Properties

Label 1600.4
Level 1600
Weight 4
Dimension 118997
Nonzero newspaces 28
Sturm bound 614400
Trace bound 12

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 28 \)
Sturm bound: \(614400\)
Trace bound: \(12\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1600))\).

Total New Old
Modular forms 232416 119899 112517
Cusp forms 228384 118997 109387
Eisenstein series 4032 902 3130

Trace form

\( 118997 q - 104 q^{2} - 78 q^{3} - 104 q^{4} - 128 q^{5} - 168 q^{6} - 80 q^{7} - 104 q^{8} - 157 q^{9} - 128 q^{10} - 146 q^{11} - 104 q^{12} - 32 q^{13} - 104 q^{14} - 96 q^{15} - 168 q^{16} - 78 q^{17}+ \cdots + 6842 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1600))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1600.4.a \(\chi_{1600}(1, \cdot)\) 1600.4.a.a 1 1
1600.4.a.b 1
1600.4.a.c 1
1600.4.a.d 1
1600.4.a.e 1
1600.4.a.f 1
1600.4.a.g 1
1600.4.a.h 1
1600.4.a.i 1
1600.4.a.j 1
1600.4.a.k 1
1600.4.a.l 1
1600.4.a.m 1
1600.4.a.n 1
1600.4.a.o 1
1600.4.a.p 1
1600.4.a.q 1
1600.4.a.r 1
1600.4.a.s 1
1600.4.a.t 1
1600.4.a.u 1
1600.4.a.v 1
1600.4.a.w 1
1600.4.a.x 1
1600.4.a.y 1
1600.4.a.z 1
1600.4.a.ba 1
1600.4.a.bb 1
1600.4.a.bc 1
1600.4.a.bd 1
1600.4.a.be 1
1600.4.a.bf 1
1600.4.a.bg 1
1600.4.a.bh 1
1600.4.a.bi 1
1600.4.a.bj 1
1600.4.a.bk 1
1600.4.a.bl 1
1600.4.a.bm 1
1600.4.a.bn 1
1600.4.a.bo 1
1600.4.a.bp 1
1600.4.a.bq 1
1600.4.a.br 1
1600.4.a.bs 1
1600.4.a.bt 1
1600.4.a.bu 1
1600.4.a.bv 1
1600.4.a.bw 1
1600.4.a.bx 1
1600.4.a.by 1
1600.4.a.bz 1
1600.4.a.ca 1
1600.4.a.cb 2
1600.4.a.cc 2
1600.4.a.cd 2
1600.4.a.ce 2
1600.4.a.cf 2
1600.4.a.cg 2
1600.4.a.ch 2
1600.4.a.ci 2
1600.4.a.cj 2
1600.4.a.ck 2
1600.4.a.cl 2
1600.4.a.cm 2
1600.4.a.cn 2
1600.4.a.co 2
1600.4.a.cp 2
1600.4.a.cq 3
1600.4.a.cr 3
1600.4.a.cs 3
1600.4.a.ct 3
1600.4.a.cu 4
1600.4.a.cv 4
1600.4.a.cw 4
1600.4.a.cx 4
1600.4.c \(\chi_{1600}(449, \cdot)\) n/a 106 1
1600.4.d \(\chi_{1600}(801, \cdot)\) n/a 114 1
1600.4.f \(\chi_{1600}(1249, \cdot)\) n/a 108 1
1600.4.j \(\chi_{1600}(143, \cdot)\) n/a 212 2
1600.4.l \(\chi_{1600}(401, \cdot)\) n/a 222 2
1600.4.n \(\chi_{1600}(1343, \cdot)\) n/a 212 2
1600.4.o \(\chi_{1600}(543, \cdot)\) n/a 216 2
1600.4.q \(\chi_{1600}(49, \cdot)\) n/a 212 2
1600.4.s \(\chi_{1600}(207, \cdot)\) n/a 212 2
1600.4.u \(\chi_{1600}(321, \cdot)\) n/a 712 4
1600.4.v \(\chi_{1600}(407, \cdot)\) None 0 4
1600.4.y \(\chi_{1600}(201, \cdot)\) None 0 4
1600.4.ba \(\chi_{1600}(249, \cdot)\) None 0 4
1600.4.bb \(\chi_{1600}(7, \cdot)\) None 0 4
1600.4.be \(\chi_{1600}(289, \cdot)\) n/a 720 4
1600.4.bg \(\chi_{1600}(129, \cdot)\) n/a 712 4
1600.4.bj \(\chi_{1600}(161, \cdot)\) n/a 720 4
1600.4.bl \(\chi_{1600}(43, \cdot)\) n/a 3440 8
1600.4.bm \(\chi_{1600}(101, \cdot)\) n/a 3624 8
1600.4.bn \(\chi_{1600}(149, \cdot)\) n/a 3440 8
1600.4.br \(\chi_{1600}(107, \cdot)\) n/a 3440 8
1600.4.bt \(\chi_{1600}(303, \cdot)\) n/a 1424 8
1600.4.bu \(\chi_{1600}(81, \cdot)\) n/a 1424 8
1600.4.bx \(\chi_{1600}(223, \cdot)\) n/a 1440 8
1600.4.by \(\chi_{1600}(63, \cdot)\) n/a 1424 8
1600.4.cb \(\chi_{1600}(209, \cdot)\) n/a 1424 8
1600.4.cc \(\chi_{1600}(47, \cdot)\) n/a 1424 8
1600.4.cf \(\chi_{1600}(87, \cdot)\) None 0 16
1600.4.cg \(\chi_{1600}(9, \cdot)\) None 0 16
1600.4.ci \(\chi_{1600}(41, \cdot)\) None 0 16
1600.4.cl \(\chi_{1600}(23, \cdot)\) None 0 16
1600.4.cm \(\chi_{1600}(3, \cdot)\) n/a 22976 32
1600.4.cq \(\chi_{1600}(29, \cdot)\) n/a 22976 32
1600.4.cr \(\chi_{1600}(21, \cdot)\) n/a 22976 32
1600.4.cs \(\chi_{1600}(67, \cdot)\) n/a 22976 32

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1600))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1600)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 21}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 18}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 15}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 14}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(160))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(200))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(320))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(400))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(800))\)\(^{\oplus 2}\)