Properties

Label 1568.2.q.d.1391.4
Level $1568$
Weight $2$
Character 1568.1391
Analytic conductor $12.521$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1568,2,Mod(815,1568)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1568, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1568.815"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1568 = 2^{5} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1568.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,4,0,-8,0,0,0,0,0,0,0,0,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5205430369\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.339738624.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 14x^{4} - 8x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 392)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1391.4
Root \(0.662827 - 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 1568.1391
Dual form 1568.2.q.d.815.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.26303 - 1.30656i) q^{3} +(1.60021 - 2.77164i) q^{5} +(1.91421 - 3.31552i) q^{9} +(-1.00000 - 1.73205i) q^{11} -5.07517 q^{13} -8.36308i q^{15} +(0.274552 - 0.158513i) q^{17} +(4.13779 + 2.38896i) q^{19} +(-1.24264 - 0.717439i) q^{23} +(-2.62132 - 4.54026i) q^{25} -2.16478i q^{27} -9.37769i q^{29} +(1.32565 + 2.29610i) q^{31} +(-4.52607 - 2.61313i) q^{33} +(-2.12132 - 1.22474i) q^{37} +(-11.4853 + 6.63103i) q^{39} -4.46088i q^{41} +8.82843 q^{43} +(-6.12627 - 10.6110i) q^{45} +(-2.65131 + 4.59220i) q^{47} +(0.414214 - 0.717439i) q^{51} +(3.00000 - 1.73205i) q^{53} -6.40083 q^{55} +12.4853 q^{57} +(2.26303 - 1.30656i) q^{59} +(-1.98848 + 3.44415i) q^{61} +(-8.12132 + 14.0665i) q^{65} +(6.00000 + 10.3923i) q^{67} -3.74952 q^{69} +(-1.21193 + 0.699709i) q^{73} +(-11.8643 - 6.84984i) q^{75} +(10.2426 + 5.91359i) q^{79} +(2.91421 + 5.04757i) q^{81} -8.47343i q^{83} -1.01461i q^{85} +(-12.2525 - 21.2220i) q^{87} +(8.55014 + 4.93642i) q^{89} +(6.00000 + 3.46410i) q^{93} +(13.2426 - 7.64564i) q^{95} +3.82683i q^{97} -7.65685 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{9} - 8 q^{11} + 24 q^{23} - 4 q^{25} - 24 q^{39} + 48 q^{43} - 8 q^{51} + 24 q^{53} + 32 q^{57} - 48 q^{65} + 48 q^{67} + 48 q^{79} + 12 q^{81} + 48 q^{93} + 72 q^{95} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1568\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(1471\) \(1473\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.26303 1.30656i 1.30656 0.754344i 0.325042 0.945700i \(-0.394622\pi\)
0.981521 + 0.191355i \(0.0612882\pi\)
\(4\) 0 0
\(5\) 1.60021 2.77164i 0.715634 1.23951i −0.247080 0.968995i \(-0.579471\pi\)
0.962714 0.270520i \(-0.0871955\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.91421 3.31552i 0.638071 1.10517i
\(10\) 0 0
\(11\) −1.00000 1.73205i −0.301511 0.522233i 0.674967 0.737848i \(-0.264158\pi\)
−0.976478 + 0.215615i \(0.930824\pi\)
\(12\) 0 0
\(13\) −5.07517 −1.40760 −0.703800 0.710399i \(-0.748515\pi\)
−0.703800 + 0.710399i \(0.748515\pi\)
\(14\) 0 0
\(15\) 8.36308i 2.15934i
\(16\) 0 0
\(17\) 0.274552 0.158513i 0.0665886 0.0384450i −0.466336 0.884608i \(-0.654426\pi\)
0.532925 + 0.846163i \(0.321093\pi\)
\(18\) 0 0
\(19\) 4.13779 + 2.38896i 0.949275 + 0.548064i 0.892855 0.450343i \(-0.148698\pi\)
0.0564190 + 0.998407i \(0.482032\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.24264 0.717439i −0.259108 0.149596i 0.364819 0.931078i \(-0.381131\pi\)
−0.623928 + 0.781482i \(0.714464\pi\)
\(24\) 0 0
\(25\) −2.62132 4.54026i −0.524264 0.908052i
\(26\) 0 0
\(27\) 2.16478i 0.416613i
\(28\) 0 0
\(29\) 9.37769i 1.74139i −0.491820 0.870697i \(-0.663668\pi\)
0.491820 0.870697i \(-0.336332\pi\)
\(30\) 0 0
\(31\) 1.32565 + 2.29610i 0.238095 + 0.412392i 0.960168 0.279425i \(-0.0901439\pi\)
−0.722073 + 0.691817i \(0.756811\pi\)
\(32\) 0 0
\(33\) −4.52607 2.61313i −0.787887 0.454887i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.12132 1.22474i −0.348743 0.201347i 0.315389 0.948963i \(-0.397865\pi\)
−0.664131 + 0.747616i \(0.731198\pi\)
\(38\) 0 0
\(39\) −11.4853 + 6.63103i −1.83912 + 1.06181i
\(40\) 0 0
\(41\) 4.46088i 0.696673i −0.937370 0.348337i \(-0.886747\pi\)
0.937370 0.348337i \(-0.113253\pi\)
\(42\) 0 0
\(43\) 8.82843 1.34632 0.673161 0.739496i \(-0.264936\pi\)
0.673161 + 0.739496i \(0.264936\pi\)
\(44\) 0 0
\(45\) −6.12627 10.6110i −0.913251 1.58180i
\(46\) 0 0
\(47\) −2.65131 + 4.59220i −0.386733 + 0.669841i −0.992008 0.126175i \(-0.959730\pi\)
0.605275 + 0.796017i \(0.293063\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0.414214 0.717439i 0.0580015 0.100462i
\(52\) 0 0
\(53\) 3.00000 1.73205i 0.412082 0.237915i −0.279602 0.960116i \(-0.590203\pi\)
0.691684 + 0.722200i \(0.256869\pi\)
\(54\) 0 0
\(55\) −6.40083 −0.863087
\(56\) 0 0
\(57\) 12.4853 1.65372
\(58\) 0 0
\(59\) 2.26303 1.30656i 0.294622 0.170100i −0.345402 0.938455i \(-0.612258\pi\)
0.640024 + 0.768355i \(0.278924\pi\)
\(60\) 0 0
\(61\) −1.98848 + 3.44415i −0.254599 + 0.440978i −0.964787 0.263034i \(-0.915277\pi\)
0.710188 + 0.704013i \(0.248610\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −8.12132 + 14.0665i −1.00733 + 1.74474i
\(66\) 0 0
\(67\) 6.00000 + 10.3923i 0.733017 + 1.26962i 0.955588 + 0.294706i \(0.0952216\pi\)
−0.222571 + 0.974916i \(0.571445\pi\)
\(68\) 0 0
\(69\) −3.74952 −0.451389
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −1.21193 + 0.699709i −0.141846 + 0.0818947i −0.569243 0.822169i \(-0.692764\pi\)
0.427398 + 0.904064i \(0.359430\pi\)
\(74\) 0 0
\(75\) −11.8643 6.84984i −1.36997 0.790951i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 10.2426 + 5.91359i 1.15239 + 0.665331i 0.949468 0.313864i \(-0.101624\pi\)
0.202919 + 0.979195i \(0.434957\pi\)
\(80\) 0 0
\(81\) 2.91421 + 5.04757i 0.323802 + 0.560841i
\(82\) 0 0
\(83\) 8.47343i 0.930080i −0.885290 0.465040i \(-0.846040\pi\)
0.885290 0.465040i \(-0.153960\pi\)
\(84\) 0 0
\(85\) 1.01461i 0.110050i
\(86\) 0 0
\(87\) −12.2525 21.2220i −1.31361 2.27524i
\(88\) 0 0
\(89\) 8.55014 + 4.93642i 0.906313 + 0.523260i 0.879243 0.476374i \(-0.158049\pi\)
0.0270697 + 0.999634i \(0.491382\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.00000 + 3.46410i 0.622171 + 0.359211i
\(94\) 0 0
\(95\) 13.2426 7.64564i 1.35867 0.784426i
\(96\) 0 0
\(97\) 3.82683i 0.388556i 0.980946 + 0.194278i \(0.0622364\pi\)
−0.980946 + 0.194278i \(0.937764\pi\)
\(98\) 0 0
\(99\) −7.65685 −0.769543
\(100\) 0 0
\(101\) −3.86324 6.69133i −0.384407 0.665812i 0.607280 0.794488i \(-0.292261\pi\)
−0.991687 + 0.128676i \(0.958927\pi\)
\(102\) 0 0
\(103\) −7.72648 + 13.3827i −0.761313 + 1.31863i 0.180862 + 0.983509i \(0.442111\pi\)
−0.942174 + 0.335124i \(0.891222\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.24264 + 7.34847i −0.410152 + 0.710403i −0.994906 0.100807i \(-0.967858\pi\)
0.584754 + 0.811210i \(0.301191\pi\)
\(108\) 0 0
\(109\) −0.363961 + 0.210133i −0.0348611 + 0.0201271i −0.517329 0.855786i \(-0.673074\pi\)
0.482468 + 0.875914i \(0.339740\pi\)
\(110\) 0 0
\(111\) −6.40083 −0.607539
\(112\) 0 0
\(113\) −16.4853 −1.55080 −0.775402 0.631467i \(-0.782453\pi\)
−0.775402 + 0.631467i \(0.782453\pi\)
\(114\) 0 0
\(115\) −3.97696 + 2.29610i −0.370854 + 0.214112i
\(116\) 0 0
\(117\) −9.71496 + 16.8268i −0.898148 + 1.55564i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) 0 0
\(123\) −5.82843 10.0951i −0.525532 0.910247i
\(124\) 0 0
\(125\) −0.776550 −0.0694568
\(126\) 0 0
\(127\) 5.49333i 0.487454i −0.969844 0.243727i \(-0.921630\pi\)
0.969844 0.243727i \(-0.0783701\pi\)
\(128\) 0 0
\(129\) 19.9790 11.5349i 1.75906 1.01559i
\(130\) 0 0
\(131\) −3.03958 1.75490i −0.265570 0.153327i 0.361303 0.932448i \(-0.382332\pi\)
−0.626873 + 0.779122i \(0.715665\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −6.00000 3.46410i −0.516398 0.298142i
\(136\) 0 0
\(137\) −0.121320 0.210133i −0.0103651 0.0179529i 0.860796 0.508950i \(-0.169966\pi\)
−0.871161 + 0.490997i \(0.836633\pi\)
\(138\) 0 0
\(139\) 5.04054i 0.427533i −0.976885 0.213767i \(-0.931427\pi\)
0.976885 0.213767i \(-0.0685732\pi\)
\(140\) 0 0
\(141\) 13.8564i 1.16692i
\(142\) 0 0
\(143\) 5.07517 + 8.79045i 0.424407 + 0.735095i
\(144\) 0 0
\(145\) −25.9916 15.0062i −2.15848 1.24620i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 17.4853 + 10.0951i 1.43245 + 0.827025i 0.997307 0.0733360i \(-0.0233646\pi\)
0.435143 + 0.900361i \(0.356698\pi\)
\(150\) 0 0
\(151\) 13.2426 7.64564i 1.07767 0.622194i 0.147404 0.989076i \(-0.452908\pi\)
0.930267 + 0.366883i \(0.119575\pi\)
\(152\) 0 0
\(153\) 1.21371i 0.0981225i
\(154\) 0 0
\(155\) 8.48528 0.681554
\(156\) 0 0
\(157\) 11.9780 + 20.7465i 0.955948 + 1.65575i 0.732184 + 0.681107i \(0.238501\pi\)
0.223764 + 0.974643i \(0.428165\pi\)
\(158\) 0 0
\(159\) 4.52607 7.83938i 0.358940 0.621703i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.07107 7.05130i 0.318871 0.552300i −0.661382 0.750049i \(-0.730030\pi\)
0.980253 + 0.197749i \(0.0633631\pi\)
\(164\) 0 0
\(165\) −14.4853 + 8.36308i −1.12768 + 0.651065i
\(166\) 0 0
\(167\) 14.3548 1.11080 0.555402 0.831582i \(-0.312564\pi\)
0.555402 + 0.831582i \(0.312564\pi\)
\(168\) 0 0
\(169\) 12.7574 0.981335
\(170\) 0 0
\(171\) 15.8412 9.14594i 1.21141 0.699408i
\(172\) 0 0
\(173\) −3.47496 + 6.01882i −0.264197 + 0.457602i −0.967353 0.253433i \(-0.918440\pi\)
0.703156 + 0.711035i \(0.251773\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 3.41421 5.91359i 0.256628 0.444493i
\(178\) 0 0
\(179\) −10.2426 17.7408i −0.765571 1.32601i −0.939944 0.341328i \(-0.889123\pi\)
0.174373 0.984680i \(-0.444210\pi\)
\(180\) 0 0
\(181\) −2.10220 −0.156256 −0.0781278 0.996943i \(-0.524894\pi\)
−0.0781278 + 0.996943i \(0.524894\pi\)
\(182\) 0 0
\(183\) 10.3923i 0.768221i
\(184\) 0 0
\(185\) −6.78910 + 3.91969i −0.499145 + 0.288181i
\(186\) 0 0
\(187\) −0.549104 0.317025i −0.0401545 0.0231832i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.2426 + 5.91359i 0.741131 + 0.427892i 0.822481 0.568793i \(-0.192590\pi\)
−0.0813491 + 0.996686i \(0.525923\pi\)
\(192\) 0 0
\(193\) 7.07107 + 12.2474i 0.508987 + 0.881591i 0.999946 + 0.0104081i \(0.00331306\pi\)
−0.490959 + 0.871183i \(0.663354\pi\)
\(194\) 0 0
\(195\) 42.4441i 3.03948i
\(196\) 0 0
\(197\) 26.5241i 1.88977i −0.327409 0.944883i \(-0.606176\pi\)
0.327409 0.944883i \(-0.393824\pi\)
\(198\) 0 0
\(199\) 1.32565 + 2.29610i 0.0939731 + 0.162766i 0.909180 0.416404i \(-0.136710\pi\)
−0.815206 + 0.579170i \(0.803377\pi\)
\(200\) 0 0
\(201\) 27.1564 + 15.6788i 1.91546 + 1.10589i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −12.3640 7.13834i −0.863536 0.498563i
\(206\) 0 0
\(207\) −4.75736 + 2.74666i −0.330659 + 0.190906i
\(208\) 0 0
\(209\) 9.55582i 0.660990i
\(210\) 0 0
\(211\) −20.4853 −1.41026 −0.705132 0.709076i \(-0.749112\pi\)
−0.705132 + 0.709076i \(0.749112\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 14.1273 24.4692i 0.963474 1.66879i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −1.82843 + 3.16693i −0.123554 + 0.214001i
\(220\) 0 0
\(221\) −1.39340 + 0.804479i −0.0937301 + 0.0541151i
\(222\) 0 0
\(223\) −24.5051 −1.64098 −0.820491 0.571659i \(-0.806300\pi\)
−0.820491 + 0.571659i \(0.806300\pi\)
\(224\) 0 0
\(225\) −20.0711 −1.33807
\(226\) 0 0
\(227\) −20.1399 + 11.6278i −1.33673 + 0.771761i −0.986321 0.164836i \(-0.947290\pi\)
−0.350408 + 0.936597i \(0.613957\pi\)
\(228\) 0 0
\(229\) 8.77758 15.2032i 0.580039 1.00466i −0.415435 0.909623i \(-0.636371\pi\)
0.995474 0.0950341i \(-0.0302960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.1213 17.5306i 0.663070 1.14847i −0.316735 0.948514i \(-0.602587\pi\)
0.979805 0.199956i \(-0.0640801\pi\)
\(234\) 0 0
\(235\) 8.48528 + 14.6969i 0.553519 + 0.958723i
\(236\) 0 0
\(237\) 30.9059 2.00756
\(238\) 0 0
\(239\) 13.2621i 0.857851i 0.903340 + 0.428926i \(0.141108\pi\)
−0.903340 + 0.428926i \(0.858892\pi\)
\(240\) 0 0
\(241\) −19.1554 + 11.0594i −1.23391 + 0.712396i −0.967842 0.251559i \(-0.919057\pi\)
−0.266064 + 0.963955i \(0.585723\pi\)
\(242\) 0 0
\(243\) 18.8142 + 10.8624i 1.20693 + 0.696822i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −21.0000 12.1244i −1.33620 0.771454i
\(248\) 0 0
\(249\) −11.0711 19.1757i −0.701600 1.21521i
\(250\) 0 0
\(251\) 19.1886i 1.21117i −0.795780 0.605586i \(-0.792939\pi\)
0.795780 0.605586i \(-0.207061\pi\)
\(252\) 0 0
\(253\) 2.86976i 0.180420i
\(254\) 0 0
\(255\) −1.32565 2.29610i −0.0830157 0.143787i
\(256\) 0 0
\(257\) 7.06365 + 4.07820i 0.440619 + 0.254391i 0.703860 0.710339i \(-0.251458\pi\)
−0.263241 + 0.964730i \(0.584792\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −31.0919 17.9509i −1.92454 1.11113i
\(262\) 0 0
\(263\) −7.75736 + 4.47871i −0.478339 + 0.276169i −0.719724 0.694260i \(-0.755732\pi\)
0.241385 + 0.970429i \(0.422398\pi\)
\(264\) 0 0
\(265\) 11.0866i 0.681042i
\(266\) 0 0
\(267\) 25.7990 1.57887
\(268\) 0 0
\(269\) 1.21193 + 2.09913i 0.0738927 + 0.127986i 0.900604 0.434640i \(-0.143124\pi\)
−0.826711 + 0.562626i \(0.809791\pi\)
\(270\) 0 0
\(271\) 6.62827 11.4805i 0.402639 0.697391i −0.591405 0.806375i \(-0.701426\pi\)
0.994044 + 0.108984i \(0.0347597\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5.24264 + 9.08052i −0.316143 + 0.547576i
\(276\) 0 0
\(277\) 14.4853 8.36308i 0.870336 0.502489i 0.00287626 0.999996i \(-0.499084\pi\)
0.867460 + 0.497507i \(0.165751\pi\)
\(278\) 0 0
\(279\) 10.1503 0.607685
\(280\) 0 0
\(281\) 8.72792 0.520664 0.260332 0.965519i \(-0.416168\pi\)
0.260332 + 0.965519i \(0.416168\pi\)
\(282\) 0 0
\(283\) 0.160829 0.0928546i 0.00956028 0.00551963i −0.495212 0.868772i \(-0.664910\pi\)
0.504773 + 0.863252i \(0.331576\pi\)
\(284\) 0 0
\(285\) 19.9790 34.6047i 1.18346 2.04980i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.44975 + 14.6354i −0.497044 + 0.860905i
\(290\) 0 0
\(291\) 5.00000 + 8.66025i 0.293105 + 0.507673i
\(292\) 0 0
\(293\) 5.07517 0.296495 0.148247 0.988950i \(-0.452637\pi\)
0.148247 + 0.988950i \(0.452637\pi\)
\(294\) 0 0
\(295\) 8.36308i 0.486917i
\(296\) 0 0
\(297\) −3.74952 + 2.16478i −0.217569 + 0.125614i
\(298\) 0 0
\(299\) 6.30661 + 3.64113i 0.364721 + 0.210572i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −17.4853 10.0951i −1.00450 0.579950i
\(304\) 0 0
\(305\) 6.36396 + 11.0227i 0.364399 + 0.631158i
\(306\) 0 0
\(307\) 6.04601i 0.345064i −0.985004 0.172532i \(-0.944805\pi\)
0.985004 0.172532i \(-0.0551948\pi\)
\(308\) 0 0
\(309\) 40.3805i 2.29717i
\(310\) 0 0
\(311\) 13.5782 + 23.5181i 0.769949 + 1.33359i 0.937590 + 0.347743i \(0.113052\pi\)
−0.167641 + 0.985848i \(0.553615\pi\)
\(312\) 0 0
\(313\) 9.16586 + 5.29191i 0.518085 + 0.299116i 0.736151 0.676818i \(-0.236641\pi\)
−0.218066 + 0.975934i \(0.569975\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.51472 2.02922i −0.197406 0.113973i 0.398039 0.917369i \(-0.369691\pi\)
−0.595445 + 0.803396i \(0.703024\pi\)
\(318\) 0 0
\(319\) −16.2426 + 9.37769i −0.909413 + 0.525050i
\(320\) 0 0
\(321\) 22.1731i 1.23758i
\(322\) 0 0
\(323\) 1.51472 0.0842812
\(324\) 0 0
\(325\) 13.3036 + 23.0426i 0.737954 + 1.27817i
\(326\) 0 0
\(327\) −0.549104 + 0.951076i −0.0303655 + 0.0525946i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 10.4142 18.0379i 0.572417 0.991455i −0.423900 0.905709i \(-0.639339\pi\)
0.996317 0.0857463i \(-0.0273274\pi\)
\(332\) 0 0
\(333\) −8.12132 + 4.68885i −0.445046 + 0.256947i
\(334\) 0 0
\(335\) 38.4050 2.09829
\(336\) 0 0
\(337\) 4.24264 0.231111 0.115556 0.993301i \(-0.463135\pi\)
0.115556 + 0.993301i \(0.463135\pi\)
\(338\) 0 0
\(339\) −37.3067 + 21.5391i −2.02622 + 1.16984i
\(340\) 0 0
\(341\) 2.65131 4.59220i 0.143576 0.248682i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −6.00000 + 10.3923i −0.323029 + 0.559503i
\(346\) 0 0
\(347\) 3.48528 + 6.03668i 0.187100 + 0.324066i 0.944282 0.329137i \(-0.106758\pi\)
−0.757182 + 0.653204i \(0.773425\pi\)
\(348\) 0 0
\(349\) −22.4029 −1.19920 −0.599600 0.800300i \(-0.704673\pi\)
−0.599600 + 0.800300i \(0.704673\pi\)
\(350\) 0 0
\(351\) 10.9867i 0.586424i
\(352\) 0 0
\(353\) −11.3623 + 6.56001i −0.604753 + 0.349154i −0.770909 0.636945i \(-0.780198\pi\)
0.166156 + 0.986099i \(0.446864\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.0000 + 8.66025i 0.791670 + 0.457071i 0.840550 0.541734i \(-0.182232\pi\)
−0.0488803 + 0.998805i \(0.515565\pi\)
\(360\) 0 0
\(361\) 1.91421 + 3.31552i 0.100748 + 0.174501i
\(362\) 0 0
\(363\) 18.2919i 0.960075i
\(364\) 0 0
\(365\) 4.47871i 0.234427i
\(366\) 0 0
\(367\) 8.50303 + 14.7277i 0.443855 + 0.768779i 0.997972 0.0636601i \(-0.0202774\pi\)
−0.554117 + 0.832439i \(0.686944\pi\)
\(368\) 0 0
\(369\) −14.7901 8.53909i −0.769944 0.444527i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 7.97056 + 4.60181i 0.412700 + 0.238273i 0.691949 0.721946i \(-0.256752\pi\)
−0.279249 + 0.960219i \(0.590086\pi\)
\(374\) 0 0
\(375\) −1.75736 + 1.01461i −0.0907496 + 0.0523943i
\(376\) 0 0
\(377\) 47.5934i 2.45118i
\(378\) 0 0
\(379\) −17.3137 −0.889345 −0.444673 0.895693i \(-0.646680\pi\)
−0.444673 + 0.895693i \(0.646680\pi\)
\(380\) 0 0
\(381\) −7.17738 12.4316i −0.367708 0.636889i
\(382\) 0 0
\(383\) −2.65131 + 4.59220i −0.135476 + 0.234651i −0.925779 0.378065i \(-0.876590\pi\)
0.790303 + 0.612716i \(0.209923\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 16.8995 29.2708i 0.859050 1.48792i
\(388\) 0 0
\(389\) −3.15076 + 1.81909i −0.159750 + 0.0922316i −0.577744 0.816218i \(-0.696067\pi\)
0.417994 + 0.908450i \(0.362733\pi\)
\(390\) 0 0
\(391\) −0.454893 −0.0230049
\(392\) 0 0
\(393\) −9.17157 −0.462645
\(394\) 0 0
\(395\) 32.7807 18.9259i 1.64937 0.952267i
\(396\) 0 0
\(397\) −12.1388 + 21.0251i −0.609230 + 1.05522i 0.382137 + 0.924105i \(0.375188\pi\)
−0.991368 + 0.131112i \(0.958145\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.87868 + 6.71807i −0.193692 + 0.335484i −0.946471 0.322789i \(-0.895380\pi\)
0.752779 + 0.658273i \(0.228713\pi\)
\(402\) 0 0
\(403\) −6.72792 11.6531i −0.335142 0.580482i
\(404\) 0 0
\(405\) 18.6534 0.926893
\(406\) 0 0
\(407\) 4.89898i 0.242833i
\(408\) 0 0
\(409\) −3.31414 + 1.91342i −0.163873 + 0.0946124i −0.579694 0.814834i \(-0.696828\pi\)
0.415820 + 0.909447i \(0.363495\pi\)
\(410\) 0 0
\(411\) −0.549104 0.317025i −0.0270853 0.0156377i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −23.4853 13.5592i −1.15285 0.665597i
\(416\) 0 0
\(417\) −6.58579 11.4069i −0.322507 0.558599i
\(418\) 0 0
\(419\) 39.8309i 1.94587i 0.231082 + 0.972934i \(0.425774\pi\)
−0.231082 + 0.972934i \(0.574226\pi\)
\(420\) 0 0
\(421\) 26.5241i 1.29271i 0.763038 + 0.646353i \(0.223707\pi\)
−0.763038 + 0.646353i \(0.776293\pi\)
\(422\) 0 0
\(423\) 10.1503 + 17.5809i 0.493527 + 0.854813i
\(424\) 0 0
\(425\) −1.43938 0.831025i −0.0698201 0.0403106i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 22.9706 + 13.2621i 1.10903 + 0.640298i
\(430\) 0 0
\(431\) 6.51472 3.76127i 0.313803 0.181174i −0.334824 0.942281i \(-0.608677\pi\)
0.648627 + 0.761106i \(0.275344\pi\)
\(432\) 0 0
\(433\) 5.17186i 0.248544i −0.992248 0.124272i \(-0.960341\pi\)
0.992248 0.124272i \(-0.0396595\pi\)
\(434\) 0 0
\(435\) −78.4264 −3.76026
\(436\) 0 0
\(437\) −3.42786 5.93723i −0.163977 0.284016i
\(438\) 0 0
\(439\) −17.8768 + 30.9636i −0.853214 + 1.47781i 0.0250778 + 0.999686i \(0.492017\pi\)
−0.878292 + 0.478125i \(0.841317\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −14.1421 + 24.4949i −0.671913 + 1.16379i 0.305448 + 0.952209i \(0.401194\pi\)
−0.977361 + 0.211579i \(0.932139\pi\)
\(444\) 0 0
\(445\) 27.3640 15.7986i 1.29718 0.748925i
\(446\) 0 0
\(447\) 52.7597 2.49545
\(448\) 0 0
\(449\) −5.65685 −0.266963 −0.133482 0.991051i \(-0.542616\pi\)
−0.133482 + 0.991051i \(0.542616\pi\)
\(450\) 0 0
\(451\) −7.72648 + 4.46088i −0.363826 + 0.210055i
\(452\) 0 0
\(453\) 19.9790 34.6047i 0.938697 1.62587i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 10.5858 18.3351i 0.495182 0.857681i −0.504802 0.863235i \(-0.668435\pi\)
0.999985 + 0.00555421i \(0.00176797\pi\)
\(458\) 0 0
\(459\) −0.343146 0.594346i −0.0160167 0.0277417i
\(460\) 0 0
\(461\) −26.6073 −1.23923 −0.619613 0.784908i \(-0.712710\pi\)
−0.619613 + 0.784908i \(0.712710\pi\)
\(462\) 0 0
\(463\) 18.7554i 0.871637i 0.900035 + 0.435818i \(0.143541\pi\)
−0.900035 + 0.435818i \(0.856459\pi\)
\(464\) 0 0
\(465\) 19.2025 11.0866i 0.890493 0.514127i
\(466\) 0 0
\(467\) −0.0666175 0.0384616i −0.00308269 0.00177979i 0.498458 0.866914i \(-0.333900\pi\)
−0.501541 + 0.865134i \(0.667233\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 54.2132 + 31.3000i 2.49801 + 1.44223i
\(472\) 0 0
\(473\) −8.82843 15.2913i −0.405932 0.703094i
\(474\) 0 0
\(475\) 25.0489i 1.14932i
\(476\) 0 0
\(477\) 13.2621i 0.607228i
\(478\) 0 0
\(479\) −5.85172 10.1355i −0.267372 0.463102i 0.700810 0.713348i \(-0.252822\pi\)
−0.968182 + 0.250246i \(0.919489\pi\)
\(480\) 0 0
\(481\) 10.7661 + 6.21579i 0.490890 + 0.283416i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.6066 + 6.12372i 0.481621 + 0.278064i
\(486\) 0 0
\(487\) 29.4853 17.0233i 1.33611 0.771401i 0.349878 0.936795i \(-0.386223\pi\)
0.986228 + 0.165394i \(0.0528897\pi\)
\(488\) 0 0
\(489\) 21.2764i 0.962153i
\(490\) 0 0
\(491\) 31.7990 1.43507 0.717534 0.696523i \(-0.245271\pi\)
0.717534 + 0.696523i \(0.245271\pi\)
\(492\) 0 0
\(493\) −1.48648 2.57466i −0.0669478 0.115957i
\(494\) 0 0
\(495\) −12.2525 + 21.2220i −0.550711 + 0.953859i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −4.24264 + 7.34847i −0.189927 + 0.328963i −0.945226 0.326418i \(-0.894158\pi\)
0.755299 + 0.655380i \(0.227492\pi\)
\(500\) 0 0
\(501\) 32.4853 18.7554i 1.45134 0.837929i
\(502\) 0 0
\(503\) −24.5051 −1.09263 −0.546314 0.837580i \(-0.683969\pi\)
−0.546314 + 0.837580i \(0.683969\pi\)
\(504\) 0 0
\(505\) −24.7279 −1.10038
\(506\) 0 0
\(507\) 28.8703 16.6683i 1.28218 0.740265i
\(508\) 0 0
\(509\) −7.06365 + 12.2346i −0.313091 + 0.542289i −0.979030 0.203717i \(-0.934698\pi\)
0.665939 + 0.746006i \(0.268031\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 5.17157 8.95743i 0.228331 0.395480i
\(514\) 0 0
\(515\) 24.7279 + 42.8300i 1.08964 + 1.88732i
\(516\) 0 0
\(517\) 10.6052 0.466418
\(518\) 0 0
\(519\) 18.1610i 0.797181i
\(520\) 0 0
\(521\) 16.1158 9.30445i 0.706045 0.407636i −0.103550 0.994624i \(-0.533020\pi\)
0.809595 + 0.586989i \(0.199687\pi\)
\(522\) 0 0
\(523\) −28.4154 16.4057i −1.24252 0.717369i −0.272914 0.962039i \(-0.587987\pi\)
−0.969607 + 0.244669i \(0.921321\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.727922 + 0.420266i 0.0317088 + 0.0183071i
\(528\) 0 0
\(529\) −10.4706 18.1355i −0.455242 0.788502i
\(530\) 0 0
\(531\) 10.0042i 0.434144i
\(532\) 0 0
\(533\) 22.6398i 0.980637i
\(534\) 0 0
\(535\) 13.5782 + 23.5181i 0.587037 + 1.01678i
\(536\) 0 0
\(537\) −46.3589 26.7653i −2.00053 1.15501i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −28.4558 16.4290i −1.22341 0.706337i −0.257768 0.966207i \(-0.582987\pi\)
−0.965644 + 0.259869i \(0.916321\pi\)
\(542\) 0 0
\(543\) −4.75736 + 2.74666i −0.204158 + 0.117871i
\(544\) 0 0
\(545\) 1.34502i 0.0576145i
\(546\) 0 0
\(547\) 15.1716 0.648690 0.324345 0.945939i \(-0.394856\pi\)
0.324345 + 0.945939i \(0.394856\pi\)
\(548\) 0 0
\(549\) 7.61276 + 13.1857i 0.324905 + 0.562751i
\(550\) 0 0
\(551\) 22.4029 38.8029i 0.954395 1.65306i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −10.2426 + 17.7408i −0.434776 + 0.753054i
\(556\) 0 0
\(557\) 14.4853 8.36308i 0.613761 0.354355i −0.160675 0.987007i \(-0.551367\pi\)
0.774436 + 0.632652i \(0.218034\pi\)
\(558\) 0 0
\(559\) −44.8058 −1.89508
\(560\) 0 0
\(561\) −1.65685 −0.0699524
\(562\) 0 0
\(563\) 14.5156 8.38057i 0.611759 0.353199i −0.161895 0.986808i \(-0.551760\pi\)
0.773653 + 0.633609i \(0.218427\pi\)
\(564\) 0 0
\(565\) −26.3799 + 45.6912i −1.10981 + 1.92225i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.05025 + 12.2114i −0.295562 + 0.511928i −0.975115 0.221698i \(-0.928840\pi\)
0.679554 + 0.733626i \(0.262174\pi\)
\(570\) 0 0
\(571\) −11.8284 20.4874i −0.495004 0.857373i 0.504979 0.863132i \(-0.331500\pi\)
−0.999983 + 0.00575900i \(0.998167\pi\)
\(572\) 0 0
\(573\) 30.9059 1.29111
\(574\) 0 0
\(575\) 7.52255i 0.313712i
\(576\) 0 0
\(577\) −1.82765 + 1.05520i −0.0760862 + 0.0439284i −0.537560 0.843225i \(-0.680654\pi\)
0.461474 + 0.887154i \(0.347321\pi\)
\(578\) 0 0
\(579\) 32.0041 + 18.4776i 1.33005 + 0.767902i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −6.00000 3.46410i −0.248495 0.143468i
\(584\) 0 0
\(585\) 31.0919 + 53.8527i 1.28549 + 2.22654i
\(586\) 0 0
\(587\) 43.2638i 1.78569i 0.450365 + 0.892845i \(0.351294\pi\)
−0.450365 + 0.892845i \(0.648706\pi\)
\(588\) 0 0
\(589\) 12.6677i 0.521964i
\(590\) 0 0
\(591\) −34.6554 60.0250i −1.42553 2.46910i
\(592\) 0 0
\(593\) 10.6523 + 6.15013i 0.437439 + 0.252556i 0.702511 0.711673i \(-0.252062\pi\)
−0.265072 + 0.964229i \(0.585396\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.00000 + 3.46410i 0.245564 + 0.141776i
\(598\) 0 0
\(599\) −30.7279 + 17.7408i −1.25551 + 0.724868i −0.972198 0.234160i \(-0.924766\pi\)
−0.283311 + 0.959028i \(0.591433\pi\)
\(600\) 0 0
\(601\) 35.1843i 1.43520i −0.696456 0.717600i \(-0.745241\pi\)
0.696456 0.717600i \(-0.254759\pi\)
\(602\) 0 0
\(603\) 45.9411 1.87087
\(604\) 0 0
\(605\) −11.2014 19.4015i −0.455403 0.788782i
\(606\) 0 0
\(607\) −12.8017 + 22.1731i −0.519603 + 0.899979i 0.480137 + 0.877193i \(0.340587\pi\)
−0.999740 + 0.0227854i \(0.992747\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 13.4558 23.3062i 0.544365 0.942868i
\(612\) 0 0
\(613\) −23.3345 + 13.4722i −0.942473 + 0.544137i −0.890735 0.454524i \(-0.849809\pi\)
−0.0517380 + 0.998661i \(0.516476\pi\)
\(614\) 0 0
\(615\) −37.3067 −1.50435
\(616\) 0 0
\(617\) −9.21320 −0.370910 −0.185455 0.982653i \(-0.559376\pi\)
−0.185455 + 0.982653i \(0.559376\pi\)
\(618\) 0 0
\(619\) −25.2150 + 14.5579i −1.01348 + 0.585131i −0.912208 0.409728i \(-0.865624\pi\)
−0.101270 + 0.994859i \(0.532290\pi\)
\(620\) 0 0
\(621\) −1.55310 + 2.69005i −0.0623238 + 0.107948i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 11.8640 20.5490i 0.474558 0.821959i
\(626\) 0 0
\(627\) −12.4853 21.6251i −0.498614 0.863625i
\(628\) 0 0
\(629\) −0.776550 −0.0309631
\(630\) 0 0
\(631\) 29.7420i 1.18401i −0.805934 0.592006i \(-0.798336\pi\)
0.805934 0.592006i \(-0.201664\pi\)
\(632\) 0 0
\(633\) −46.3589 + 26.7653i −1.84260 + 1.06383i
\(634\) 0 0
\(635\) −15.2255 8.79045i −0.604206 0.348839i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.46447 + 14.6609i 0.334326 + 0.579070i 0.983355 0.181694i \(-0.0581579\pi\)
−0.649029 + 0.760764i \(0.724825\pi\)
\(642\) 0 0
\(643\) 36.3981i 1.43540i 0.696353 + 0.717700i \(0.254805\pi\)
−0.696353 + 0.717700i \(0.745195\pi\)
\(644\) 0 0
\(645\) 73.8329i 2.90717i
\(646\) 0 0
\(647\) −5.85172 10.1355i −0.230055 0.398467i 0.727769 0.685822i \(-0.240557\pi\)
−0.957824 + 0.287355i \(0.907224\pi\)
\(648\) 0 0
\(649\) −4.52607 2.61313i −0.177664 0.102574i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 30.3640 + 17.5306i 1.18823 + 0.686027i 0.957905 0.287086i \(-0.0926865\pi\)
0.230329 + 0.973113i \(0.426020\pi\)
\(654\) 0 0
\(655\) −9.72792 + 5.61642i −0.380101 + 0.219452i
\(656\) 0 0
\(657\) 5.35757i 0.209019i
\(658\) 0 0
\(659\) −25.5147 −0.993912 −0.496956 0.867776i \(-0.665549\pi\)
−0.496956 + 0.867776i \(0.665549\pi\)
\(660\) 0 0
\(661\) −10.4249 18.0564i −0.405481 0.702314i 0.588896 0.808209i \(-0.299563\pi\)
−0.994377 + 0.105894i \(0.966229\pi\)
\(662\) 0 0
\(663\) −2.10220 + 3.64113i −0.0816429 + 0.141410i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −6.72792 + 11.6531i −0.260506 + 0.451210i
\(668\) 0 0
\(669\) −55.4558 + 32.0174i −2.14405 + 1.23787i
\(670\) 0 0
\(671\) 7.95393 0.307058
\(672\) 0 0
\(673\) 30.3848 1.17125 0.585624 0.810583i \(-0.300850\pi\)
0.585624 + 0.810583i \(0.300850\pi\)
\(674\) 0 0
\(675\) −9.82868 + 5.67459i −0.378306 + 0.218415i
\(676\) 0 0
\(677\) −0.501998 + 0.869487i −0.0192934 + 0.0334171i −0.875511 0.483198i \(-0.839475\pi\)
0.856218 + 0.516615i \(0.172808\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −30.3848 + 52.6280i −1.16435 + 2.01671i
\(682\) 0 0
\(683\) −7.07107 12.2474i −0.270567 0.468636i 0.698440 0.715668i \(-0.253878\pi\)
−0.969007 + 0.247033i \(0.920544\pi\)
\(684\) 0 0
\(685\) −0.776550 −0.0296705
\(686\) 0 0
\(687\) 45.8739i 1.75020i
\(688\) 0 0
\(689\) −15.2255 + 8.79045i −0.580046 + 0.334890i
\(690\) 0 0
\(691\) 17.2611 + 9.96570i 0.656643 + 0.379113i 0.790997 0.611820i \(-0.209562\pi\)
−0.134354 + 0.990933i \(0.542896\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −13.9706 8.06591i −0.529934 0.305957i
\(696\) 0 0
\(697\) −0.707107 1.22474i −0.0267836 0.0463905i
\(698\) 0 0
\(699\) 52.8966i 2.00073i
\(700\) 0 0
\(701\) 6.15978i 0.232652i −0.993211 0.116326i \(-0.962888\pi\)
0.993211 0.116326i \(-0.0371117\pi\)
\(702\) 0 0
\(703\) −5.85172 10.1355i −0.220702 0.382267i
\(704\) 0 0
\(705\) 38.4050 + 22.1731i 1.44641 + 0.835088i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −31.8198 18.3712i −1.19502 0.689944i −0.235578 0.971856i \(-0.575698\pi\)
−0.959440 + 0.281912i \(0.909031\pi\)
\(710\) 0 0
\(711\) 39.2132 22.6398i 1.47061 0.849057i
\(712\) 0 0
\(713\) 3.80430i 0.142472i
\(714\) 0 0
\(715\) 32.4853 1.21488
\(716\) 0 0
\(717\) 17.3277 + 30.0125i 0.647115 + 1.12084i
\(718\) 0 0
\(719\) 14.6764 25.4203i 0.547338 0.948017i −0.451118 0.892464i \(-0.648975\pi\)
0.998456 0.0555524i \(-0.0176920\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −28.8995 + 50.0554i −1.07478 + 1.86158i
\(724\) 0 0
\(725\) −42.5772 + 24.5819i −1.58128 + 0.912950i
\(726\) 0 0
\(727\) 43.0643 1.59716 0.798582 0.601886i \(-0.205584\pi\)
0.798582 + 0.601886i \(0.205584\pi\)
\(728\) 0 0
\(729\) 39.2843 1.45497
\(730\) 0 0
\(731\) 2.42386 1.39942i 0.0896498 0.0517593i
\(732\) 0 0
\(733\) 3.70241 6.41276i 0.136752 0.236861i −0.789514 0.613733i \(-0.789667\pi\)
0.926265 + 0.376872i \(0.123000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.0000 20.7846i 0.442026 0.765611i
\(738\) 0 0
\(739\) 7.58579 + 13.1390i 0.279048 + 0.483325i 0.971148 0.238476i \(-0.0766479\pi\)
−0.692101 + 0.721801i \(0.743315\pi\)
\(740\) 0 0
\(741\) −63.3649 −2.32777
\(742\) 0 0
\(743\) 13.2621i 0.486538i −0.969959 0.243269i \(-0.921780\pi\)
0.969959 0.243269i \(-0.0782197\pi\)
\(744\) 0 0
\(745\) 55.9601 32.3086i 2.05022 1.18370i
\(746\) 0 0
\(747\) −28.0938 16.2200i −1.02790 0.593457i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −30.9411 17.8639i −1.12906 0.651862i −0.185360 0.982671i \(-0.559345\pi\)
−0.943698 + 0.330809i \(0.892678\pi\)
\(752\) 0 0
\(753\) −25.0711 43.4244i −0.913641 1.58247i
\(754\) 0 0
\(755\) 48.9384i 1.78105i
\(756\) 0 0
\(757\) 35.9018i 1.30487i −0.757843 0.652437i \(-0.773747\pi\)
0.757843 0.652437i \(-0.226253\pi\)
\(758\) 0 0
\(759\) 3.74952 + 6.49435i 0.136099 + 0.235730i
\(760\) 0 0
\(761\) −18.9279 10.9280i −0.686137 0.396141i 0.116026 0.993246i \(-0.462984\pi\)
−0.802163 + 0.597105i \(0.796318\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −3.36396 1.94218i −0.121624 0.0702198i
\(766\) 0 0
\(767\) −11.4853 + 6.63103i −0.414709 + 0.239433i
\(768\) 0 0
\(769\) 46.1940i 1.66580i −0.553425 0.832899i \(-0.686680\pi\)
0.553425 0.832899i \(-0.313320\pi\)
\(770\) 0 0
\(771\) 21.3137 0.767594
\(772\) 0 0
\(773\) −15.5001 26.8469i −0.557499 0.965616i −0.997704 0.0677190i \(-0.978428\pi\)
0.440206 0.897897i \(-0.354905\pi\)
\(774\) 0 0
\(775\) 6.94993 12.0376i 0.249649 0.432404i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 10.6569 18.4582i 0.381821 0.661334i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −20.3007 −0.725487
\(784\) 0 0
\(785\) 76.6690 2.73644
\(786\) 0 0
\(787\) −33.6238 + 19.4127i −1.19856 + 0.691989i −0.960234 0.279196i \(-0.909932\pi\)
−0.238326 + 0.971185i \(0.576599\pi\)
\(788\) 0 0
\(789\) −11.7034 + 20.2710i −0.416654 + 0.721665i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 10.0919 17.4797i 0.358373 0.620721i
\(794\) 0 0
\(795\) −14.4853 25.0892i −0.513740 0.889824i
\(796\) 0 0
\(797\) 13.4840 0.477627 0.238814 0.971065i \(-0.423241\pi\)
0.238814 + 0.971065i \(0.423241\pi\)
\(798\) 0 0
\(799\) 1.68106i 0.0594718i
\(800\) 0 0
\(801\) 32.7336 18.8987i 1.15658 0.667754i
\(802\) 0 0
\(803\) 2.42386 + 1.39942i 0.0855362 + 0.0493844i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 5.48528 + 3.16693i 0.193091 + 0.111481i
\(808\) 0 0
\(809\) 7.72792 + 13.3852i 0.271699 + 0.470597i 0.969297 0.245893i \(-0.0790811\pi\)
−0.697598 + 0.716490i \(0.745748\pi\)
\(810\) 0 0
\(811\) 28.4818i 1.00013i −0.865988 0.500065i \(-0.833310\pi\)
0.865988 0.500065i \(-0.166690\pi\)
\(812\) 0 0
\(813\) 34.6410i 1.21491i
\(814\) 0 0
\(815\) −13.0291 22.5671i −0.456389 0.790490i
\(816\) 0 0
\(817\) 36.5302 + 21.0907i 1.27803 + 0.737871i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 15.5147 + 8.95743i 0.541467 + 0.312616i 0.745673 0.666312i \(-0.232128\pi\)
−0.204206 + 0.978928i \(0.565461\pi\)
\(822\) 0 0
\(823\) 18.0000 10.3923i 0.627441 0.362253i −0.152320 0.988331i \(-0.548674\pi\)
0.779760 + 0.626078i \(0.215341\pi\)
\(824\) 0 0
\(825\) 27.3994i 0.953923i
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) 8.38931 + 14.5307i 0.291373 + 0.504672i 0.974135 0.225969i \(-0.0725547\pi\)
−0.682762 + 0.730641i \(0.739221\pi\)
\(830\) 0 0
\(831\) 21.8538 37.8519i 0.758099 1.31307i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 22.9706 39.7862i 0.794929 1.37686i
\(836\) 0 0
\(837\) 4.97056 2.86976i 0.171808 0.0991933i
\(838\) 0 0
\(839\) −30.4510 −1.05129 −0.525643 0.850705i \(-0.676175\pi\)
−0.525643 + 0.850705i \(0.676175\pi\)
\(840\) 0 0
\(841\) −58.9411 −2.03245
\(842\) 0 0
\(843\) 19.7516 11.4036i 0.680281 0.392760i
\(844\) 0 0
\(845\) 20.4144 35.3588i 0.702277 1.21638i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0.242641 0.420266i 0.00832741 0.0144235i
\(850\) 0 0
\(851\) 1.75736 + 3.04384i 0.0602415 + 0.104341i
\(852\) 0 0
\(853\) −32.5532 −1.11460 −0.557301 0.830311i \(-0.688163\pi\)
−0.557301 + 0.830311i \(0.688163\pi\)
\(854\) 0 0
\(855\) 58.5416i 2.00208i
\(856\) 0 0
\(857\) 29.8548 17.2367i 1.01982 0.588794i 0.105769 0.994391i \(-0.466270\pi\)
0.914052 + 0.405597i \(0.132936\pi\)
\(858\) 0 0
\(859\) −38.5658 22.2660i −1.31585 0.759705i −0.332790 0.943001i \(-0.607990\pi\)
−0.983058 + 0.183296i \(0.941323\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.51472 + 2.02922i 0.119642 + 0.0690756i 0.558627 0.829419i \(-0.311328\pi\)
−0.438985 + 0.898495i \(0.644662\pi\)
\(864\) 0 0
\(865\) 11.1213 + 19.2627i 0.378136 + 0.654951i
\(866\) 0 0
\(867\) 44.1605i 1.49977i
\(868\) 0 0
\(869\) 23.6544i 0.802419i
\(870\) 0 0
\(871\) −30.4510 52.7427i −1.03179 1.78712i
\(872\) 0 0
\(873\) 12.6879 + 7.32538i 0.429421 + 0.247926i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −27.8787 16.0958i −0.941396 0.543515i −0.0509984 0.998699i \(-0.516240\pi\)
−0.890398 + 0.455183i \(0.849574\pi\)
\(878\) 0 0
\(879\) 11.4853 6.63103i 0.387389 0.223659i
\(880\) 0 0
\(881\) 34.8448i 1.17395i 0.809605 + 0.586975i \(0.199681\pi\)
−0.809605 + 0.586975i \(0.800319\pi\)
\(882\) 0 0
\(883\) −38.4264 −1.29315 −0.646576 0.762850i \(-0.723800\pi\)
−0.646576 + 0.762850i \(0.723800\pi\)
\(884\) 0 0
\(885\) −10.9269 18.9259i −0.367303 0.636188i
\(886\) 0 0
\(887\) −19.9790 + 34.6047i −0.670830 + 1.16191i 0.306839 + 0.951761i \(0.400729\pi\)
−0.977669 + 0.210150i \(0.932605\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 5.82843 10.0951i 0.195260 0.338200i
\(892\) 0 0
\(893\) −21.9411 + 12.6677i −0.734232 + 0.423909i
\(894\) 0 0
\(895\) −65.5614 −2.19147
\(896\) 0 0
\(897\) 19.0294 0.635374
\(898\) 0 0
\(899\) 21.5321 12.4316i 0.718137 0.414616i
\(900\) 0 0
\(901\) 0.549104 0.951076i 0.0182933 0.0316849i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −3.36396 + 5.82655i −0.111822 + 0.193681i
\(906\) 0 0
\(907\) −8.00000 13.8564i −0.265636 0.460094i 0.702094 0.712084i \(-0.252248\pi\)
−0.967730 + 0.251990i \(0.918915\pi\)
\(908\) 0 0
\(909\) −29.5803 −0.981115
\(910\) 0 0
\(911\) 5.49333i 0.182002i 0.995851 + 0.0910010i \(0.0290066\pi\)
−0.995851 + 0.0910010i \(0.970993\pi\)
\(912\) 0 0
\(913\) −14.6764 + 8.47343i −0.485718 + 0.280430i
\(914\) 0 0
\(915\) 28.8037 + 16.6298i 0.952221 + 0.549765i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −15.5147 8.95743i −0.511783 0.295478i 0.221783 0.975096i \(-0.428812\pi\)
−0.733566 + 0.679618i \(0.762146\pi\)
\(920\) 0 0
\(921\) −7.89949 13.6823i −0.260297 0.450848i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 12.8418i 0.422236i
\(926\) 0 0
\(927\) 29.5803 + 51.2345i 0.971543 + 1.68276i
\(928\) 0 0
\(929\) 1.37276 + 0.792563i 0.0450388 + 0.0260032i 0.522350 0.852731i \(-0.325055\pi\)
−0.477312 + 0.878734i \(0.658389\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 61.4558 + 35.4815i 2.01197 + 1.16161i
\(934\) 0 0
\(935\) −1.75736 + 1.01461i −0.0574718 + 0.0331814i
\(936\) 0 0
\(937\) 16.9694i 0.554366i 0.960817 + 0.277183i \(0.0894008\pi\)
−0.960817 + 0.277183i \(0.910599\pi\)
\(938\) 0 0
\(939\) 27.6569 0.902547
\(940\) 0 0
\(941\) 1.21193 + 2.09913i 0.0395078 + 0.0684296i 0.885103 0.465395i \(-0.154088\pi\)
−0.845595 + 0.533824i \(0.820754\pi\)
\(942\) 0 0
\(943\) −3.20041 + 5.54328i −0.104220 + 0.180514i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 25.7279 44.5621i 0.836045 1.44807i −0.0571315 0.998367i \(-0.518195\pi\)
0.893177 0.449706i \(-0.148471\pi\)
\(948\) 0 0
\(949\) 6.15076 3.55114i 0.199662 0.115275i
\(950\) 0 0
\(951\) −10.6052 −0.343898
\(952\) 0 0
\(953\) −41.3137 −1.33828 −0.669141 0.743135i \(-0.733338\pi\)
−0.669141 + 0.743135i \(0.733338\pi\)
\(954\) 0 0
\(955\) 32.7807 18.9259i 1.06076 0.612429i
\(956\) 0 0
\(957\) −24.5051 + 42.4441i −0.792137 + 1.37202i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 11.9853 20.7591i 0.386622 0.669649i
\(962\) 0 0
\(963\) 16.2426 + 28.1331i 0.523412 + 0.906576i
\(964\) 0 0
\(965\) 45.2607 1.45699
\(966\) 0 0
\(967\) 21.0308i 0.676305i −0.941091 0.338152i \(-0.890198\pi\)
0.941091 0.338152i \(-0.109802\pi\)
\(968\) 0 0
\(969\) 3.42786 1.97908i 0.110119 0.0635771i
\(970\) 0 0
\(971\) 21.4655 + 12.3931i 0.688861 + 0.397714i 0.803185 0.595729i \(-0.203137\pi\)
−0.114324 + 0.993443i \(0.536470\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 60.2132 + 34.7641i 1.92837 + 1.11334i
\(976\) 0 0
\(977\) −18.6066 32.2276i −0.595278 1.03105i −0.993508 0.113766i \(-0.963709\pi\)
0.398230 0.917286i \(-0.369625\pi\)
\(978\) 0 0
\(979\) 19.7457i 0.631075i
\(980\) 0 0
\(981\) 1.60896i 0.0513701i
\(982\) 0 0
\(983\) −13.0291 22.5671i −0.415564 0.719777i 0.579924 0.814671i \(-0.303082\pi\)
−0.995487 + 0.0948934i \(0.969749\pi\)
\(984\) 0 0
\(985\) −73.5153 42.4441i −2.34239 1.35238i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −10.9706 6.33386i −0.348844 0.201405i
\(990\) 0 0
\(991\) −27.9411 + 16.1318i −0.887579 + 0.512444i −0.873150 0.487452i \(-0.837926\pi\)
−0.0144292 + 0.999896i \(0.504593\pi\)
\(992\) 0 0
\(993\) 54.4273i 1.72720i
\(994\) 0 0
\(995\) 8.48528 0.269002
\(996\) 0 0
\(997\) 2.69841 + 4.67379i 0.0854596 + 0.148020i 0.905587 0.424161i \(-0.139431\pi\)
−0.820127 + 0.572181i \(0.806097\pi\)
\(998\) 0 0
\(999\) −2.65131 + 4.59220i −0.0838837 + 0.145291i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1568.2.q.d.1391.4 8
4.3 odd 2 392.2.m.e.19.1 8
7.2 even 3 1568.2.e.c.783.7 8
7.3 odd 6 1568.2.q.c.815.4 8
7.4 even 3 1568.2.q.c.815.1 8
7.5 odd 6 1568.2.e.c.783.2 8
7.6 odd 2 inner 1568.2.q.d.1391.1 8
8.3 odd 2 1568.2.q.c.1391.4 8
8.5 even 2 392.2.m.c.19.3 8
28.3 even 6 392.2.m.c.227.3 8
28.11 odd 6 392.2.m.c.227.4 8
28.19 even 6 392.2.e.c.195.8 yes 8
28.23 odd 6 392.2.e.c.195.7 yes 8
28.27 even 2 392.2.m.e.19.2 8
56.3 even 6 inner 1568.2.q.d.815.4 8
56.5 odd 6 392.2.e.c.195.6 yes 8
56.11 odd 6 inner 1568.2.q.d.815.1 8
56.13 odd 2 392.2.m.c.19.4 8
56.19 even 6 1568.2.e.c.783.1 8
56.27 even 2 1568.2.q.c.1391.1 8
56.37 even 6 392.2.e.c.195.5 8
56.45 odd 6 392.2.m.e.227.1 8
56.51 odd 6 1568.2.e.c.783.8 8
56.53 even 6 392.2.m.e.227.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
392.2.e.c.195.5 8 56.37 even 6
392.2.e.c.195.6 yes 8 56.5 odd 6
392.2.e.c.195.7 yes 8 28.23 odd 6
392.2.e.c.195.8 yes 8 28.19 even 6
392.2.m.c.19.3 8 8.5 even 2
392.2.m.c.19.4 8 56.13 odd 2
392.2.m.c.227.3 8 28.3 even 6
392.2.m.c.227.4 8 28.11 odd 6
392.2.m.e.19.1 8 4.3 odd 2
392.2.m.e.19.2 8 28.27 even 2
392.2.m.e.227.1 8 56.45 odd 6
392.2.m.e.227.2 8 56.53 even 6
1568.2.e.c.783.1 8 56.19 even 6
1568.2.e.c.783.2 8 7.5 odd 6
1568.2.e.c.783.7 8 7.2 even 3
1568.2.e.c.783.8 8 56.51 odd 6
1568.2.q.c.815.1 8 7.4 even 3
1568.2.q.c.815.4 8 7.3 odd 6
1568.2.q.c.1391.1 8 56.27 even 2
1568.2.q.c.1391.4 8 8.3 odd 2
1568.2.q.d.815.1 8 56.11 odd 6 inner
1568.2.q.d.815.4 8 56.3 even 6 inner
1568.2.q.d.1391.1 8 7.6 odd 2 inner
1568.2.q.d.1391.4 8 1.1 even 1 trivial