Properties

Label 1568.2.e.c.783.1
Level $1568$
Weight $2$
Character 1568.783
Analytic conductor $12.521$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1568,2,Mod(783,1568)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1568.783"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1568, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1568 = 2^{5} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1568.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5205430369\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.339738624.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 14x^{4} - 8x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 392)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 783.1
Root \(-1.60021 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 1568.783
Dual form 1568.2.e.c.783.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.61313i q^{3} -3.20041 q^{5} -3.82843 q^{9} +2.00000 q^{11} -5.07517 q^{13} +8.36308i q^{15} -0.317025i q^{17} +4.77791i q^{19} -1.43488i q^{23} +5.24264 q^{25} +2.16478i q^{27} +9.37769i q^{29} -2.65131 q^{31} -5.22625i q^{33} -2.44949i q^{37} +13.2621i q^{39} +4.46088i q^{41} +8.82843 q^{43} +12.2525 q^{45} +5.30262 q^{47} -0.828427 q^{51} -3.46410i q^{53} -6.40083 q^{55} +12.4853 q^{57} -2.61313i q^{59} +3.97696 q^{61} +16.2426 q^{65} -12.0000 q^{67} -3.74952 q^{69} +1.39942i q^{73} -13.6997i q^{75} +11.8272i q^{79} -5.82843 q^{81} +8.47343i q^{83} +1.01461i q^{85} +24.5051 q^{87} +9.87285i q^{89} +6.92820i q^{93} -15.2913i q^{95} -3.82683i q^{97} -7.65685 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} + 16 q^{11} + 8 q^{25} + 48 q^{43} + 16 q^{51} + 32 q^{57} + 96 q^{65} - 96 q^{67} - 24 q^{81} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1568\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(1471\) \(1473\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 2.61313i − 1.50869i −0.656479 0.754344i \(-0.727955\pi\)
0.656479 0.754344i \(-0.272045\pi\)
\(4\) 0 0
\(5\) −3.20041 −1.43127 −0.715634 0.698475i \(-0.753862\pi\)
−0.715634 + 0.698475i \(0.753862\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −3.82843 −1.27614
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −5.07517 −1.40760 −0.703800 0.710399i \(-0.748515\pi\)
−0.703800 + 0.710399i \(0.748515\pi\)
\(14\) 0 0
\(15\) 8.36308i 2.15934i
\(16\) 0 0
\(17\) − 0.317025i − 0.0768899i −0.999261 0.0384450i \(-0.987760\pi\)
0.999261 0.0384450i \(-0.0122404\pi\)
\(18\) 0 0
\(19\) 4.77791i 1.09613i 0.836436 + 0.548064i \(0.184635\pi\)
−0.836436 + 0.548064i \(0.815365\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 1.43488i − 0.299193i −0.988747 0.149596i \(-0.952203\pi\)
0.988747 0.149596i \(-0.0477974\pi\)
\(24\) 0 0
\(25\) 5.24264 1.04853
\(26\) 0 0
\(27\) 2.16478i 0.416613i
\(28\) 0 0
\(29\) 9.37769i 1.74139i 0.491820 + 0.870697i \(0.336332\pi\)
−0.491820 + 0.870697i \(0.663668\pi\)
\(30\) 0 0
\(31\) −2.65131 −0.476189 −0.238095 0.971242i \(-0.576523\pi\)
−0.238095 + 0.971242i \(0.576523\pi\)
\(32\) 0 0
\(33\) − 5.22625i − 0.909774i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 2.44949i − 0.402694i −0.979520 0.201347i \(-0.935468\pi\)
0.979520 0.201347i \(-0.0645318\pi\)
\(38\) 0 0
\(39\) 13.2621i 2.12363i
\(40\) 0 0
\(41\) 4.46088i 0.696673i 0.937370 + 0.348337i \(0.113253\pi\)
−0.937370 + 0.348337i \(0.886747\pi\)
\(42\) 0 0
\(43\) 8.82843 1.34632 0.673161 0.739496i \(-0.264936\pi\)
0.673161 + 0.739496i \(0.264936\pi\)
\(44\) 0 0
\(45\) 12.2525 1.82650
\(46\) 0 0
\(47\) 5.30262 0.773466 0.386733 0.922192i \(-0.373603\pi\)
0.386733 + 0.922192i \(0.373603\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −0.828427 −0.116003
\(52\) 0 0
\(53\) − 3.46410i − 0.475831i −0.971286 0.237915i \(-0.923536\pi\)
0.971286 0.237915i \(-0.0764641\pi\)
\(54\) 0 0
\(55\) −6.40083 −0.863087
\(56\) 0 0
\(57\) 12.4853 1.65372
\(58\) 0 0
\(59\) − 2.61313i − 0.340200i −0.985427 0.170100i \(-0.945591\pi\)
0.985427 0.170100i \(-0.0544091\pi\)
\(60\) 0 0
\(61\) 3.97696 0.509198 0.254599 0.967047i \(-0.418057\pi\)
0.254599 + 0.967047i \(0.418057\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 16.2426 2.01465
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 0 0
\(69\) −3.74952 −0.451389
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 1.39942i 0.163789i 0.996641 + 0.0818947i \(0.0260971\pi\)
−0.996641 + 0.0818947i \(0.973903\pi\)
\(74\) 0 0
\(75\) − 13.6997i − 1.58190i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 11.8272i 1.33066i 0.746548 + 0.665331i \(0.231710\pi\)
−0.746548 + 0.665331i \(0.768290\pi\)
\(80\) 0 0
\(81\) −5.82843 −0.647603
\(82\) 0 0
\(83\) 8.47343i 0.930080i 0.885290 + 0.465040i \(0.153960\pi\)
−0.885290 + 0.465040i \(0.846040\pi\)
\(84\) 0 0
\(85\) 1.01461i 0.110050i
\(86\) 0 0
\(87\) 24.5051 2.62722
\(88\) 0 0
\(89\) 9.87285i 1.04652i 0.852173 + 0.523260i \(0.175284\pi\)
−0.852173 + 0.523260i \(0.824716\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.92820i 0.718421i
\(94\) 0 0
\(95\) − 15.2913i − 1.56885i
\(96\) 0 0
\(97\) − 3.82683i − 0.388556i −0.980946 0.194278i \(-0.937764\pi\)
0.980946 0.194278i \(-0.0622364\pi\)
\(98\) 0 0
\(99\) −7.65685 −0.769543
\(100\) 0 0
\(101\) 7.72648 0.768813 0.384407 0.923164i \(-0.374406\pi\)
0.384407 + 0.923164i \(0.374406\pi\)
\(102\) 0 0
\(103\) 15.4530 1.52263 0.761313 0.648385i \(-0.224555\pi\)
0.761313 + 0.648385i \(0.224555\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.48528 0.820303 0.410152 0.912017i \(-0.365476\pi\)
0.410152 + 0.912017i \(0.365476\pi\)
\(108\) 0 0
\(109\) 0.420266i 0.0402542i 0.999797 + 0.0201271i \(0.00640708\pi\)
−0.999797 + 0.0201271i \(0.993593\pi\)
\(110\) 0 0
\(111\) −6.40083 −0.607539
\(112\) 0 0
\(113\) −16.4853 −1.55080 −0.775402 0.631467i \(-0.782453\pi\)
−0.775402 + 0.631467i \(0.782453\pi\)
\(114\) 0 0
\(115\) 4.59220i 0.428225i
\(116\) 0 0
\(117\) 19.4299 1.79630
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 11.6569 1.05106
\(124\) 0 0
\(125\) −0.776550 −0.0694568
\(126\) 0 0
\(127\) 5.49333i 0.487454i 0.969844 + 0.243727i \(0.0783701\pi\)
−0.969844 + 0.243727i \(0.921630\pi\)
\(128\) 0 0
\(129\) − 23.0698i − 2.03118i
\(130\) 0 0
\(131\) − 3.50981i − 0.306653i −0.988176 0.153327i \(-0.951001\pi\)
0.988176 0.153327i \(-0.0489987\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) − 6.92820i − 0.596285i
\(136\) 0 0
\(137\) 0.242641 0.0207302 0.0103651 0.999946i \(-0.496701\pi\)
0.0103651 + 0.999946i \(0.496701\pi\)
\(138\) 0 0
\(139\) 5.04054i 0.427533i 0.976885 + 0.213767i \(0.0685732\pi\)
−0.976885 + 0.213767i \(0.931427\pi\)
\(140\) 0 0
\(141\) − 13.8564i − 1.16692i
\(142\) 0 0
\(143\) −10.1503 −0.848814
\(144\) 0 0
\(145\) − 30.0125i − 2.49240i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 20.1903i 1.65405i 0.562165 + 0.827025i \(0.309969\pi\)
−0.562165 + 0.827025i \(0.690031\pi\)
\(150\) 0 0
\(151\) − 15.2913i − 1.24439i −0.782863 0.622194i \(-0.786242\pi\)
0.782863 0.622194i \(-0.213758\pi\)
\(152\) 0 0
\(153\) 1.21371i 0.0981225i
\(154\) 0 0
\(155\) 8.48528 0.681554
\(156\) 0 0
\(157\) −23.9560 −1.91190 −0.955948 0.293536i \(-0.905168\pi\)
−0.955948 + 0.293536i \(0.905168\pi\)
\(158\) 0 0
\(159\) −9.05213 −0.717881
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −8.14214 −0.637741 −0.318871 0.947798i \(-0.603304\pi\)
−0.318871 + 0.947798i \(0.603304\pi\)
\(164\) 0 0
\(165\) 16.7262i 1.30213i
\(166\) 0 0
\(167\) 14.3548 1.11080 0.555402 0.831582i \(-0.312564\pi\)
0.555402 + 0.831582i \(0.312564\pi\)
\(168\) 0 0
\(169\) 12.7574 0.981335
\(170\) 0 0
\(171\) − 18.2919i − 1.39882i
\(172\) 0 0
\(173\) 6.94993 0.528393 0.264197 0.964469i \(-0.414893\pi\)
0.264197 + 0.964469i \(0.414893\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −6.82843 −0.513256
\(178\) 0 0
\(179\) 20.4853 1.53114 0.765571 0.643352i \(-0.222457\pi\)
0.765571 + 0.643352i \(0.222457\pi\)
\(180\) 0 0
\(181\) −2.10220 −0.156256 −0.0781278 0.996943i \(-0.524894\pi\)
−0.0781278 + 0.996943i \(0.524894\pi\)
\(182\) 0 0
\(183\) − 10.3923i − 0.768221i
\(184\) 0 0
\(185\) 7.83938i 0.576363i
\(186\) 0 0
\(187\) − 0.634051i − 0.0463664i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.8272i 0.855785i 0.903830 + 0.427892i \(0.140744\pi\)
−0.903830 + 0.427892i \(0.859256\pi\)
\(192\) 0 0
\(193\) −14.1421 −1.01797 −0.508987 0.860774i \(-0.669980\pi\)
−0.508987 + 0.860774i \(0.669980\pi\)
\(194\) 0 0
\(195\) − 42.4441i − 3.03948i
\(196\) 0 0
\(197\) 26.5241i 1.88977i 0.327409 + 0.944883i \(0.393824\pi\)
−0.327409 + 0.944883i \(0.606176\pi\)
\(198\) 0 0
\(199\) −2.65131 −0.187946 −0.0939731 0.995575i \(-0.529957\pi\)
−0.0939731 + 0.995575i \(0.529957\pi\)
\(200\) 0 0
\(201\) 31.3575i 2.21179i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) − 14.2767i − 0.997126i
\(206\) 0 0
\(207\) 5.49333i 0.381813i
\(208\) 0 0
\(209\) 9.55582i 0.660990i
\(210\) 0 0
\(211\) −20.4853 −1.41026 −0.705132 0.709076i \(-0.749112\pi\)
−0.705132 + 0.709076i \(0.749112\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −28.2546 −1.92695
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 3.65685 0.247107
\(220\) 0 0
\(221\) 1.60896i 0.108230i
\(222\) 0 0
\(223\) −24.5051 −1.64098 −0.820491 0.571659i \(-0.806300\pi\)
−0.820491 + 0.571659i \(0.806300\pi\)
\(224\) 0 0
\(225\) −20.0711 −1.33807
\(226\) 0 0
\(227\) 23.2555i 1.54352i 0.635913 + 0.771761i \(0.280624\pi\)
−0.635913 + 0.771761i \(0.719376\pi\)
\(228\) 0 0
\(229\) −17.5552 −1.16008 −0.580039 0.814589i \(-0.696963\pi\)
−0.580039 + 0.814589i \(0.696963\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −20.2426 −1.32614 −0.663070 0.748558i \(-0.730747\pi\)
−0.663070 + 0.748558i \(0.730747\pi\)
\(234\) 0 0
\(235\) −16.9706 −1.10704
\(236\) 0 0
\(237\) 30.9059 2.00756
\(238\) 0 0
\(239\) − 13.2621i − 0.857851i −0.903340 0.428926i \(-0.858892\pi\)
0.903340 0.428926i \(-0.141108\pi\)
\(240\) 0 0
\(241\) 22.1187i 1.42479i 0.701778 + 0.712396i \(0.252390\pi\)
−0.701778 + 0.712396i \(0.747610\pi\)
\(242\) 0 0
\(243\) 21.7248i 1.39364i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 24.2487i − 1.54291i
\(248\) 0 0
\(249\) 22.1421 1.40320
\(250\) 0 0
\(251\) 19.1886i 1.21117i 0.795780 + 0.605586i \(0.207061\pi\)
−0.795780 + 0.605586i \(0.792939\pi\)
\(252\) 0 0
\(253\) − 2.86976i − 0.180420i
\(254\) 0 0
\(255\) 2.65131 0.166031
\(256\) 0 0
\(257\) 8.15640i 0.508782i 0.967101 + 0.254391i \(0.0818751\pi\)
−0.967101 + 0.254391i \(0.918125\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) − 35.9018i − 2.22227i
\(262\) 0 0
\(263\) 8.95743i 0.552339i 0.961109 + 0.276169i \(0.0890651\pi\)
−0.961109 + 0.276169i \(0.910935\pi\)
\(264\) 0 0
\(265\) 11.0866i 0.681042i
\(266\) 0 0
\(267\) 25.7990 1.57887
\(268\) 0 0
\(269\) −2.42386 −0.147785 −0.0738927 0.997266i \(-0.523542\pi\)
−0.0738927 + 0.997266i \(0.523542\pi\)
\(270\) 0 0
\(271\) −13.2565 −0.805278 −0.402639 0.915359i \(-0.631907\pi\)
−0.402639 + 0.915359i \(0.631907\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 10.4853 0.632286
\(276\) 0 0
\(277\) − 16.7262i − 1.00498i −0.864584 0.502489i \(-0.832418\pi\)
0.864584 0.502489i \(-0.167582\pi\)
\(278\) 0 0
\(279\) 10.1503 0.607685
\(280\) 0 0
\(281\) 8.72792 0.520664 0.260332 0.965519i \(-0.416168\pi\)
0.260332 + 0.965519i \(0.416168\pi\)
\(282\) 0 0
\(283\) − 0.185709i − 0.0110393i −0.999985 0.00551963i \(-0.998243\pi\)
0.999985 0.00551963i \(-0.00175696\pi\)
\(284\) 0 0
\(285\) −39.9581 −2.36691
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 16.8995 0.994088
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 0 0
\(293\) 5.07517 0.296495 0.148247 0.988950i \(-0.452637\pi\)
0.148247 + 0.988950i \(0.452637\pi\)
\(294\) 0 0
\(295\) 8.36308i 0.486917i
\(296\) 0 0
\(297\) 4.32957i 0.251227i
\(298\) 0 0
\(299\) 7.28225i 0.421143i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) − 20.1903i − 1.15990i
\(304\) 0 0
\(305\) −12.7279 −0.728799
\(306\) 0 0
\(307\) 6.04601i 0.345064i 0.985004 + 0.172532i \(0.0551948\pi\)
−0.985004 + 0.172532i \(0.944805\pi\)
\(308\) 0 0
\(309\) − 40.3805i − 2.29717i
\(310\) 0 0
\(311\) −27.1564 −1.53990 −0.769949 0.638105i \(-0.779718\pi\)
−0.769949 + 0.638105i \(0.779718\pi\)
\(312\) 0 0
\(313\) 10.5838i 0.598233i 0.954217 + 0.299116i \(0.0966919\pi\)
−0.954217 + 0.299116i \(0.903308\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 4.05845i − 0.227945i −0.993484 0.113973i \(-0.963642\pi\)
0.993484 0.113973i \(-0.0363576\pi\)
\(318\) 0 0
\(319\) 18.7554i 1.05010i
\(320\) 0 0
\(321\) − 22.1731i − 1.23758i
\(322\) 0 0
\(323\) 1.51472 0.0842812
\(324\) 0 0
\(325\) −26.6073 −1.47591
\(326\) 0 0
\(327\) 1.09821 0.0607310
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −20.8284 −1.14483 −0.572417 0.819963i \(-0.693994\pi\)
−0.572417 + 0.819963i \(0.693994\pi\)
\(332\) 0 0
\(333\) 9.37769i 0.513894i
\(334\) 0 0
\(335\) 38.4050 2.09829
\(336\) 0 0
\(337\) 4.24264 0.231111 0.115556 0.993301i \(-0.463135\pi\)
0.115556 + 0.993301i \(0.463135\pi\)
\(338\) 0 0
\(339\) 43.0781i 2.33968i
\(340\) 0 0
\(341\) −5.30262 −0.287153
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 12.0000 0.646058
\(346\) 0 0
\(347\) −6.97056 −0.374199 −0.187100 0.982341i \(-0.559909\pi\)
−0.187100 + 0.982341i \(0.559909\pi\)
\(348\) 0 0
\(349\) −22.4029 −1.19920 −0.599600 0.800300i \(-0.704673\pi\)
−0.599600 + 0.800300i \(0.704673\pi\)
\(350\) 0 0
\(351\) − 10.9867i − 0.586424i
\(352\) 0 0
\(353\) 13.1200i 0.698308i 0.937065 + 0.349154i \(0.113531\pi\)
−0.937065 + 0.349154i \(0.886469\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 17.3205i 0.914141i 0.889430 + 0.457071i \(0.151101\pi\)
−0.889430 + 0.457071i \(0.848899\pi\)
\(360\) 0 0
\(361\) −3.82843 −0.201496
\(362\) 0 0
\(363\) 18.2919i 0.960075i
\(364\) 0 0
\(365\) − 4.47871i − 0.234427i
\(366\) 0 0
\(367\) −17.0061 −0.887709 −0.443855 0.896099i \(-0.646389\pi\)
−0.443855 + 0.896099i \(0.646389\pi\)
\(368\) 0 0
\(369\) − 17.0782i − 0.889054i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 9.20361i 0.476545i 0.971198 + 0.238273i \(0.0765811\pi\)
−0.971198 + 0.238273i \(0.923419\pi\)
\(374\) 0 0
\(375\) 2.02922i 0.104789i
\(376\) 0 0
\(377\) − 47.5934i − 2.45118i
\(378\) 0 0
\(379\) −17.3137 −0.889345 −0.444673 0.895693i \(-0.646680\pi\)
−0.444673 + 0.895693i \(0.646680\pi\)
\(380\) 0 0
\(381\) 14.3548 0.735416
\(382\) 0 0
\(383\) 5.30262 0.270951 0.135476 0.990781i \(-0.456744\pi\)
0.135476 + 0.990781i \(0.456744\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −33.7990 −1.71810
\(388\) 0 0
\(389\) 3.63818i 0.184463i 0.995738 + 0.0922316i \(0.0294000\pi\)
−0.995738 + 0.0922316i \(0.970600\pi\)
\(390\) 0 0
\(391\) −0.454893 −0.0230049
\(392\) 0 0
\(393\) −9.17157 −0.462645
\(394\) 0 0
\(395\) − 37.8519i − 1.90453i
\(396\) 0 0
\(397\) 24.2776 1.21846 0.609230 0.792994i \(-0.291479\pi\)
0.609230 + 0.792994i \(0.291479\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.75736 0.387384 0.193692 0.981062i \(-0.437954\pi\)
0.193692 + 0.981062i \(0.437954\pi\)
\(402\) 0 0
\(403\) 13.4558 0.670283
\(404\) 0 0
\(405\) 18.6534 0.926893
\(406\) 0 0
\(407\) − 4.89898i − 0.242833i
\(408\) 0 0
\(409\) 3.82683i 0.189225i 0.995514 + 0.0946124i \(0.0301612\pi\)
−0.995514 + 0.0946124i \(0.969839\pi\)
\(410\) 0 0
\(411\) − 0.634051i − 0.0312754i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) − 27.1185i − 1.33119i
\(416\) 0 0
\(417\) 13.1716 0.645015
\(418\) 0 0
\(419\) − 39.8309i − 1.94587i −0.231082 0.972934i \(-0.574226\pi\)
0.231082 0.972934i \(-0.425774\pi\)
\(420\) 0 0
\(421\) − 26.5241i − 1.29271i −0.763038 0.646353i \(-0.776293\pi\)
0.763038 0.646353i \(-0.223707\pi\)
\(422\) 0 0
\(423\) −20.3007 −0.987053
\(424\) 0 0
\(425\) − 1.66205i − 0.0806213i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 26.5241i 1.28060i
\(430\) 0 0
\(431\) − 7.52255i − 0.362348i −0.983451 0.181174i \(-0.942010\pi\)
0.983451 0.181174i \(-0.0579898\pi\)
\(432\) 0 0
\(433\) 5.17186i 0.248544i 0.992248 + 0.124272i \(0.0396595\pi\)
−0.992248 + 0.124272i \(0.960341\pi\)
\(434\) 0 0
\(435\) −78.4264 −3.76026
\(436\) 0 0
\(437\) 6.85572 0.327953
\(438\) 0 0
\(439\) 35.7536 1.70643 0.853214 0.521561i \(-0.174650\pi\)
0.853214 + 0.521561i \(0.174650\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 28.2843 1.34383 0.671913 0.740630i \(-0.265473\pi\)
0.671913 + 0.740630i \(0.265473\pi\)
\(444\) 0 0
\(445\) − 31.5972i − 1.49785i
\(446\) 0 0
\(447\) 52.7597 2.49545
\(448\) 0 0
\(449\) −5.65685 −0.266963 −0.133482 0.991051i \(-0.542616\pi\)
−0.133482 + 0.991051i \(0.542616\pi\)
\(450\) 0 0
\(451\) 8.92177i 0.420110i
\(452\) 0 0
\(453\) −39.9581 −1.87739
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −21.1716 −0.990364 −0.495182 0.868789i \(-0.664899\pi\)
−0.495182 + 0.868789i \(0.664899\pi\)
\(458\) 0 0
\(459\) 0.686292 0.0320333
\(460\) 0 0
\(461\) −26.6073 −1.23923 −0.619613 0.784908i \(-0.712710\pi\)
−0.619613 + 0.784908i \(0.712710\pi\)
\(462\) 0 0
\(463\) − 18.7554i − 0.871637i −0.900035 0.435818i \(-0.856459\pi\)
0.900035 0.435818i \(-0.143541\pi\)
\(464\) 0 0
\(465\) − 22.1731i − 1.02825i
\(466\) 0 0
\(467\) − 0.0769232i − 0.00355958i −0.999998 0.00177979i \(-0.999433\pi\)
0.999998 0.00177979i \(-0.000566526\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 62.6000i 2.88446i
\(472\) 0 0
\(473\) 17.6569 0.811863
\(474\) 0 0
\(475\) 25.0489i 1.14932i
\(476\) 0 0
\(477\) 13.2621i 0.607228i
\(478\) 0 0
\(479\) 11.7034 0.534744 0.267372 0.963593i \(-0.413845\pi\)
0.267372 + 0.963593i \(0.413845\pi\)
\(480\) 0 0
\(481\) 12.4316i 0.566831i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 12.2474i 0.556128i
\(486\) 0 0
\(487\) − 34.0467i − 1.54280i −0.636349 0.771401i \(-0.719556\pi\)
0.636349 0.771401i \(-0.280444\pi\)
\(488\) 0 0
\(489\) 21.2764i 0.962153i
\(490\) 0 0
\(491\) 31.7990 1.43507 0.717534 0.696523i \(-0.245271\pi\)
0.717534 + 0.696523i \(0.245271\pi\)
\(492\) 0 0
\(493\) 2.97297 0.133896
\(494\) 0 0
\(495\) 24.5051 1.10142
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 8.48528 0.379853 0.189927 0.981798i \(-0.439175\pi\)
0.189927 + 0.981798i \(0.439175\pi\)
\(500\) 0 0
\(501\) − 37.5108i − 1.67586i
\(502\) 0 0
\(503\) −24.5051 −1.09263 −0.546314 0.837580i \(-0.683969\pi\)
−0.546314 + 0.837580i \(0.683969\pi\)
\(504\) 0 0
\(505\) −24.7279 −1.10038
\(506\) 0 0
\(507\) − 33.3366i − 1.48053i
\(508\) 0 0
\(509\) 14.1273 0.626182 0.313091 0.949723i \(-0.398636\pi\)
0.313091 + 0.949723i \(0.398636\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −10.3431 −0.456661
\(514\) 0 0
\(515\) −49.4558 −2.17928
\(516\) 0 0
\(517\) 10.6052 0.466418
\(518\) 0 0
\(519\) − 18.1610i − 0.797181i
\(520\) 0 0
\(521\) − 18.6089i − 0.815271i −0.913145 0.407636i \(-0.866353\pi\)
0.913145 0.407636i \(-0.133647\pi\)
\(522\) 0 0
\(523\) − 32.8113i − 1.43474i −0.696693 0.717369i \(-0.745346\pi\)
0.696693 0.717369i \(-0.254654\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.840532i 0.0366141i
\(528\) 0 0
\(529\) 20.9411 0.910484
\(530\) 0 0
\(531\) 10.0042i 0.434144i
\(532\) 0 0
\(533\) − 22.6398i − 0.980637i
\(534\) 0 0
\(535\) −27.1564 −1.17407
\(536\) 0 0
\(537\) − 53.5306i − 2.31002i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) − 32.8580i − 1.41267i −0.707875 0.706337i \(-0.750346\pi\)
0.707875 0.706337i \(-0.249654\pi\)
\(542\) 0 0
\(543\) 5.49333i 0.235741i
\(544\) 0 0
\(545\) − 1.34502i − 0.0576145i
\(546\) 0 0
\(547\) 15.1716 0.648690 0.324345 0.945939i \(-0.394856\pi\)
0.324345 + 0.945939i \(0.394856\pi\)
\(548\) 0 0
\(549\) −15.2255 −0.649809
\(550\) 0 0
\(551\) −44.8058 −1.90879
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 20.4853 0.869552
\(556\) 0 0
\(557\) − 16.7262i − 0.708710i −0.935111 0.354355i \(-0.884700\pi\)
0.935111 0.354355i \(-0.115300\pi\)
\(558\) 0 0
\(559\) −44.8058 −1.89508
\(560\) 0 0
\(561\) −1.65685 −0.0699524
\(562\) 0 0
\(563\) − 16.7611i − 0.706398i −0.935548 0.353199i \(-0.885094\pi\)
0.935548 0.353199i \(-0.114906\pi\)
\(564\) 0 0
\(565\) 52.7597 2.21962
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 14.1005 0.591124 0.295562 0.955324i \(-0.404493\pi\)
0.295562 + 0.955324i \(0.404493\pi\)
\(570\) 0 0
\(571\) 23.6569 0.990009 0.495004 0.868891i \(-0.335166\pi\)
0.495004 + 0.868891i \(0.335166\pi\)
\(572\) 0 0
\(573\) 30.9059 1.29111
\(574\) 0 0
\(575\) − 7.52255i − 0.313712i
\(576\) 0 0
\(577\) 2.11039i 0.0878567i 0.999035 + 0.0439284i \(0.0139873\pi\)
−0.999035 + 0.0439284i \(0.986013\pi\)
\(578\) 0 0
\(579\) 36.9552i 1.53580i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 6.92820i − 0.286937i
\(584\) 0 0
\(585\) −62.1838 −2.57098
\(586\) 0 0
\(587\) − 43.2638i − 1.78569i −0.450365 0.892845i \(-0.648706\pi\)
0.450365 0.892845i \(-0.351294\pi\)
\(588\) 0 0
\(589\) − 12.6677i − 0.521964i
\(590\) 0 0
\(591\) 69.3109 2.85107
\(592\) 0 0
\(593\) 12.3003i 0.505111i 0.967582 + 0.252556i \(0.0812711\pi\)
−0.967582 + 0.252556i \(0.918729\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.92820i 0.283552i
\(598\) 0 0
\(599\) 35.4815i 1.44974i 0.688887 + 0.724868i \(0.258099\pi\)
−0.688887 + 0.724868i \(0.741901\pi\)
\(600\) 0 0
\(601\) 35.1843i 1.43520i 0.696456 + 0.717600i \(0.254759\pi\)
−0.696456 + 0.717600i \(0.745241\pi\)
\(602\) 0 0
\(603\) 45.9411 1.87087
\(604\) 0 0
\(605\) 22.4029 0.910807
\(606\) 0 0
\(607\) 25.6033 1.03921 0.519603 0.854408i \(-0.326080\pi\)
0.519603 + 0.854408i \(0.326080\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −26.9117 −1.08873
\(612\) 0 0
\(613\) 26.9444i 1.08827i 0.838997 + 0.544137i \(0.183143\pi\)
−0.838997 + 0.544137i \(0.816857\pi\)
\(614\) 0 0
\(615\) −37.3067 −1.50435
\(616\) 0 0
\(617\) −9.21320 −0.370910 −0.185455 0.982653i \(-0.559376\pi\)
−0.185455 + 0.982653i \(0.559376\pi\)
\(618\) 0 0
\(619\) 29.1158i 1.17026i 0.810938 + 0.585131i \(0.198957\pi\)
−0.810938 + 0.585131i \(0.801043\pi\)
\(620\) 0 0
\(621\) 3.10620 0.124648
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −23.7279 −0.949117
\(626\) 0 0
\(627\) 24.9706 0.997228
\(628\) 0 0
\(629\) −0.776550 −0.0309631
\(630\) 0 0
\(631\) 29.7420i 1.18401i 0.805934 + 0.592006i \(0.201664\pi\)
−0.805934 + 0.592006i \(0.798336\pi\)
\(632\) 0 0
\(633\) 53.5306i 2.12765i
\(634\) 0 0
\(635\) − 17.5809i − 0.697677i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −16.9289 −0.668653 −0.334326 0.942457i \(-0.608509\pi\)
−0.334326 + 0.942457i \(0.608509\pi\)
\(642\) 0 0
\(643\) − 36.3981i − 1.43540i −0.696353 0.717700i \(-0.745195\pi\)
0.696353 0.717700i \(-0.254805\pi\)
\(644\) 0 0
\(645\) 73.8329i 2.90717i
\(646\) 0 0
\(647\) 11.7034 0.460110 0.230055 0.973178i \(-0.426109\pi\)
0.230055 + 0.973178i \(0.426109\pi\)
\(648\) 0 0
\(649\) − 5.22625i − 0.205148i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 35.0613i 1.37205i 0.727576 + 0.686027i \(0.240647\pi\)
−0.727576 + 0.686027i \(0.759353\pi\)
\(654\) 0 0
\(655\) 11.2328i 0.438903i
\(656\) 0 0
\(657\) − 5.35757i − 0.209019i
\(658\) 0 0
\(659\) −25.5147 −0.993912 −0.496956 0.867776i \(-0.665549\pi\)
−0.496956 + 0.867776i \(0.665549\pi\)
\(660\) 0 0
\(661\) 20.8498 0.810963 0.405481 0.914103i \(-0.367104\pi\)
0.405481 + 0.914103i \(0.367104\pi\)
\(662\) 0 0
\(663\) 4.20441 0.163286
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 13.4558 0.521012
\(668\) 0 0
\(669\) 64.0349i 2.47573i
\(670\) 0 0
\(671\) 7.95393 0.307058
\(672\) 0 0
\(673\) 30.3848 1.17125 0.585624 0.810583i \(-0.300850\pi\)
0.585624 + 0.810583i \(0.300850\pi\)
\(674\) 0 0
\(675\) 11.3492i 0.436830i
\(676\) 0 0
\(677\) 1.00400 0.0385867 0.0192934 0.999814i \(-0.493858\pi\)
0.0192934 + 0.999814i \(0.493858\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 60.7696 2.32869
\(682\) 0 0
\(683\) 14.1421 0.541134 0.270567 0.962701i \(-0.412789\pi\)
0.270567 + 0.962701i \(0.412789\pi\)
\(684\) 0 0
\(685\) −0.776550 −0.0296705
\(686\) 0 0
\(687\) 45.8739i 1.75020i
\(688\) 0 0
\(689\) 17.5809i 0.669779i
\(690\) 0 0
\(691\) 19.9314i 0.758226i 0.925350 + 0.379113i \(0.123771\pi\)
−0.925350 + 0.379113i \(0.876229\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 16.1318i − 0.611915i
\(696\) 0 0
\(697\) 1.41421 0.0535672
\(698\) 0 0
\(699\) 52.8966i 2.00073i
\(700\) 0 0
\(701\) 6.15978i 0.232652i 0.993211 + 0.116326i \(0.0371117\pi\)
−0.993211 + 0.116326i \(0.962888\pi\)
\(702\) 0 0
\(703\) 11.7034 0.441404
\(704\) 0 0
\(705\) 44.3462i 1.67018i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) − 36.7423i − 1.37989i −0.723863 0.689944i \(-0.757635\pi\)
0.723863 0.689944i \(-0.242365\pi\)
\(710\) 0 0
\(711\) − 45.2795i − 1.69811i
\(712\) 0 0
\(713\) 3.80430i 0.142472i
\(714\) 0 0
\(715\) 32.4853 1.21488
\(716\) 0 0
\(717\) −34.6554 −1.29423
\(718\) 0 0
\(719\) −29.3528 −1.09468 −0.547338 0.836912i \(-0.684359\pi\)
−0.547338 + 0.836912i \(0.684359\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 57.7990 2.14957
\(724\) 0 0
\(725\) 49.1639i 1.82590i
\(726\) 0 0
\(727\) 43.0643 1.59716 0.798582 0.601886i \(-0.205584\pi\)
0.798582 + 0.601886i \(0.205584\pi\)
\(728\) 0 0
\(729\) 39.2843 1.45497
\(730\) 0 0
\(731\) − 2.79884i − 0.103519i
\(732\) 0 0
\(733\) −7.40482 −0.273503 −0.136752 0.990605i \(-0.543666\pi\)
−0.136752 + 0.990605i \(0.543666\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −24.0000 −0.884051
\(738\) 0 0
\(739\) −15.1716 −0.558095 −0.279048 0.960277i \(-0.590019\pi\)
−0.279048 + 0.960277i \(0.590019\pi\)
\(740\) 0 0
\(741\) −63.3649 −2.32777
\(742\) 0 0
\(743\) 13.2621i 0.486538i 0.969959 + 0.243269i \(0.0782197\pi\)
−0.969959 + 0.243269i \(0.921780\pi\)
\(744\) 0 0
\(745\) − 64.6172i − 2.36739i
\(746\) 0 0
\(747\) − 32.4399i − 1.18691i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) − 35.7277i − 1.30372i −0.758338 0.651862i \(-0.773988\pi\)
0.758338 0.651862i \(-0.226012\pi\)
\(752\) 0 0
\(753\) 50.1421 1.82728
\(754\) 0 0
\(755\) 48.9384i 1.78105i
\(756\) 0 0
\(757\) 35.9018i 1.30487i 0.757843 + 0.652437i \(0.226253\pi\)
−0.757843 + 0.652437i \(0.773747\pi\)
\(758\) 0 0
\(759\) −7.49903 −0.272198
\(760\) 0 0
\(761\) − 21.8561i − 0.792282i −0.918190 0.396141i \(-0.870349\pi\)
0.918190 0.396141i \(-0.129651\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) − 3.88437i − 0.140440i
\(766\) 0 0
\(767\) 13.2621i 0.478865i
\(768\) 0 0
\(769\) 46.1940i 1.66580i 0.553425 + 0.832899i \(0.313320\pi\)
−0.553425 + 0.832899i \(0.686680\pi\)
\(770\) 0 0
\(771\) 21.3137 0.767594
\(772\) 0 0
\(773\) 31.0001 1.11500 0.557499 0.830178i \(-0.311761\pi\)
0.557499 + 0.830178i \(0.311761\pi\)
\(774\) 0 0
\(775\) −13.8999 −0.499298
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −21.3137 −0.763643
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −20.3007 −0.725487
\(784\) 0 0
\(785\) 76.6690 2.73644
\(786\) 0 0
\(787\) 38.8255i 1.38398i 0.721908 + 0.691989i \(0.243265\pi\)
−0.721908 + 0.691989i \(0.756735\pi\)
\(788\) 0 0
\(789\) 23.4069 0.833307
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −20.1838 −0.716747
\(794\) 0 0
\(795\) 28.9706 1.02748
\(796\) 0 0
\(797\) 13.4840 0.477627 0.238814 0.971065i \(-0.423241\pi\)
0.238814 + 0.971065i \(0.423241\pi\)
\(798\) 0 0
\(799\) − 1.68106i − 0.0594718i
\(800\) 0 0
\(801\) − 37.7975i − 1.33551i
\(802\) 0 0
\(803\) 2.79884i 0.0987687i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 6.33386i 0.222962i
\(808\) 0 0
\(809\) −15.4558 −0.543399 −0.271699 0.962382i \(-0.587586\pi\)
−0.271699 + 0.962382i \(0.587586\pi\)
\(810\) 0 0
\(811\) 28.4818i 1.00013i 0.865988 + 0.500065i \(0.166690\pi\)
−0.865988 + 0.500065i \(0.833310\pi\)
\(812\) 0 0
\(813\) 34.6410i 1.21491i
\(814\) 0 0
\(815\) 26.0582 0.912779
\(816\) 0 0
\(817\) 42.1814i 1.47574i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 17.9149i 0.625233i 0.949879 + 0.312616i \(0.101205\pi\)
−0.949879 + 0.312616i \(0.898795\pi\)
\(822\) 0 0
\(823\) − 20.7846i − 0.724506i −0.932080 0.362253i \(-0.882008\pi\)
0.932080 0.362253i \(-0.117992\pi\)
\(824\) 0 0
\(825\) − 27.3994i − 0.953923i
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) −16.7786 −0.582745 −0.291373 0.956610i \(-0.594112\pi\)
−0.291373 + 0.956610i \(0.594112\pi\)
\(830\) 0 0
\(831\) −43.7076 −1.51620
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −45.9411 −1.58986
\(836\) 0 0
\(837\) − 5.73951i − 0.198387i
\(838\) 0 0
\(839\) −30.4510 −1.05129 −0.525643 0.850705i \(-0.676175\pi\)
−0.525643 + 0.850705i \(0.676175\pi\)
\(840\) 0 0
\(841\) −58.9411 −2.03245
\(842\) 0 0
\(843\) − 22.8072i − 0.785520i
\(844\) 0 0
\(845\) −40.8288 −1.40455
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −0.485281 −0.0166548
\(850\) 0 0
\(851\) −3.51472 −0.120483
\(852\) 0 0
\(853\) −32.5532 −1.11460 −0.557301 0.830311i \(-0.688163\pi\)
−0.557301 + 0.830311i \(0.688163\pi\)
\(854\) 0 0
\(855\) 58.5416i 2.00208i
\(856\) 0 0
\(857\) − 34.4734i − 1.17759i −0.808283 0.588794i \(-0.799603\pi\)
0.808283 0.588794i \(-0.200397\pi\)
\(858\) 0 0
\(859\) − 44.5319i − 1.51941i −0.650268 0.759705i \(-0.725343\pi\)
0.650268 0.759705i \(-0.274657\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 4.05845i 0.138151i 0.997611 + 0.0690756i \(0.0220050\pi\)
−0.997611 + 0.0690756i \(0.977995\pi\)
\(864\) 0 0
\(865\) −22.2426 −0.756272
\(866\) 0 0
\(867\) − 44.1605i − 1.49977i
\(868\) 0 0
\(869\) 23.6544i 0.802419i
\(870\) 0 0
\(871\) 60.9021 2.06359
\(872\) 0 0
\(873\) 14.6508i 0.495853i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 32.1915i − 1.08703i −0.839399 0.543515i \(-0.817093\pi\)
0.839399 0.543515i \(-0.182907\pi\)
\(878\) 0 0
\(879\) − 13.2621i − 0.447318i
\(880\) 0 0
\(881\) − 34.8448i − 1.17395i −0.809605 0.586975i \(-0.800319\pi\)
0.809605 0.586975i \(-0.199681\pi\)
\(882\) 0 0
\(883\) −38.4264 −1.29315 −0.646576 0.762850i \(-0.723800\pi\)
−0.646576 + 0.762850i \(0.723800\pi\)
\(884\) 0 0
\(885\) 21.8538 0.734607
\(886\) 0 0
\(887\) 39.9581 1.34166 0.670830 0.741611i \(-0.265938\pi\)
0.670830 + 0.741611i \(0.265938\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −11.6569 −0.390519
\(892\) 0 0
\(893\) 25.3354i 0.847818i
\(894\) 0 0
\(895\) −65.5614 −2.19147
\(896\) 0 0
\(897\) 19.0294 0.635374
\(898\) 0 0
\(899\) − 24.8632i − 0.829233i
\(900\) 0 0
\(901\) −1.09821 −0.0365866
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.72792 0.223644
\(906\) 0 0
\(907\) 16.0000 0.531271 0.265636 0.964073i \(-0.414418\pi\)
0.265636 + 0.964073i \(0.414418\pi\)
\(908\) 0 0
\(909\) −29.5803 −0.981115
\(910\) 0 0
\(911\) − 5.49333i − 0.182002i −0.995851 0.0910010i \(-0.970993\pi\)
0.995851 0.0910010i \(-0.0290066\pi\)
\(912\) 0 0
\(913\) 16.9469i 0.560859i
\(914\) 0 0
\(915\) 33.2597i 1.09953i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) − 17.9149i − 0.590957i −0.955349 0.295478i \(-0.904521\pi\)
0.955349 0.295478i \(-0.0954790\pi\)
\(920\) 0 0
\(921\) 15.7990 0.520594
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 12.8418i − 0.422236i
\(926\) 0 0
\(927\) −59.1605 −1.94309
\(928\) 0 0
\(929\) 1.58513i 0.0520063i 0.999662 + 0.0260032i \(0.00827800\pi\)
−0.999662 + 0.0260032i \(0.991722\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 70.9631i 2.32323i
\(934\) 0 0
\(935\) 2.02922i 0.0663627i
\(936\) 0 0
\(937\) − 16.9694i − 0.554366i −0.960817 0.277183i \(-0.910599\pi\)
0.960817 0.277183i \(-0.0894008\pi\)
\(938\) 0 0
\(939\) 27.6569 0.902547
\(940\) 0 0
\(941\) −2.42386 −0.0790157 −0.0395078 0.999219i \(-0.512579\pi\)
−0.0395078 + 0.999219i \(0.512579\pi\)
\(942\) 0 0
\(943\) 6.40083 0.208440
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −51.4558 −1.67209 −0.836045 0.548661i \(-0.815138\pi\)
−0.836045 + 0.548661i \(0.815138\pi\)
\(948\) 0 0
\(949\) − 7.10228i − 0.230550i
\(950\) 0 0
\(951\) −10.6052 −0.343898
\(952\) 0 0
\(953\) −41.3137 −1.33828 −0.669141 0.743135i \(-0.733338\pi\)
−0.669141 + 0.743135i \(0.733338\pi\)
\(954\) 0 0
\(955\) − 37.8519i − 1.22486i
\(956\) 0 0
\(957\) 49.0102 1.58427
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −23.9706 −0.773244
\(962\) 0 0
\(963\) −32.4853 −1.04682
\(964\) 0 0
\(965\) 45.2607 1.45699
\(966\) 0 0
\(967\) 21.0308i 0.676305i 0.941091 + 0.338152i \(0.109802\pi\)
−0.941091 + 0.338152i \(0.890198\pi\)
\(968\) 0 0
\(969\) − 3.95815i − 0.127154i
\(970\) 0 0
\(971\) 24.7862i 0.795428i 0.917509 + 0.397714i \(0.130196\pi\)
−0.917509 + 0.397714i \(0.869804\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 69.5282i 2.22669i
\(976\) 0 0
\(977\) 37.2132 1.19056 0.595278 0.803520i \(-0.297042\pi\)
0.595278 + 0.803520i \(0.297042\pi\)
\(978\) 0 0
\(979\) 19.7457i 0.631075i
\(980\) 0 0
\(981\) − 1.60896i − 0.0513701i
\(982\) 0 0
\(983\) 26.0582 0.831127 0.415564 0.909564i \(-0.363584\pi\)
0.415564 + 0.909564i \(0.363584\pi\)
\(984\) 0 0
\(985\) − 84.8881i − 2.70476i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 12.6677i − 0.402810i
\(990\) 0 0
\(991\) 32.2636i 1.02489i 0.858721 + 0.512444i \(0.171260\pi\)
−0.858721 + 0.512444i \(0.828740\pi\)
\(992\) 0 0
\(993\) 54.4273i 1.72720i
\(994\) 0 0
\(995\) 8.48528 0.269002
\(996\) 0 0
\(997\) −5.39683 −0.170919 −0.0854596 0.996342i \(-0.527236\pi\)
−0.0854596 + 0.996342i \(0.527236\pi\)
\(998\) 0 0
\(999\) 5.30262 0.167767
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1568.2.e.c.783.1 8
4.3 odd 2 392.2.e.c.195.6 yes 8
7.2 even 3 1568.2.q.d.815.4 8
7.3 odd 6 1568.2.q.c.1391.4 8
7.4 even 3 1568.2.q.c.1391.1 8
7.5 odd 6 1568.2.q.d.815.1 8
7.6 odd 2 inner 1568.2.e.c.783.8 8
8.3 odd 2 inner 1568.2.e.c.783.2 8
8.5 even 2 392.2.e.c.195.8 yes 8
28.3 even 6 392.2.m.c.19.3 8
28.11 odd 6 392.2.m.c.19.4 8
28.19 even 6 392.2.m.e.227.2 8
28.23 odd 6 392.2.m.e.227.1 8
28.27 even 2 392.2.e.c.195.5 8
56.3 even 6 1568.2.q.d.1391.4 8
56.5 odd 6 392.2.m.c.227.4 8
56.11 odd 6 1568.2.q.d.1391.1 8
56.13 odd 2 392.2.e.c.195.7 yes 8
56.19 even 6 1568.2.q.c.815.1 8
56.27 even 2 inner 1568.2.e.c.783.7 8
56.37 even 6 392.2.m.c.227.3 8
56.45 odd 6 392.2.m.e.19.1 8
56.51 odd 6 1568.2.q.c.815.4 8
56.53 even 6 392.2.m.e.19.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
392.2.e.c.195.5 8 28.27 even 2
392.2.e.c.195.6 yes 8 4.3 odd 2
392.2.e.c.195.7 yes 8 56.13 odd 2
392.2.e.c.195.8 yes 8 8.5 even 2
392.2.m.c.19.3 8 28.3 even 6
392.2.m.c.19.4 8 28.11 odd 6
392.2.m.c.227.3 8 56.37 even 6
392.2.m.c.227.4 8 56.5 odd 6
392.2.m.e.19.1 8 56.45 odd 6
392.2.m.e.19.2 8 56.53 even 6
392.2.m.e.227.1 8 28.23 odd 6
392.2.m.e.227.2 8 28.19 even 6
1568.2.e.c.783.1 8 1.1 even 1 trivial
1568.2.e.c.783.2 8 8.3 odd 2 inner
1568.2.e.c.783.7 8 56.27 even 2 inner
1568.2.e.c.783.8 8 7.6 odd 2 inner
1568.2.q.c.815.1 8 56.19 even 6
1568.2.q.c.815.4 8 56.51 odd 6
1568.2.q.c.1391.1 8 7.4 even 3
1568.2.q.c.1391.4 8 7.3 odd 6
1568.2.q.d.815.1 8 7.5 odd 6
1568.2.q.d.815.4 8 7.2 even 3
1568.2.q.d.1391.1 8 56.11 odd 6
1568.2.q.d.1391.4 8 56.3 even 6