Defining parameters
Level: | \( N \) | \(=\) | \( 162 = 2 \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 162.c (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 18 \) | ||
Sturm bound: | \(216\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(162, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 402 | 56 | 346 |
Cusp forms | 354 | 56 | 298 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(162, [\chi])\) into newform subspaces
Decomposition of \(S_{8}^{\mathrm{old}}(162, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(162, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 2}\)