Properties

Label 1600.4.a.bu
Level $1600$
Weight $4$
Character orbit 1600.a
Self dual yes
Analytic conductor $94.403$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1600,4,Mod(1,1600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1600.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1600.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,7,0,0,0,34,0,22,0,-27,0,-28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(94.4030560092\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 50)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 7 q^{3} + 34 q^{7} + 22 q^{9} - 27 q^{11} - 28 q^{13} - 21 q^{17} - 35 q^{19} + 238 q^{21} + 78 q^{23} - 35 q^{27} + 120 q^{29} + 182 q^{31} - 189 q^{33} + 146 q^{37} - 196 q^{39} + 357 q^{41} - 148 q^{43}+ \cdots - 594 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 7.00000 0 0 0 34.0000 0 22.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1600.4.a.bu 1
4.b odd 2 1 1600.4.a.g 1
5.b even 2 1 1600.4.a.f 1
8.b even 2 1 50.4.a.a 1
8.d odd 2 1 400.4.a.r 1
20.d odd 2 1 1600.4.a.bv 1
24.h odd 2 1 450.4.a.t 1
40.e odd 2 1 400.4.a.d 1
40.f even 2 1 50.4.a.e yes 1
40.i odd 4 2 50.4.b.b 2
40.k even 4 2 400.4.c.d 2
56.h odd 2 1 2450.4.a.t 1
120.i odd 2 1 450.4.a.a 1
120.w even 4 2 450.4.c.c 2
280.c odd 2 1 2450.4.a.y 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
50.4.a.a 1 8.b even 2 1
50.4.a.e yes 1 40.f even 2 1
50.4.b.b 2 40.i odd 4 2
400.4.a.d 1 40.e odd 2 1
400.4.a.r 1 8.d odd 2 1
400.4.c.d 2 40.k even 4 2
450.4.a.a 1 120.i odd 2 1
450.4.a.t 1 24.h odd 2 1
450.4.c.c 2 120.w even 4 2
1600.4.a.f 1 5.b even 2 1
1600.4.a.g 1 4.b odd 2 1
1600.4.a.bu 1 1.a even 1 1 trivial
1600.4.a.bv 1 20.d odd 2 1
2450.4.a.t 1 56.h odd 2 1
2450.4.a.y 1 280.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1600))\):

\( T_{3} - 7 \) Copy content Toggle raw display
\( T_{7} - 34 \) Copy content Toggle raw display
\( T_{11} + 27 \) Copy content Toggle raw display
\( T_{13} + 28 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 7 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 34 \) Copy content Toggle raw display
$11$ \( T + 27 \) Copy content Toggle raw display
$13$ \( T + 28 \) Copy content Toggle raw display
$17$ \( T + 21 \) Copy content Toggle raw display
$19$ \( T + 35 \) Copy content Toggle raw display
$23$ \( T - 78 \) Copy content Toggle raw display
$29$ \( T - 120 \) Copy content Toggle raw display
$31$ \( T - 182 \) Copy content Toggle raw display
$37$ \( T - 146 \) Copy content Toggle raw display
$41$ \( T - 357 \) Copy content Toggle raw display
$43$ \( T + 148 \) Copy content Toggle raw display
$47$ \( T - 84 \) Copy content Toggle raw display
$53$ \( T - 702 \) Copy content Toggle raw display
$59$ \( T - 840 \) Copy content Toggle raw display
$61$ \( T - 238 \) Copy content Toggle raw display
$67$ \( T - 461 \) Copy content Toggle raw display
$71$ \( T + 708 \) Copy content Toggle raw display
$73$ \( T - 133 \) Copy content Toggle raw display
$79$ \( T - 650 \) Copy content Toggle raw display
$83$ \( T + 903 \) Copy content Toggle raw display
$89$ \( T - 735 \) Copy content Toggle raw display
$97$ \( T + 1106 \) Copy content Toggle raw display
show more
show less