) 5.68780e8 0.209295
\(497\) −5.24076e9 −1.91490
\(498\) 0 0
\(499\) 8.74654e8 0.315126 0.157563 0.987509i \(-0.449636\pi\)
0.157563 + 0.987509i \(0.449636\pi\)
\(500\) 1.12372e8 0.0402035
\(501\) 0 0
\(502\) 5.84279e8 0.206137
\(503\) 2.61478e9 0.916111 0.458055 0.888924i \(-0.348546\pi\)
0.458055 + 0.888924i \(0.348546\pi\)
\(504\) 0 0
\(505\) −1.50324e8 −0.0519409
\(506\) 2.33116e9 0.799917
\(507\) 0 0
\(508\) 7.28612e8 0.246589
\(509\) −8.52572e8 −0.286562 −0.143281 0.989682i \(-0.545765\pi\)
−0.143281 + 0.989682i \(0.545765\pi\)
\(510\) 0 0
\(511\) −7.98992e9 −2.64892
\(512\) −1.34218e8 −0.0441942
\(513\) 0 0
\(514\) 1.07197e9 0.348185
\(515\) −1.52188e8 −0.0490971
\(516\) 0 0
\(517\) 4.35990e9 1.38759
\(518\) 1.39953e9 0.442412
\(519\) 0 0
\(520\) −4.16368e7 −0.0129857
\(521\) 2.66940e9 0.826954 0.413477 0.910515i \(-0.364314\pi\)
0.413477 + 0.910515i \(0.364314\pi\)
\(522\) 0 0
\(523\) −4.41770e9 −1.35033 −0.675165 0.737667i \(-0.735928\pi\)
−0.675165 + 0.737667i \(0.735928\pi\)
\(524\) −3.38035e8 −0.102636
\(525\) 0 0
\(526\) 3.04104e9 0.911112
\(527\) −1.83591e9 −0.546405
\(528\) 0 0
\(529\) 9.16739e8 0.269247
\(530\) 5.59400e7 0.0163214
\(531\) 0 0
\(532\) 1.24431e9 0.358293
\(533\) 3.81700e8 0.109189
\(534\) 0 0
\(535\) −2.13174e8 −0.0601862
\(536\) −1.76887e9 −0.496156
\(537\) 0 0
\(538\) 4.46148e9 1.23521
\(539\) −5.53426e9 −1.52230
\(540\) 0 0
\(541\) −3.86240e9 −1.04874 −0.524368 0.851492i \(-0.675699\pi\)
−0.524368 + 0.851492i \(0.675699\pi\)
\(542\) 7.72635e8 0.208438
\(543\) 0 0
\(544\) 4.33229e8 0.115378
\(545\) 1.49865e8 0.0396562
\(546\) 0 0
\(547\) −2.16921e9 −0.566692 −0.283346 0.959018i \(-0.591444\pi\)
−0.283346 + 0.959018i \(0.591444\pi\)
\(548\) −3.13673e9 −0.814226
\(549\) 0 0
\(550\) −2.76591e9 −0.708873
\(551\) −2.00571e9 −0.510784
\(552\) 0 0
\(553\) −2.94568e9 −0.740708
\(554\) −4.52640e9 −1.13102
\(555\) 0 0
\(556\) −1.20828e9 −0.298131
\(557\) −2.25645e8 −0.0553265 −0.0276632 0.999617i \(-0.508807\pi\)
−0.0276632 + 0.999617i \(0.508807\pi\)
\(558\) 0 0
\(559\) −5.43570e9 −1.31618
\(560\) −6.63090e7 −0.0159557
\(561\) 0 0
\(562\) 3.19640e9 0.759598
\(563\) −7.80802e8 −0.184400 −0.0922001 0.995740i \(-0.529390\pi\)
−0.0922001 + 0.995740i \(0.529390\pi\)
\(564\) 0 0
\(565\) 2.29726e8 0.0535846
\(566\) −5.42978e9 −1.25871
\(567\) 0 0
\(568\) 1.86407e9 0.426818
\(569\) 6.69214e8 0.152290 0.0761452 0.997097i \(-0.475739\pi\)
0.0761452 + 0.997097i \(0.475739\pi\)
\(570\) 0 0
\(571\) −1.33652e9 −0.300435 −0.150217 0.988653i \(-0.547997\pi\)
−0.150217 + 0.988653i \(0.547997\pi\)
\(572\) 2.05134e9 0.458302
\(573\) 0 0
\(574\) 6.07880e8 0.134161
\(575\) −5.12751e9 −1.12478
\(576\) 0 0
\(577\) −7.13624e9 −1.54651 −0.773257 0.634092i \(-0.781374\pi\)
−0.773257 + 0.634092i \(0.781374\pi\)
\(578\) 1.88433e9 0.405891
\(579\) 0 0
\(580\) 1.06884e8 0.0227464
\(581\) −1.47764e10 −3.12573
\(582\) 0 0
\(583\) −2.75603e9 −0.576028
\(584\) 2.84191e9 0.590425
\(585\) 0 0
\(586\) 8.93912e8 0.183507
\(587\) −2.85470e9 −0.582542 −0.291271 0.956641i \(-0.594078\pi\)
−0.291271 + 0.956641i \(0.594078\pi\)
\(588\) 0 0
\(589\) 1.87556e9 0.378205
\(590\) −7.32555e7 −0.0146845
\(591\) 0 0
\(592\) −4.97793e8 −0.0986105
\(593\) 6.55017e9 1.28991 0.644957 0.764219i \(-0.276875\pi\)
0.644957 + 0.764219i \(0.276875\pi\)
\(594\) 0 0
\(595\) 2.14033e8 0.0416553
\(596\) 1.84638e9 0.357240
\(597\) 0 0
\(598\) 3.80283e9 0.727199
\(599\) 7.51415e9 1.42852 0.714259 0.699881i \(-0.246764\pi\)
0.714259 + 0.699881i \(0.246764\pi\)
\(600\) 0 0
\(601\) −3.40742e9 −0.640274 −0.320137 0.947371i \(-0.603729\pi\)
−0.320137 + 0.947371i \(0.603729\pi\)
\(602\) −8.65667e9 −1.61720
\(603\) 0 0
\(604\) −2.30101e9 −0.424902
\(605\) −1.81090e6 −0.000332468 0
\(606\) 0 0
\(607\) 4.94302e9 0.897081 0.448540 0.893763i \(-0.351944\pi\)
0.448540 + 0.893763i \(0.351944\pi\)
\(608\) −4.42585e8 −0.0798609
\(609\) 0 0
\(610\) −2.22185e8 −0.0396333
\(611\) 7.11233e9 1.26144
\(612\) 0 0
\(613\) 4.05250e9 0.710577 0.355288 0.934757i \(-0.384383\pi\)
0.355288 + 0.934757i \(0.384383\pi\)
\(614\) 1.22417e9 0.213429
\(615\) 0 0
\(616\) 3.26688e9 0.563120
\(617\) −6.15589e9 −1.05510 −0.527549 0.849525i \(-0.676889\pi\)
−0.527549 + 0.849525i \(0.676889\pi\)
\(618\) 0 0
\(619\) 3.64125e8 0.0617068 0.0308534 0.999524i \(-0.490177\pi\)
0.0308534 + 0.999524i \(0.490177\pi\)
\(620\) −9.99482e7 −0.0168424
\(621\) 0 0
\(622\) −1.82694e9 −0.304410
\(623\) −1.16939e10 −1.93754
\(624\) 0 0
\(625\) 6.07389e9 0.995146
\(626\) 5.62195e9 0.915961
\(627\) 0 0
\(628\) −3.69978e9 −0.596097
\(629\) 1.60678e9 0.257442
\(630\) 0 0
\(631\) 3.22087e9 0.510353 0.255177 0.966894i \(-0.417866\pi\)
0.255177 + 0.966894i \(0.417866\pi\)
\(632\) 1.04774e9 0.165098
\(633\) 0 0
\(634\) −8.32942e9 −1.29808
\(635\) −1.28034e8 −0.0198435
\(636\) 0 0
\(637\) −9.02808e9 −1.38391
\(638\) −5.26590e9 −0.802786
\(639\) 0 0
\(640\) 2.35852e7 0.00355640
\(641\) 1.24441e10 1.86621 0.933106 0.359603i \(-0.117088\pi\)
0.933106 + 0.359603i \(0.117088\pi\)
\(642\) 0 0
\(643\) −4.83009e8 −0.0716502 −0.0358251 0.999358i \(-0.511406\pi\)
−0.0358251 + 0.999358i \(0.511406\pi\)
\(644\) 6.05624e9 0.893516
\(645\) 0 0
\(646\) 1.42858e9 0.208492
\(647\) −4.60241e9 −0.668068 −0.334034 0.942561i \(-0.608410\pi\)
−0.334034 + 0.942561i \(0.608410\pi\)
\(648\) 0 0
\(649\) 3.60912e9 0.518256
\(650\) −4.51204e9 −0.644431
\(651\) 0 0
\(652\) 2.07063e9 0.292574
\(653\) −5.68364e9 −0.798787 −0.399393 0.916780i \(-0.630779\pi\)
−0.399393 + 0.916780i \(0.630779\pi\)
\(654\) 0 0
\(655\) 5.94007e7 0.00825937
\(656\) −2.16215e8 −0.0299035
\(657\) 0 0
\(658\) 1.13268e10 1.54995
\(659\) −4.51142e9 −0.614065 −0.307032 0.951699i \(-0.599336\pi\)
−0.307032 + 0.951699i \(0.599336\pi\)
\(660\) 0 0
\(661\) 9.76185e8 0.131470 0.0657351 0.997837i \(-0.479061\pi\)
0.0657351 + 0.997837i \(0.479061\pi\)
\(662\) −2.57020e9 −0.344322
\(663\) 0 0
\(664\) 5.25576e9 0.696703
\(665\) −2.18655e8 −0.0288326
\(666\) 0 0
\(667\) −9.76206e9 −1.27380
\(668\) 5.55357e9 0.720866
\(669\) 0 0
\(670\) 3.10832e8 0.0399267
\(671\) 1.09465e10 1.39877
\(672\) 0 0
\(673\) 1.25246e10 1.58384 0.791921 0.610623i \(-0.209081\pi\)
0.791921 + 0.610623i \(0.209081\pi\)
\(674\) 7.30917e9 0.919514
\(675\) 0 0
\(676\) −6.69539e8 −0.0833608
\(677\) −1.04491e10 −1.29425 −0.647126 0.762383i \(-0.724029\pi\)
−0.647126 + 0.762383i \(0.724029\pi\)
\(678\) 0 0
\(679\) −1.91352e10 −2.34578
\(680\) −7.61286e7 −0.00928467
\(681\) 0 0
\(682\) 4.92420e9 0.594416
\(683\) −1.12280e9 −0.134844 −0.0674218 0.997725i \(-0.521477\pi\)
−0.0674218 + 0.997725i \(0.521477\pi\)
\(684\) 0 0
\(685\) 5.51197e8 0.0655225
\(686\) −4.89403e9 −0.578805
\(687\) 0 0
\(688\) 3.07906e9 0.360462
\(689\) −4.49592e9 −0.523663
\(690\) 0 0
\(691\) 7.46043e9 0.860183 0.430091 0.902785i \(-0.358481\pi\)
0.430091 + 0.902785i \(0.358481\pi\)
\(692\) 6.89431e8 0.0790897
\(693\) 0 0
\(694\) −4.78387e9 −0.543277
\(695\) 2.12324e8 0.0239912
\(696\) 0 0
\(697\) 6.97900e8 0.0780690
\(698\) −5.20437e9 −0.579261
\(699\) 0 0
\(700\) −7.18569e9 −0.791818
\(701\) 1.79013e10 1.96278 0.981392 0.192014i \(-0.0615020\pi\)
0.981392 + 0.192014i \(0.0615020\pi\)
\(702\) 0 0
\(703\) −1.64148e9 −0.178194
\(704\) −1.16199e9 −0.125515
\(705\) 0 0
\(706\) −4.93797e8 −0.0528119
\(707\) 1.92407e10 2.04764
\(708\) 0 0
\(709\) 7.55041e9 0.795626 0.397813 0.917467i \(-0.369769\pi\)
0.397813 + 0.917467i \(0.369769\pi\)
\(710\) −3.27561e8 −0.0343469
\(711\) 0 0
\(712\) 4.15936e9 0.431863
\(713\) 9.12862e9 0.943174
\(714\) 0 0
\(715\) −3.60469e8 −0.0368805
\(716\) 2.31152e9 0.235343
\(717\) 0 0
\(718\) 1.36434e10 1.37558
\(719\) 3.79868e9 0.381137 0.190569 0.981674i \(-0.438967\pi\)
0.190569 + 0.981674i \(0.438967\pi\)
\(720\) 0 0
\(721\) 1.94793e10 1.93553
\(722\) 5.69154e9 0.562795
\(723\) 0 0
\(724\) 1.77995e9 0.174310
\(725\) 1.15826e10 1.12882
\(726\) 0 0
\(727\) −3.93525e9 −0.379841 −0.189920 0.981799i \(-0.560823\pi\)
−0.189920 + 0.981799i \(0.560823\pi\)
\(728\) 5.32929e9 0.511928
\(729\) 0 0
\(730\) −4.99390e8 −0.0475127
\(731\) −9.93862e9 −0.941055
\(732\) 0 0
\(733\) −1.13491e10 −1.06439 −0.532193 0.846623i \(-0.678632\pi\)
−0.532193 + 0.846623i \(0.678632\pi\)
\(734\) −1.94415e9 −0.181465
\(735\) 0 0
\(736\) −2.15412e9 −0.199158
\(737\) −1.53139e10 −1.40913
\(738\) 0 0
\(739\) 1.61420e10 1.47130 0.735652 0.677359i \(-0.236876\pi\)
0.735652 + 0.677359i \(0.236876\pi\)
\(740\) 8.74741e7 0.00793539
\(741\) 0 0
\(742\) −7.16002e9 −0.643429
\(743\) 5.93148e9 0.530521 0.265260 0.964177i \(-0.414542\pi\)
0.265260 + 0.964177i \(0.414542\pi\)
\(744\) 0 0
\(745\) −3.24453e8 −0.0287478
\(746\) 5.26833e9 0.464608
\(747\) 0 0
\(748\) 3.75067e9 0.327682
\(749\) 2.72852e10 2.37269
\(750\) 0 0
\(751\) −3.34926e9 −0.288542 −0.144271 0.989538i \(-0.546084\pi\)
−0.144271 + 0.989538i \(0.546084\pi\)
\(752\) −4.02880e9 −0.345472
\(753\) 0 0
\(754\) −8.59029e9 −0.729807
\(755\) 4.04342e8 0.0341928
\(756\) 0 0
\(757\) −3.71611e9 −0.311353 −0.155677 0.987808i \(-0.549756\pi\)
−0.155677 + 0.987808i \(0.549756\pi\)
\(758\) −1.24532e8 −0.0103858
\(759\) 0 0
\(760\) 7.77727e7 0.00642657
\(761\) −1.44344e9 −0.118728 −0.0593641 0.998236i \(-0.518907\pi\)
−0.0593641 + 0.998236i \(0.518907\pi\)
\(762\) 0 0
\(763\) −1.91819e10 −1.56335
\(764\) 6.05602e9 0.491316
\(765\) 0 0
\(766\) −6.94304e9 −0.558148
\(767\) 5.88758e9 0.471143
\(768\) 0 0
\(769\) 1.02499e10 0.812788 0.406394 0.913698i \(-0.366786\pi\)
0.406394 + 0.913698i \(0.366786\pi\)
\(770\) −5.74069e8 −0.0453155
\(771\) 0 0
\(772\) −7.82228e9 −0.611889
\(773\) 2.47581e10 1.92792 0.963959 0.266049i \(-0.0857185\pi\)
0.963959 + 0.266049i \(0.0857185\pi\)
\(774\) 0 0
\(775\) −1.08311e10 −0.835824
\(776\) 6.80612e9 0.522858
\(777\) 0 0
\(778\) −1.42809e10 −1.08725
\(779\) −7.12972e8 −0.0540370
\(780\) 0 0
\(781\) 1.61381e10 1.21220
\(782\) 6.95309e9 0.519941
\(783\) 0 0
\(784\) 5.11397e9 0.379011
\(785\) 6.50139e8 0.0479692
\(786\) 0 0
\(787\) −2.09697e10 −1.53349 −0.766744 0.641953i \(-0.778125\pi\)
−0.766744 + 0.641953i \(0.778125\pi\)
\(788\) 8.81712e9 0.641926
\(789\) 0 0
\(790\) −1.84112e8 −0.0132858
\(791\) −2.94037e10 −2.11244
\(792\) 0 0
\(793\) 1.78571e10 1.27161
\(794\) −1.19643e10 −0.848234
\(795\) 0 0
\(796\) −1.04094e10 −0.731524
\(797\) −1.63579e10 −1.14452 −0.572259 0.820073i \(-0.693933\pi\)
−0.572259 + 0.820073i \(0.693933\pi\)
\(798\) 0 0
\(799\) 1.30042e10 0.901922
\(800\) 2.55586e9 0.176491
\(801\) 0 0
\(802\) −8.33734e9 −0.570712
\(803\) 2.46037e10 1.67686
\(804\) 0 0
\(805\) −1.06422e9 −0.0719031
\(806\) 8.03288e9 0.540379
\(807\) 0 0
\(808\) −6.84367e9 −0.456404
\(809\) −8.79414e9 −0.583947 −0.291974 0.956426i \(-0.594312\pi\)
−0.291974 + 0.956426i \(0.594312\pi\)
\(810\) 0 0
\(811\) 8.84977e8 0.0582585 0.0291292 0.999576i \(-0.490727\pi\)
0.0291292 + 0.999576i \(0.490727\pi\)
\(812\) −1.36805e10 −0.896721
\(813\) 0 0
\(814\) −4.30963e9 −0.280063
\(815\) −3.63859e8 −0.0235440
\(816\) 0 0
\(817\) 1.01533e10 0.651370
\(818\) −1.11076e10 −0.709549
\(819\) 0 0
\(820\) 3.79941e7 0.00240640
\(821\) −2.05048e10 −1.29317 −0.646584 0.762843i \(-0.723803\pi\)
−0.646584 + 0.762843i \(0.723803\pi\)
\(822\) 0 0
\(823\) 4.85079e9 0.303328 0.151664 0.988432i \(-0.451537\pi\)
0.151664 + 0.988432i \(0.451537\pi\)
\(824\) −6.92853e9 −0.431416
\(825\) 0 0
\(826\) 9.37631e9 0.578898
\(827\) −1.02887e10 −0.632545 −0.316272 0.948668i \(-0.602431\pi\)
−0.316272 + 0.948668i \(0.602431\pi\)
\(828\) 0 0
\(829\) 3.17520e9 0.193566 0.0967832 0.995305i \(-0.469145\pi\)
0.0967832 + 0.995305i \(0.469145\pi\)
\(830\) −9.23562e8 −0.0560651
\(831\) 0 0
\(832\) −1.89556e9 −0.114105
\(833\) −1.65069e10 −0.989483
\(834\) 0 0
\(835\) −9.75893e8 −0.0580096
\(836\) −3.83167e9 −0.226812
\(837\) 0 0
\(838\) −8.56746e9 −0.502919
\(839\) 2.44147e10 1.42720 0.713601 0.700553i \(-0.247063\pi\)
0.713601 + 0.700553i \(0.247063\pi\)
\(840\) 0 0
\(841\) 4.80181e9 0.278368
\(842\) −5.34308e9 −0.308460
\(843\) 0 0
\(844\) −9.95698e9 −0.570071
\(845\) 1.17654e8 0.00670822
\(846\) 0 0
\(847\) 2.31785e8 0.0131067
\(848\) 2.54672e9 0.143416
\(849\) 0 0
\(850\) −8.24981e9 −0.460763
\(851\) −7.98932e9 −0.444382
\(852\) 0 0
\(853\) −2.10145e9 −0.115931 −0.0579653 0.998319i \(-0.518461\pi\)
−0.0579653 + 0.998319i \(0.518461\pi\)
\(854\) 2.84385e10 1.56244
\(855\) 0 0
\(856\) −9.70498e9 −0.528855
\(857\) 4.33590e9 0.235313 0.117657 0.993054i \(-0.462462\pi\)
0.117657 + 0.993054i \(0.462462\pi\)
\(858\) 0 0
\(859\) 2.04143e10 1.09890 0.549451 0.835526i \(-0.314837\pi\)
0.549451 + 0.835526i \(0.314837\pi\)
\(860\) −5.41064e8 −0.0290071
\(861\) 0 0
\(862\) −7.10613e9 −0.377883
\(863\) −7.33916e9 −0.388695 −0.194347 0.980933i \(-0.562259\pi\)
−0.194347 + 0.980933i \(0.562259\pi\)
\(864\) 0 0
\(865\) −1.21149e8 −0.00636451
\(866\) −8.33578e9 −0.436148
\(867\) 0 0
\(868\) 1.27928e10 0.663969
\(869\) 9.07077e9 0.468894
\(870\) 0 0
\(871\) −2.49817e10 −1.28103
\(872\) 6.82273e9 0.348458
\(873\) 0 0
\(874\) −7.10325e9 −0.359888
\(875\) 2.52744e9 0.127542
\(876\) 0 0
\(877\) 7.64808e9 0.382872 0.191436 0.981505i \(-0.438686\pi\)
0.191436 + 0.981505i \(0.438686\pi\)
\(878\) −2.17888e10 −1.08643
\(879\) 0 0
\(880\) 2.04189e8 0.0101005
\(881\) −2.38502e9 −0.117511 −0.0587553 0.998272i \(-0.518713\pi\)
−0.0587553 + 0.998272i \(0.518713\pi\)
\(882\) 0 0
\(883\) −1.51552e10 −0.740797 −0.370399 0.928873i \(-0.620779\pi\)
−0.370399 + 0.928873i \(0.620779\pi\)
\(884\) 6.11849e9 0.297894
\(885\) 0 0
\(886\) 1.13493e10 0.548214
\(887\) 3.90717e10 1.87988 0.939938 0.341344i \(-0.110882\pi\)
0.939938 + 0.341344i \(0.110882\pi\)
\(888\) 0 0
\(889\) 1.63877e10 0.782281
\(890\) −7.30898e8 −0.0347529
\(891\) 0 0
\(892\) −7.93234e9 −0.374218
\(893\) −1.32850e10 −0.624284
\(894\) 0 0
\(895\) −4.06189e8 −0.0189386
\(896\) −3.01879e9 −0.140202
\(897\) 0 0
\(898\) −3.03306e10 −1.39770
\(899\) −2.06208e10 −0.946557
\(900\) 0 0
\(901\) −8.22033e9 −0.374415
\(902\) −1.87188e9 −0.0849286
\(903\) 0 0
\(904\) 1.04585e10 0.470847
\(905\) −3.12780e8 −0.0140271
\(906\) 0 0
\(907\) −9.68126e9 −0.430830 −0.215415 0.976523i \(-0.569110\pi\)
−0.215415 + 0.976523i \(0.569110\pi\)
\(908\) 8.81306e9 0.390685
\(909\) 0 0
\(910\) −9.36482e8 −0.0411960
\(911\) −3.22816e9 −0.141462 −0.0707312 0.997495i \(-0.522533\pi\)
−0.0707312 + 0.997495i \(0.522533\pi\)
\(912\) 0 0
\(913\) 4.55016e10 1.97870
\(914\) −1.49837e10 −0.649095
\(915\) 0 0
\(916\) 1.50477e10 0.646899
\(917\) −7.60298e9 −0.325605
\(918\) 0 0
\(919\) −2.75829e10 −1.17229 −0.586145 0.810206i \(-0.699355\pi\)
−0.586145 + 0.810206i \(0.699355\pi\)
\(920\) 3.78530e8 0.0160267
\(921\) 0 0
\(922\) 4.37915e9 0.184006
\(923\) 2.63262e10 1.10200
\(924\) 0 0
\(925\) 9.47928e9 0.393803
\(926\) 8.98221e9 0.371745
\(927\) 0 0
\(928\) 4.86599e9 0.199872
\(929\) −2.61114e10 −1.06850 −0.534251 0.845326i \(-0.679406\pi\)
−0.534251 + 0.845326i \(0.679406\pi\)
\(930\) 0 0
\(931\) 1.68634e10 0.684891
\(932\) 9.21849e9 0.372996
\(933\) 0 0
\(934\) 1.86089e10 0.747321
\(935\) −6.59081e8 −0.0263693
\(936\) 0 0
\(937\) 2.33086e10 0.925608 0.462804 0.886461i \(-0.346843\pi\)
0.462804 + 0.886461i \(0.346843\pi\)
\(938\) −3.97848e10 −1.57401
\(939\) 0 0
\(940\) 7.07955e8 0.0278008
\(941\) −2.34937e10 −0.919155 −0.459577 0.888138i \(-0.651999\pi\)
−0.459577 + 0.888138i \(0.651999\pi\)
\(942\) 0 0
\(943\) −3.47013e9 −0.134758
\(944\) −3.33503e9 −0.129032
\(945\) 0 0
\(946\) 2.66569e10 1.02374
\(947\) −3.34690e10 −1.28061 −0.640306 0.768120i \(-0.721193\pi\)
−0.640306 + 0.768120i \(0.721193\pi\)
\(948\) 0 0
\(949\) 4.01362e10 1.52442
\(950\) 8.42797e9 0.318926
\(951\) 0 0
\(952\) 9.74406e9 0.366025
\(953\) −3.61551e10 −1.35315 −0.676573 0.736375i \(-0.736536\pi\)
−0.676573 + 0.736375i \(0.736536\pi\)
\(954\) 0 0
\(955\) −1.06419e9 −0.0395372
\(956\) −4.68087e9 −0.173270
\(957\) 0 0
\(958\) −1.41451e10 −0.519788
\(959\) −7.05504e10 −2.58306
\(960\) 0 0
\(961\) −8.22986e9 −0.299130
\(962\) −7.03033e9 −0.254603
\(963\) 0 0
\(964\) −7.86174e9 −0.282650
\(965\) 1.37456e9 0.0492400
\(966\) 0 0
\(967\) −2.58691e10 −0.920003 −0.460002 0.887918i \(-0.652151\pi\)
−0.460002 + 0.887918i \(0.652151\pi\)
\(968\) −8.24429e7 −0.00292139
\(969\) 0 0
\(970\) −1.19600e9 −0.0420754
\(971\) −2.99112e10 −1.04850 −0.524248 0.851565i \(-0.675654\pi\)
−0.524248 + 0.851565i \(0.675654\pi\)
\(972\) 0 0
\(973\) −2.71764e10 −0.945794
\(974\) 1.57931e10 0.547660
\(975\) 0 0
\(976\) −1.01152e10 −0.348257
\(977\) 2.94364e10 1.00984 0.504921 0.863166i \(-0.331522\pi\)
0.504921 + 0.863166i \(0.331522\pi\)
\(978\) 0 0
\(979\) 3.60095e10 1.22653
\(980\) −8.98646e8 −0.0304998
\(981\) 0 0
\(982\) −2.80304e10 −0.944582
\(983\) −4.97374e10 −1.67011 −0.835057 0.550163i \(-0.814565\pi\)
−0.835057 + 0.550163i \(0.814565\pi\)
\(984\) 0 0
\(985\) −1.54938e9 −0.0516571
\(986\) −1.57065e10 −0.521806
\(987\) 0 0
\(988\) −6.25062e9 −0.206193
\(989\) 4.94173e10 1.62440
\(990\) 0 0
\(991\) 3.46904e9 0.113227 0.0566137 0.998396i \(-0.481970\pi\)
0.0566137 + 0.998396i \(0.481970\pi\)
\(992\) −4.55024e9 −0.147994
\(993\) 0 0
\(994\) 4.19261e10 1.35404
\(995\) 1.82917e9 0.0588673
\(996\) 0 0
\(997\) −3.43622e10 −1.09812 −0.549058 0.835784i \(-0.685013\pi\)
−0.549058 + 0.835784i \(0.685013\pi\)
\(998\) −6.99723e9 −0.222828
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.8.a.g.1.3 4
3.2 odd 2 162.8.a.j.1.2 yes 4
9.2 odd 6 162.8.c.q.109.3 8
9.4 even 3 162.8.c.r.55.2 8
9.5 odd 6 162.8.c.q.55.3 8
9.7 even 3 162.8.c.r.109.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.8.a.g.1.3 4 1.1 even 1 trivial
162.8.a.j.1.2 yes 4 3.2 odd 2
162.8.c.q.55.3 8 9.5 odd 6
162.8.c.q.109.3 8 9.2 odd 6
162.8.c.r.55.2 8 9.4 even 3
162.8.c.r.109.2 8 9.7 even 3