Properties

Label 50.4.a.a
Level $50$
Weight $4$
Character orbit 50.a
Self dual yes
Analytic conductor $2.950$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,4,Mod(1,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.95009550029\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} - 7 q^{3} + 4 q^{4} + 14 q^{6} + 34 q^{7} - 8 q^{8} + 22 q^{9} + 27 q^{11} - 28 q^{12} + 28 q^{13} - 68 q^{14} + 16 q^{16} - 21 q^{17} - 44 q^{18} + 35 q^{19} - 238 q^{21} - 54 q^{22} + 78 q^{23}+ \cdots + 594 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 −7.00000 4.00000 0 14.0000 34.0000 −8.00000 22.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 50.4.a.a 1
3.b odd 2 1 450.4.a.t 1
4.b odd 2 1 400.4.a.r 1
5.b even 2 1 50.4.a.e yes 1
5.c odd 4 2 50.4.b.b 2
7.b odd 2 1 2450.4.a.t 1
8.b even 2 1 1600.4.a.bu 1
8.d odd 2 1 1600.4.a.g 1
15.d odd 2 1 450.4.a.a 1
15.e even 4 2 450.4.c.c 2
20.d odd 2 1 400.4.a.d 1
20.e even 4 2 400.4.c.d 2
35.c odd 2 1 2450.4.a.y 1
40.e odd 2 1 1600.4.a.bv 1
40.f even 2 1 1600.4.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
50.4.a.a 1 1.a even 1 1 trivial
50.4.a.e yes 1 5.b even 2 1
50.4.b.b 2 5.c odd 4 2
400.4.a.d 1 20.d odd 2 1
400.4.a.r 1 4.b odd 2 1
400.4.c.d 2 20.e even 4 2
450.4.a.a 1 15.d odd 2 1
450.4.a.t 1 3.b odd 2 1
450.4.c.c 2 15.e even 4 2
1600.4.a.f 1 40.f even 2 1
1600.4.a.g 1 8.d odd 2 1
1600.4.a.bu 1 8.b even 2 1
1600.4.a.bv 1 40.e odd 2 1
2450.4.a.t 1 7.b odd 2 1
2450.4.a.y 1 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 7 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(50))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T + 7 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 34 \) Copy content Toggle raw display
$11$ \( T - 27 \) Copy content Toggle raw display
$13$ \( T - 28 \) Copy content Toggle raw display
$17$ \( T + 21 \) Copy content Toggle raw display
$19$ \( T - 35 \) Copy content Toggle raw display
$23$ \( T - 78 \) Copy content Toggle raw display
$29$ \( T + 120 \) Copy content Toggle raw display
$31$ \( T - 182 \) Copy content Toggle raw display
$37$ \( T + 146 \) Copy content Toggle raw display
$41$ \( T - 357 \) Copy content Toggle raw display
$43$ \( T - 148 \) Copy content Toggle raw display
$47$ \( T - 84 \) Copy content Toggle raw display
$53$ \( T + 702 \) Copy content Toggle raw display
$59$ \( T + 840 \) Copy content Toggle raw display
$61$ \( T + 238 \) Copy content Toggle raw display
$67$ \( T + 461 \) Copy content Toggle raw display
$71$ \( T + 708 \) Copy content Toggle raw display
$73$ \( T - 133 \) Copy content Toggle raw display
$79$ \( T - 650 \) Copy content Toggle raw display
$83$ \( T - 903 \) Copy content Toggle raw display
$89$ \( T - 735 \) Copy content Toggle raw display
$97$ \( T + 1106 \) Copy content Toggle raw display
show more
show less