Properties

Label 1600.4.a
Level $1600$
Weight $4$
Character orbit 1600.a
Rep. character $\chi_{1600}(1,\cdot)$
Character field $\Q$
Dimension $111$
Newform subspaces $76$
Sturm bound $960$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1600.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 76 \)
Sturm bound: \(960\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(3\), \(7\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1600))\).

Total New Old
Modular forms 756 117 639
Cusp forms 684 111 573
Eisenstein series 72 6 66

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(27\)
\(+\)\(-\)\(-\)\(28\)
\(-\)\(+\)\(-\)\(26\)
\(-\)\(-\)\(+\)\(30\)
Plus space\(+\)\(57\)
Minus space\(-\)\(54\)

Trace form

\( 111 q + 947 q^{9} + 70 q^{13} + 54 q^{17} - 168 q^{21} - 202 q^{29} - 176 q^{33} - 514 q^{37} - 282 q^{41} + 4559 q^{49} - 34 q^{53} + 400 q^{57} - 162 q^{61} + 1432 q^{69} - 146 q^{73} - 1488 q^{77} + 9247 q^{81}+ \cdots + 582 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1600))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
1600.4.a.a 1600.a 1.a $1$ $94.403$ \(\Q\) None 40.4.a.c \(0\) \(-10\) \(0\) \(-18\) $-$ $+$ $\mathrm{SU}(2)$ \(q-10q^{3}-18q^{7}+73q^{9}-2^{4}q^{11}+\cdots\)
1600.4.a.b 1600.a 1.a $1$ $94.403$ \(\Q\) None 200.4.a.b \(0\) \(-9\) \(0\) \(26\) $-$ $+$ $\mathrm{SU}(2)$ \(q-9q^{3}+26q^{7}+54q^{9}-59q^{11}+\cdots\)
1600.4.a.c 1600.a 1.a $1$ $94.403$ \(\Q\) None 200.4.a.b \(0\) \(-9\) \(0\) \(26\) $+$ $-$ $\mathrm{SU}(2)$ \(q-9q^{3}+26q^{7}+54q^{9}+59q^{11}+\cdots\)
1600.4.a.d 1600.a 1.a $1$ $94.403$ \(\Q\) None 10.4.a.a \(0\) \(-8\) \(0\) \(4\) $+$ $+$ $\mathrm{SU}(2)$ \(q-8q^{3}+4q^{7}+37q^{9}-12q^{11}-58q^{13}+\cdots\)
1600.4.a.e 1600.a 1.a $1$ $94.403$ \(\Q\) None 32.4.a.a \(0\) \(-8\) \(0\) \(16\) $+$ $+$ $\mathrm{SU}(2)$ \(q-8q^{3}+2^{4}q^{7}+37q^{9}-40q^{11}+\cdots\)
1600.4.a.f 1600.a 1.a $1$ $94.403$ \(\Q\) None 50.4.a.a \(0\) \(-7\) \(0\) \(-34\) $+$ $-$ $\mathrm{SU}(2)$ \(q-7q^{3}-34q^{7}+22q^{9}-3^{3}q^{11}+\cdots\)
1600.4.a.g 1600.a 1.a $1$ $94.403$ \(\Q\) None 50.4.a.a \(0\) \(-7\) \(0\) \(-34\) $-$ $+$ $\mathrm{SU}(2)$ \(q-7q^{3}-34q^{7}+22q^{9}+3^{3}q^{11}+\cdots\)
1600.4.a.h 1600.a 1.a $1$ $94.403$ \(\Q\) None 25.4.a.a \(0\) \(-7\) \(0\) \(6\) $-$ $-$ $\mathrm{SU}(2)$ \(q-7q^{3}+6q^{7}+22q^{9}-43q^{11}-28q^{13}+\cdots\)
1600.4.a.i 1600.a 1.a $1$ $94.403$ \(\Q\) None 25.4.a.a \(0\) \(-7\) \(0\) \(6\) $+$ $+$ $\mathrm{SU}(2)$ \(q-7q^{3}+6q^{7}+22q^{9}+43q^{11}+28q^{13}+\cdots\)
1600.4.a.j 1600.a 1.a $1$ $94.403$ \(\Q\) None 40.4.a.a \(0\) \(-6\) \(0\) \(34\) $+$ $+$ $\mathrm{SU}(2)$ \(q-6q^{3}+34q^{7}+9q^{9}-2^{4}q^{11}+58q^{13}+\cdots\)
1600.4.a.k 1600.a 1.a $1$ $94.403$ \(\Q\) None 800.4.a.b \(0\) \(-5\) \(0\) \(-10\) $-$ $+$ $\mathrm{SU}(2)$ \(q-5q^{3}-10q^{7}-2q^{9}-15q^{11}-8q^{13}+\cdots\)
1600.4.a.l 1600.a 1.a $1$ $94.403$ \(\Q\) None 800.4.a.b \(0\) \(-5\) \(0\) \(-10\) $-$ $-$ $\mathrm{SU}(2)$ \(q-5q^{3}-10q^{7}-2q^{9}+15q^{11}+8q^{13}+\cdots\)
1600.4.a.m 1600.a 1.a $1$ $94.403$ \(\Q\) None 200.4.a.c \(0\) \(-5\) \(0\) \(2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-5q^{3}+2q^{7}-2q^{9}-39q^{11}-84q^{13}+\cdots\)
1600.4.a.n 1600.a 1.a $1$ $94.403$ \(\Q\) None 200.4.a.c \(0\) \(-5\) \(0\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-5q^{3}+2q^{7}-2q^{9}+39q^{11}+84q^{13}+\cdots\)
1600.4.a.o 1600.a 1.a $1$ $94.403$ \(\Q\) None 8.4.a.a \(0\) \(-4\) \(0\) \(-24\) $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{3}-24q^{7}-11q^{9}+44q^{11}+\cdots\)
1600.4.a.p 1600.a 1.a $1$ $94.403$ \(\Q\) None 20.4.a.a \(0\) \(-4\) \(0\) \(-16\) $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{3}-2^{4}q^{7}-11q^{9}-60q^{11}+\cdots\)
1600.4.a.q 1600.a 1.a $1$ $94.403$ \(\Q\) None 40.4.a.b \(0\) \(-4\) \(0\) \(16\) $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{3}+2^{4}q^{7}-11q^{9}+6^{2}q^{11}+\cdots\)
1600.4.a.r 1600.a 1.a $1$ $94.403$ \(\Q\) None 160.4.a.a \(0\) \(-2\) \(0\) \(-6\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}-6q^{7}-23q^{9}-60q^{11}+50q^{13}+\cdots\)
1600.4.a.s 1600.a 1.a $1$ $94.403$ \(\Q\) None 5.4.a.a \(0\) \(-2\) \(0\) \(6\) $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+6q^{7}-23q^{9}+2^{5}q^{11}-38q^{13}+\cdots\)
1600.4.a.t 1600.a 1.a $1$ $94.403$ \(\Q\) None 10.4.b.a \(0\) \(-2\) \(0\) \(26\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+26q^{7}-23q^{9}-28q^{11}+\cdots\)
1600.4.a.u 1600.a 1.a $1$ $94.403$ \(\Q\) None 10.4.b.a \(0\) \(-2\) \(0\) \(26\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+26q^{7}-23q^{9}+28q^{11}+\cdots\)
1600.4.a.v 1600.a 1.a $1$ $94.403$ \(\Q\) None 200.4.a.e \(0\) \(-1\) \(0\) \(-6\) $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-6q^{7}-26q^{9}-19q^{11}+12q^{13}+\cdots\)
1600.4.a.w 1600.a 1.a $1$ $94.403$ \(\Q\) None 200.4.a.e \(0\) \(-1\) \(0\) \(-6\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-6q^{7}-26q^{9}+19q^{11}-12q^{13}+\cdots\)
1600.4.a.x 1600.a 1.a $1$ $94.403$ \(\Q\) None 100.4.a.b \(0\) \(-1\) \(0\) \(26\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+26q^{7}-26q^{9}-45q^{11}-44q^{13}+\cdots\)
1600.4.a.y 1600.a 1.a $1$ $94.403$ \(\Q\) None 100.4.a.b \(0\) \(-1\) \(0\) \(26\) $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+26q^{7}-26q^{9}+45q^{11}+44q^{13}+\cdots\)
1600.4.a.z 1600.a 1.a $1$ $94.403$ \(\Q\) \(\Q(\sqrt{-1}) \) 160.4.c.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $N(\mathrm{U}(1))$ \(q-3^{3}q^{9}-92q^{13}-104q^{17}-130q^{29}+\cdots\)
1600.4.a.ba 1600.a 1.a $1$ $94.403$ \(\Q\) \(\Q(\sqrt{-1}) \) 32.4.a.b \(0\) \(0\) \(0\) \(0\) $-$ $+$ $N(\mathrm{U}(1))$ \(q-3^{3}q^{9}-18q^{13}+94q^{17}+130q^{29}+\cdots\)
1600.4.a.bb 1600.a 1.a $1$ $94.403$ \(\Q\) \(\Q(\sqrt{-1}) \) 160.4.c.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $N(\mathrm{U}(1))$ \(q-3^{3}q^{9}+92q^{13}+104q^{17}-130q^{29}+\cdots\)
1600.4.a.bc 1600.a 1.a $1$ $94.403$ \(\Q\) None 100.4.a.b \(0\) \(1\) \(0\) \(-26\) $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-26q^{7}-26q^{9}-45q^{11}+44q^{13}+\cdots\)
1600.4.a.bd 1600.a 1.a $1$ $94.403$ \(\Q\) None 100.4.a.b \(0\) \(1\) \(0\) \(-26\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-26q^{7}-26q^{9}+45q^{11}-44q^{13}+\cdots\)
1600.4.a.be 1600.a 1.a $1$ $94.403$ \(\Q\) None 200.4.a.e \(0\) \(1\) \(0\) \(6\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+6q^{7}-26q^{9}-19q^{11}-12q^{13}+\cdots\)
1600.4.a.bf 1600.a 1.a $1$ $94.403$ \(\Q\) None 200.4.a.e \(0\) \(1\) \(0\) \(6\) $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+6q^{7}-26q^{9}+19q^{11}+12q^{13}+\cdots\)
1600.4.a.bg 1600.a 1.a $1$ $94.403$ \(\Q\) None 10.4.b.a \(0\) \(2\) \(0\) \(-26\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}-26q^{7}-23q^{9}-28q^{11}+\cdots\)
1600.4.a.bh 1600.a 1.a $1$ $94.403$ \(\Q\) None 10.4.b.a \(0\) \(2\) \(0\) \(-26\) $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}-26q^{7}-23q^{9}+28q^{11}+\cdots\)
1600.4.a.bi 1600.a 1.a $1$ $94.403$ \(\Q\) None 5.4.a.a \(0\) \(2\) \(0\) \(-6\) $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}-6q^{7}-23q^{9}-2^{5}q^{11}-38q^{13}+\cdots\)
1600.4.a.bj 1600.a 1.a $1$ $94.403$ \(\Q\) None 160.4.a.a \(0\) \(2\) \(0\) \(6\) $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}+6q^{7}-23q^{9}+60q^{11}+50q^{13}+\cdots\)
1600.4.a.bk 1600.a 1.a $1$ $94.403$ \(\Q\) None 40.4.a.b \(0\) \(4\) \(0\) \(-16\) $+$ $+$ $\mathrm{SU}(2)$ \(q+4q^{3}-2^{4}q^{7}-11q^{9}-6^{2}q^{11}+\cdots\)
1600.4.a.bl 1600.a 1.a $1$ $94.403$ \(\Q\) None 20.4.a.a \(0\) \(4\) \(0\) \(16\) $+$ $+$ $\mathrm{SU}(2)$ \(q+4q^{3}+2^{4}q^{7}-11q^{9}+60q^{11}+\cdots\)
1600.4.a.bm 1600.a 1.a $1$ $94.403$ \(\Q\) None 8.4.a.a \(0\) \(4\) \(0\) \(24\) $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{3}+24q^{7}-11q^{9}-44q^{11}+\cdots\)
1600.4.a.bn 1600.a 1.a $1$ $94.403$ \(\Q\) None 200.4.a.c \(0\) \(5\) \(0\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+5q^{3}-2q^{7}-2q^{9}-39q^{11}+84q^{13}+\cdots\)
1600.4.a.bo 1600.a 1.a $1$ $94.403$ \(\Q\) None 200.4.a.c \(0\) \(5\) \(0\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+5q^{3}-2q^{7}-2q^{9}+39q^{11}-84q^{13}+\cdots\)
1600.4.a.bp 1600.a 1.a $1$ $94.403$ \(\Q\) None 800.4.a.b \(0\) \(5\) \(0\) \(10\) $-$ $-$ $\mathrm{SU}(2)$ \(q+5q^{3}+10q^{7}-2q^{9}-15q^{11}+8q^{13}+\cdots\)
1600.4.a.bq 1600.a 1.a $1$ $94.403$ \(\Q\) None 800.4.a.b \(0\) \(5\) \(0\) \(10\) $-$ $+$ $\mathrm{SU}(2)$ \(q+5q^{3}+10q^{7}-2q^{9}+15q^{11}-8q^{13}+\cdots\)
1600.4.a.br 1600.a 1.a $1$ $94.403$ \(\Q\) None 40.4.a.a \(0\) \(6\) \(0\) \(-34\) $-$ $+$ $\mathrm{SU}(2)$ \(q+6q^{3}-34q^{7}+9q^{9}+2^{4}q^{11}+58q^{13}+\cdots\)
1600.4.a.bs 1600.a 1.a $1$ $94.403$ \(\Q\) None 25.4.a.a \(0\) \(7\) \(0\) \(-6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+7q^{3}-6q^{7}+22q^{9}-43q^{11}+28q^{13}+\cdots\)
1600.4.a.bt 1600.a 1.a $1$ $94.403$ \(\Q\) None 25.4.a.a \(0\) \(7\) \(0\) \(-6\) $+$ $-$ $\mathrm{SU}(2)$ \(q+7q^{3}-6q^{7}+22q^{9}+43q^{11}-28q^{13}+\cdots\)
1600.4.a.bu 1600.a 1.a $1$ $94.403$ \(\Q\) None 50.4.a.a \(0\) \(7\) \(0\) \(34\) $+$ $+$ $\mathrm{SU}(2)$ \(q+7q^{3}+34q^{7}+22q^{9}-3^{3}q^{11}+\cdots\)
1600.4.a.bv 1600.a 1.a $1$ $94.403$ \(\Q\) None 50.4.a.a \(0\) \(7\) \(0\) \(34\) $-$ $-$ $\mathrm{SU}(2)$ \(q+7q^{3}+34q^{7}+22q^{9}+3^{3}q^{11}+\cdots\)
1600.4.a.bw 1600.a 1.a $1$ $94.403$ \(\Q\) None 32.4.a.a \(0\) \(8\) \(0\) \(-16\) $+$ $+$ $\mathrm{SU}(2)$ \(q+8q^{3}-2^{4}q^{7}+37q^{9}+40q^{11}+\cdots\)
1600.4.a.bx 1600.a 1.a $1$ $94.403$ \(\Q\) None 10.4.a.a \(0\) \(8\) \(0\) \(-4\) $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{3}-4q^{7}+37q^{9}+12q^{11}-58q^{13}+\cdots\)
1600.4.a.by 1600.a 1.a $1$ $94.403$ \(\Q\) None 200.4.a.b \(0\) \(9\) \(0\) \(-26\) $-$ $-$ $\mathrm{SU}(2)$ \(q+9q^{3}-26q^{7}+54q^{9}-59q^{11}+\cdots\)
1600.4.a.bz 1600.a 1.a $1$ $94.403$ \(\Q\) None 200.4.a.b \(0\) \(9\) \(0\) \(-26\) $+$ $+$ $\mathrm{SU}(2)$ \(q+9q^{3}-26q^{7}+54q^{9}+59q^{11}+\cdots\)
1600.4.a.ca 1600.a 1.a $1$ $94.403$ \(\Q\) None 40.4.a.c \(0\) \(10\) \(0\) \(18\) $+$ $+$ $\mathrm{SU}(2)$ \(q+10q^{3}+18q^{7}+73q^{9}+2^{4}q^{11}+\cdots\)
1600.4.a.cb 1600.a 1.a $2$ $94.403$ \(\Q(\sqrt{5}) \) \(\Q(\sqrt{-5}) \) 160.4.c.c \(0\) \(-14\) \(0\) \(18\) $+$ $-$ $N(\mathrm{U}(1))$ \(q+(-7-\beta )q^{3}+(9+11\beta )q^{7}+(3^{3}+14\beta )q^{9}+\cdots\)
1600.4.a.cc 1600.a 1.a $2$ $94.403$ \(\Q(\sqrt{29}) \) None 160.4.c.b \(0\) \(-8\) \(0\) \(-8\) $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{3}-4q^{7}-11q^{9}-2\beta q^{11}+\beta q^{13}+\cdots\)
1600.4.a.cd 1600.a 1.a $2$ $94.403$ \(\Q(\sqrt{6}) \) None 160.4.a.c \(0\) \(-8\) \(0\) \(8\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-4+\beta )q^{3}+(4+5\beta )q^{7}+(13-8\beta )q^{9}+\cdots\)
1600.4.a.ce 1600.a 1.a $2$ $94.403$ \(\Q(\sqrt{6}) \) None 40.4.c.a \(0\) \(-4\) \(0\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-2+\beta )q^{3}+(2+3\beta )q^{7}+(1-4\beta )q^{9}+\cdots\)
1600.4.a.cf 1600.a 1.a $2$ $94.403$ \(\Q(\sqrt{6}) \) None 40.4.c.a \(0\) \(-4\) \(0\) \(4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-2+\beta )q^{3}+(2+3\beta )q^{7}+(1-4\beta )q^{9}+\cdots\)
1600.4.a.cg 1600.a 1.a $2$ $94.403$ \(\Q(\sqrt{5}) \) None 160.4.a.d \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{3}-7\beta q^{7}-7q^{9}-2\beta q^{11}-62q^{13}+\cdots\)
1600.4.a.ch 1600.a 1.a $2$ $94.403$ \(\Q(\sqrt{10}) \) None 160.4.a.f \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}-3\beta q^{7}+13q^{9}+2\beta q^{11}+\cdots\)
1600.4.a.ci 1600.a 1.a $2$ $94.403$ \(\Q(\sqrt{13}) \) None 160.4.a.e \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{3}+\beta q^{7}+5^{2}q^{9}+6\beta q^{11}+34q^{13}+\cdots\)
1600.4.a.cj 1600.a 1.a $2$ $94.403$ \(\Q(\sqrt{19}) \) None 20.4.c.a \(0\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}-\beta q^{7}+7^{2}q^{9}-20q^{11}-6\beta q^{13}+\cdots\)
1600.4.a.ck 1600.a 1.a $2$ $94.403$ \(\Q(\sqrt{19}) \) None 20.4.c.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}-\beta q^{7}+7^{2}q^{9}+20q^{11}+6\beta q^{13}+\cdots\)
1600.4.a.cl 1600.a 1.a $2$ $94.403$ \(\Q(\sqrt{6}) \) None 40.4.c.a \(0\) \(4\) \(0\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(2+\beta )q^{3}+(-2+3\beta )q^{7}+(1+4\beta )q^{9}+\cdots\)
1600.4.a.cm 1600.a 1.a $2$ $94.403$ \(\Q(\sqrt{6}) \) None 40.4.c.a \(0\) \(4\) \(0\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(2+\beta )q^{3}+(-2+3\beta )q^{7}+(1+4\beta )q^{9}+\cdots\)
1600.4.a.cn 1600.a 1.a $2$ $94.403$ \(\Q(\sqrt{6}) \) None 160.4.a.c \(0\) \(8\) \(0\) \(-8\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(4+\beta )q^{3}+(-4+5\beta )q^{7}+(13+8\beta )q^{9}+\cdots\)
1600.4.a.co 1600.a 1.a $2$ $94.403$ \(\Q(\sqrt{29}) \) None 160.4.c.b \(0\) \(8\) \(0\) \(8\) $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{3}+4q^{7}-11q^{9}+2\beta q^{11}+\beta q^{13}+\cdots\)
1600.4.a.cp 1600.a 1.a $2$ $94.403$ \(\Q(\sqrt{5}) \) \(\Q(\sqrt{-5}) \) 160.4.c.c \(0\) \(14\) \(0\) \(-18\) $+$ $-$ $N(\mathrm{U}(1))$ \(q+(7-\beta )q^{3}+(-9+11\beta )q^{7}+(3^{3}-14\beta )q^{9}+\cdots\)
1600.4.a.cq 1600.a 1.a $3$ $94.403$ 3.3.5685.1 None 800.4.a.u \(0\) \(-5\) \(0\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-2-\beta _{1})q^{3}+(-1-\beta _{1}-\beta _{2})q^{7}+\cdots\)
1600.4.a.cr 1600.a 1.a $3$ $94.403$ 3.3.5685.1 None 800.4.a.u \(0\) \(-5\) \(0\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-2-\beta _{1})q^{3}+(-1-\beta _{1}-\beta _{2})q^{7}+\cdots\)
1600.4.a.cs 1600.a 1.a $3$ $94.403$ 3.3.5685.1 None 800.4.a.u \(0\) \(5\) \(0\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(2+\beta _{1})q^{3}+(1+\beta _{1}+\beta _{2})q^{7}+(7+\cdots)q^{9}+\cdots\)
1600.4.a.ct 1600.a 1.a $3$ $94.403$ 3.3.5685.1 None 800.4.a.u \(0\) \(5\) \(0\) \(2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(2+\beta _{1})q^{3}+(1+\beta _{1}+\beta _{2})q^{7}+(7+\cdots)q^{9}+\cdots\)
1600.4.a.cu 1600.a 1.a $4$ $94.403$ 4.4.37485.2 None 160.4.c.d \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(-\beta _{1}-\beta _{3})q^{7}+(19-3\beta _{2}+\cdots)q^{9}+\cdots\)
1600.4.a.cv 1600.a 1.a $4$ $94.403$ 4.4.37485.2 None 160.4.c.d \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(-\beta _{1}-\beta _{3})q^{7}+(19-3\beta _{2}+\cdots)q^{9}+\cdots\)
1600.4.a.cw 1600.a 1.a $4$ $94.403$ 4.4.2106005.1 None 800.4.a.ba \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-\beta _{1}+\beta _{3})q^{7}+(24+\beta _{2}+\cdots)q^{9}+\cdots\)
1600.4.a.cx 1600.a 1.a $4$ $94.403$ 4.4.2106005.1 None 800.4.a.ba \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-\beta _{1}+\beta _{3})q^{7}+(24+\beta _{2}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1600))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(1600)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 14}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(320))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(400))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(800))\)\(^{\oplus 2}\)