[N,k,chi] = [162,8,Mod(55,162)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(162, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("162.55");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).
\(n\)
\(83\)
\(\chi(n)\)
\(\beta_{1}\)
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{8} + 528 T_{5}^{7} + 342990 T_{5}^{6} + 53782272 T_{5}^{5} + 27754932771 T_{5}^{4} + 3326203595520 T_{5}^{3} + \cdots + 23\!\cdots\!25 \)
T5^8 + 528*T5^7 + 342990*T5^6 + 53782272*T5^5 + 27754932771*T5^4 + 3326203595520*T5^3 + 1890990345156750*T5^2 + 21228054119658000*T5 + 234449422110050625
acting on \(S_{8}^{\mathrm{new}}(162, [\chi])\).
$p$
$F_p(T)$
$2$
\( (T^{2} + 8 T + 64)^{4} \)
(T^2 + 8*T + 64)^4
$3$
\( T^{8} \)
T^8
$5$
\( T^{8} + 528 T^{7} + \cdots + 23\!\cdots\!25 \)
T^8 + 528*T^7 + 342990*T^6 + 53782272*T^5 + 27754932771*T^4 + 3326203595520*T^3 + 1890990345156750*T^2 + 21228054119658000*T + 234449422110050625
$7$
\( T^{8} + 560 T^{7} + \cdots + 63\!\cdots\!96 \)
T^8 + 560*T^7 + 2528584*T^6 + 1141253120*T^5 + 5320739107120*T^4 + 2355103430758400*T^3 + 1976843151937719424*T^2 - 300415090286533626880*T + 63642866312751635620096
$11$
\( T^{8} + 2160 T^{7} + \cdots + 71\!\cdots\!16 \)
T^8 + 2160*T^7 + 43824024*T^6 + 52766069760*T^5 + 1414663245416880*T^4 + 1535492987124756480*T^3 + 15173591457526849643904*T^2 - 18339774078138739706188800*T + 71318400582352564593293250816
$13$
\( T^{8} + 13460 T^{7} + \cdots + 21\!\cdots\!81 \)
T^8 + 13460*T^7 + 248612194*T^6 + 682519106000*T^5 + 13797846575113627*T^4 + 14512268005619978000*T^3 + 730223770506465992163346*T^2 - 1155251984702367974241483580*T + 2110920988329938981314230839281
$17$
\( (T^{4} - 22560 T^{3} + \cdots - 16\!\cdots\!11)^{2} \)
(T^4 - 22560*T^3 - 988854534*T^2 + 27515155943520*T - 169349008905990711)^2
$19$
\( (T^{4} - 36704 T^{3} + \cdots + 66\!\cdots\!04)^{2} \)
(T^4 - 36704*T^3 - 527500200*T^2 + 6454798043008*T + 66206977461391504)^2
$23$
\( T^{8} + 62640 T^{7} + \cdots + 20\!\cdots\!56 \)
T^8 + 62640*T^7 + 7062921144*T^6 + 362042479180800*T^5 + 31894203447131080752*T^4 + 1445924066249892917145600*T^3 + 63772175398709293061372263296*T^2 + 1268789711235325663814910096583680*T + 20630734944959898658003480052994867456
$29$
\( T^{8} + 68400 T^{7} + \cdots + 11\!\cdots\!61 \)
T^8 + 68400*T^7 + 46086802254*T^6 + 5479070422060800*T^5 + 1965175706108293984035*T^4 + 167467694639637686057568000*T^3 + 18665959430496862784734200348174*T^2 - 140115568754778082999376932963573200*T + 1136802495792215444696569508116719383361
$31$
\( T^{8} + 227504 T^{7} + \cdots + 70\!\cdots\!76 \)
T^8 + 227504*T^7 + 88585440064*T^6 + 17320350928342016*T^5 + 5116344998311036678144*T^4 + 853962768272455910668304384*T^3 + 134288661003229840593968930750464*T^2 + 10752455164014066320212074686207492096*T + 700248392256005460370313983141272434507776
$37$
\( (T^{4} - 523580 T^{3} + \cdots - 16\!\cdots\!39)^{2} \)
(T^4 - 523580*T^3 - 19822599714*T^2 + 5794311403733620*T - 161012920793959209239)^2
$41$
\( T^{8} + 67200 T^{7} + \cdots + 37\!\cdots\!56 \)
T^8 + 67200*T^7 + 263441337696*T^6 - 13165739955486720*T^5 + 66572825334650063481600*T^4 + 465919265213028666916208640*T^3 + 162905942746981146989790534721536*T^2 - 1295307513048145892361022922584227840*T + 374363138781964684849579720129019846393856
$43$
\( T^{8} + 562640 T^{7} + \cdots + 38\!\cdots\!16 \)
T^8 + 562640*T^7 + 666498110536*T^6 + 167525377033456640*T^5 + 244516529519209988484400*T^4 + 85754913444967395162482831360*T^3 + 26359295840591395847186924059286656*T^2 + 3561399160703731579441675841812187663360*T + 382045351605164089058932594397356062326415616
$47$
\( T^{8} + 515328 T^{7} + \cdots + 12\!\cdots\!56 \)
T^8 + 515328*T^7 + 984510709344*T^6 - 93928075466637312*T^5 + 474203597751355121203968*T^4 - 18018198717066213042960728064*T^3 + 101041479181009046350036412559876096*T^2 - 15756418430746829379257378377123790585856*T + 12983086128958966611434553929007913592469651456
$53$
\( (T^{4} - 2498016 T^{3} + \cdots + 41\!\cdots\!36)^{2} \)
(T^4 - 2498016*T^3 - 31592144448*T^2 + 1854148058152068096*T + 415170339223471466766336)^2
$59$
\( T^{8} + 4155840 T^{7} + \cdots + 58\!\cdots\!76 \)
T^8 + 4155840*T^7 + 11341099813248*T^6 + 17536170129104240640*T^5 + 19628741253194848161607680*T^4 + 14706187392121753803416634654720*T^3 + 8086598417329360725446661483202609152*T^2 + 2722491799148649609458621114550973869588480*T + 586881825501366007583377284431896180232369995776
$61$
\( T^{8} + 2130764 T^{7} + \cdots + 32\!\cdots\!21 \)
T^8 + 2130764*T^7 + 9556345925506*T^6 + 16035594631218908336*T^5 + 59327319365778500070632443*T^4 + 91291152590159703486543720779888*T^3 + 149979824084082816095887899529855294834*T^2 + 76082635067831670783807570549744969016066268*T + 32421341285119038639498627619386101059413979126321
$67$
\( T^{8} - 1205440 T^{7} + \cdots + 23\!\cdots\!56 \)
T^8 - 1205440*T^7 + 21136577009704*T^6 + 20715269750414428160*T^5 + 341284566521070469093601200*T^4 + 86008183369590251396045195386880*T^3 + 946498094290906600472987120591406696064*T^2 + 72243768386918962130734977674543297604300800*T + 2301184156271370188860343322479698373105419484467456
$71$
\( (T^{4} - 12486480 T^{3} + \cdots + 48\!\cdots\!44)^{2} \)
(T^4 - 12486480*T^3 + 53328254782824*T^2 - 90235355716170077760*T + 48535608756797071767475344)^2
$73$
\( (T^{4} + 4820860 T^{3} + \cdots + 13\!\cdots\!49)^{2} \)
(T^4 + 4820860*T^3 - 5600522171514*T^2 - 8364548034988230020*T + 1326962692344362342034049)^2
$79$
\( T^{8} - 11471680 T^{7} + \cdots + 41\!\cdots\!00 \)
T^8 - 11471680*T^7 + 139936946780200*T^6 - 646961586232484608000*T^5 + 4973126139601564521082030000*T^4 - 17874445756523167592268657126400000*T^3 + 132495696762813977109220309598923978000000*T^2 - 239170814624899088071631497842270663252160000000*T + 414914435842162100222012273712132326228233272100000000
$83$
\( T^{8} + 16811232 T^{7} + \cdots + 12\!\cdots\!16 \)
T^8 + 16811232*T^7 + 258948621944640*T^6 + 1512868705178579361792*T^5 + 11068182724437943388404199424*T^4 + 24999962240647972115606172000780288*T^3 + 337674690903148603952276303525412604477440*T^2 + 633297737349540186739031446180081828250630750208*T + 1290485488770241110318164391255383494585678226591318016
$89$
\( (T^{4} - 16857600 T^{3} + \cdots + 33\!\cdots\!81)^{2} \)
(T^4 - 16857600*T^3 + 35224506907434*T^2 + 286170565780831219200*T + 33041485329209866479133881)^2
$97$
\( T^{8} - 27078040 T^{7} + \cdots + 24\!\cdots\!96 \)
T^8 - 27078040*T^7 + 518494535877352*T^6 - 5214496443829199820160*T^5 + 39561682204945510139188475440*T^4 - 149752087580415262641553476699973120*T^3 + 428364062886471221491527040008431394752128*T^2 + 472685519351213458414014490876638348038711175680*T + 2483773360221499606925660298589430023041663708201738496
show more
show less