Properties

Label 392.2.m.c.19.4
Level $392$
Weight $2$
Character 392.19
Analytic conductor $3.130$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [392,2,Mod(19,392)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(392, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("392.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 392.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.13013575923\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.339738624.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 14x^{4} - 8x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.4
Root \(1.60021 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 392.19
Dual form 392.2.m.c.227.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 1.22474i) q^{2} +(2.26303 - 1.30656i) q^{3} +(-1.00000 + 1.73205i) q^{4} +(1.60021 - 2.77164i) q^{5} +(3.20041 + 1.84776i) q^{6} -2.82843 q^{8} +(1.91421 - 3.31552i) q^{9} +4.52607 q^{10} +(1.00000 + 1.73205i) q^{11} +5.22625i q^{12} -5.07517 q^{13} -8.36308i q^{15} +(-2.00000 - 3.46410i) q^{16} +(-0.274552 + 0.158513i) q^{17} +5.41421 q^{18} +(4.13779 + 2.38896i) q^{19} +(3.20041 + 5.54328i) q^{20} +(-1.41421 + 2.44949i) q^{22} +(-1.24264 - 0.717439i) q^{23} +(-6.40083 + 3.69552i) q^{24} +(-2.62132 - 4.54026i) q^{25} +(-3.58869 - 6.21579i) q^{26} -2.16478i q^{27} +9.37769i q^{29} +(10.2426 - 5.91359i) q^{30} +(-1.32565 - 2.29610i) q^{31} +(2.82843 - 4.89898i) q^{32} +(4.52607 + 2.61313i) q^{33} +(-0.388275 - 0.224171i) q^{34} +(3.82843 + 6.63103i) q^{36} +(2.12132 + 1.22474i) q^{37} +6.75699i q^{38} +(-11.4853 + 6.63103i) q^{39} +(-4.52607 + 7.83938i) q^{40} +4.46088i q^{41} -8.82843 q^{43} -4.00000 q^{44} +(-6.12627 - 10.6110i) q^{45} -2.02922i q^{46} +(2.65131 - 4.59220i) q^{47} +(-9.05213 - 5.22625i) q^{48} +(3.70711 - 6.42090i) q^{50} +(-0.414214 + 0.717439i) q^{51} +(5.07517 - 8.79045i) q^{52} +(-3.00000 + 1.73205i) q^{53} +(2.65131 - 1.53073i) q^{54} +6.40083 q^{55} +12.4853 q^{57} +(-11.4853 + 6.63103i) q^{58} +(2.26303 - 1.30656i) q^{59} +(14.4853 + 8.36308i) q^{60} +(-1.98848 + 3.44415i) q^{61} +(1.87476 - 3.24718i) q^{62} +8.00000 q^{64} +(-8.12132 + 14.0665i) q^{65} +7.39104i q^{66} +(-6.00000 - 10.3923i) q^{67} -0.634051i q^{68} -3.74952 q^{69} +(-5.41421 + 9.37769i) q^{72} +(1.21193 - 0.699709i) q^{73} +3.46410i q^{74} +(-11.8643 - 6.84984i) q^{75} +(-8.27558 + 4.77791i) q^{76} +(-16.2426 - 9.37769i) q^{78} +(10.2426 + 5.91359i) q^{79} -12.8017 q^{80} +(2.91421 + 5.04757i) q^{81} +(-5.46345 + 3.15432i) q^{82} -8.47343i q^{83} +1.01461i q^{85} +(-6.24264 - 10.8126i) q^{86} +(12.2525 + 21.2220i) q^{87} +(-2.82843 - 4.89898i) q^{88} +(-8.55014 - 4.93642i) q^{89} +(8.66386 - 15.0062i) q^{90} +(2.48528 - 1.43488i) q^{92} +(-6.00000 - 3.46410i) q^{93} +7.49903 q^{94} +(13.2426 - 7.64564i) q^{95} -14.7821i q^{96} -3.82683i q^{97} +7.65685 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 4 q^{9} + 8 q^{11} - 16 q^{16} + 32 q^{18} + 24 q^{23} - 4 q^{25} + 48 q^{30} + 8 q^{36} - 24 q^{39} - 48 q^{43} - 32 q^{44} + 24 q^{50} + 8 q^{51} - 24 q^{53} + 32 q^{57} - 24 q^{58} + 48 q^{60}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 1.22474i 0.500000 + 0.866025i
\(3\) 2.26303 1.30656i 1.30656 0.754344i 0.325042 0.945700i \(-0.394622\pi\)
0.981521 + 0.191355i \(0.0612882\pi\)
\(4\) −1.00000 + 1.73205i −0.500000 + 0.866025i
\(5\) 1.60021 2.77164i 0.715634 1.23951i −0.247080 0.968995i \(-0.579471\pi\)
0.962714 0.270520i \(-0.0871955\pi\)
\(6\) 3.20041 + 1.84776i 1.30656 + 0.754344i
\(7\) 0 0
\(8\) −2.82843 −1.00000
\(9\) 1.91421 3.31552i 0.638071 1.10517i
\(10\) 4.52607 1.43127
\(11\) 1.00000 + 1.73205i 0.301511 + 0.522233i 0.976478 0.215615i \(-0.0691756\pi\)
−0.674967 + 0.737848i \(0.735842\pi\)
\(12\) 5.22625i 1.50869i
\(13\) −5.07517 −1.40760 −0.703800 0.710399i \(-0.748515\pi\)
−0.703800 + 0.710399i \(0.748515\pi\)
\(14\) 0 0
\(15\) 8.36308i 2.15934i
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) −0.274552 + 0.158513i −0.0665886 + 0.0384450i −0.532925 0.846163i \(-0.678907\pi\)
0.466336 + 0.884608i \(0.345574\pi\)
\(18\) 5.41421 1.27614
\(19\) 4.13779 + 2.38896i 0.949275 + 0.548064i 0.892855 0.450343i \(-0.148698\pi\)
0.0564190 + 0.998407i \(0.482032\pi\)
\(20\) 3.20041 + 5.54328i 0.715634 + 1.23951i
\(21\) 0 0
\(22\) −1.41421 + 2.44949i −0.301511 + 0.522233i
\(23\) −1.24264 0.717439i −0.259108 0.149596i 0.364819 0.931078i \(-0.381131\pi\)
−0.623928 + 0.781482i \(0.714464\pi\)
\(24\) −6.40083 + 3.69552i −1.30656 + 0.754344i
\(25\) −2.62132 4.54026i −0.524264 0.908052i
\(26\) −3.58869 6.21579i −0.703800 1.21902i
\(27\) 2.16478i 0.416613i
\(28\) 0 0
\(29\) 9.37769i 1.74139i 0.491820 + 0.870697i \(0.336332\pi\)
−0.491820 + 0.870697i \(0.663668\pi\)
\(30\) 10.2426 5.91359i 1.87004 1.07967i
\(31\) −1.32565 2.29610i −0.238095 0.412392i 0.722073 0.691817i \(-0.243189\pi\)
−0.960168 + 0.279425i \(0.909856\pi\)
\(32\) 2.82843 4.89898i 0.500000 0.866025i
\(33\) 4.52607 + 2.61313i 0.787887 + 0.454887i
\(34\) −0.388275 0.224171i −0.0665886 0.0384450i
\(35\) 0 0
\(36\) 3.82843 + 6.63103i 0.638071 + 1.10517i
\(37\) 2.12132 + 1.22474i 0.348743 + 0.201347i 0.664131 0.747616i \(-0.268802\pi\)
−0.315389 + 0.948963i \(0.602135\pi\)
\(38\) 6.75699i 1.09613i
\(39\) −11.4853 + 6.63103i −1.83912 + 1.06181i
\(40\) −4.52607 + 7.83938i −0.715634 + 1.23951i
\(41\) 4.46088i 0.696673i 0.937370 + 0.348337i \(0.113253\pi\)
−0.937370 + 0.348337i \(0.886747\pi\)
\(42\) 0 0
\(43\) −8.82843 −1.34632 −0.673161 0.739496i \(-0.735064\pi\)
−0.673161 + 0.739496i \(0.735064\pi\)
\(44\) −4.00000 −0.603023
\(45\) −6.12627 10.6110i −0.913251 1.58180i
\(46\) 2.02922i 0.299193i
\(47\) 2.65131 4.59220i 0.386733 0.669841i −0.605275 0.796017i \(-0.706937\pi\)
0.992008 + 0.126175i \(0.0402701\pi\)
\(48\) −9.05213 5.22625i −1.30656 0.754344i
\(49\) 0 0
\(50\) 3.70711 6.42090i 0.524264 0.908052i
\(51\) −0.414214 + 0.717439i −0.0580015 + 0.100462i
\(52\) 5.07517 8.79045i 0.703800 1.21902i
\(53\) −3.00000 + 1.73205i −0.412082 + 0.237915i −0.691684 0.722200i \(-0.743131\pi\)
0.279602 + 0.960116i \(0.409797\pi\)
\(54\) 2.65131 1.53073i 0.360797 0.208306i
\(55\) 6.40083 0.863087
\(56\) 0 0
\(57\) 12.4853 1.65372
\(58\) −11.4853 + 6.63103i −1.50809 + 0.870697i
\(59\) 2.26303 1.30656i 0.294622 0.170100i −0.345402 0.938455i \(-0.612258\pi\)
0.640024 + 0.768355i \(0.278924\pi\)
\(60\) 14.4853 + 8.36308i 1.87004 + 1.07967i
\(61\) −1.98848 + 3.44415i −0.254599 + 0.440978i −0.964787 0.263034i \(-0.915277\pi\)
0.710188 + 0.704013i \(0.248610\pi\)
\(62\) 1.87476 3.24718i 0.238095 0.412392i
\(63\) 0 0
\(64\) 8.00000 1.00000
\(65\) −8.12132 + 14.0665i −1.00733 + 1.74474i
\(66\) 7.39104i 0.909774i
\(67\) −6.00000 10.3923i −0.733017 1.26962i −0.955588 0.294706i \(-0.904778\pi\)
0.222571 0.974916i \(-0.428555\pi\)
\(68\) 0.634051i 0.0768899i
\(69\) −3.74952 −0.451389
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −5.41421 + 9.37769i −0.638071 + 1.10517i
\(73\) 1.21193 0.699709i 0.141846 0.0818947i −0.427398 0.904064i \(-0.640570\pi\)
0.569243 + 0.822169i \(0.307236\pi\)
\(74\) 3.46410i 0.402694i
\(75\) −11.8643 6.84984i −1.36997 0.790951i
\(76\) −8.27558 + 4.77791i −0.949275 + 0.548064i
\(77\) 0 0
\(78\) −16.2426 9.37769i −1.83912 1.06181i
\(79\) 10.2426 + 5.91359i 1.15239 + 0.665331i 0.949468 0.313864i \(-0.101624\pi\)
0.202919 + 0.979195i \(0.434957\pi\)
\(80\) −12.8017 −1.43127
\(81\) 2.91421 + 5.04757i 0.323802 + 0.560841i
\(82\) −5.46345 + 3.15432i −0.603337 + 0.348337i
\(83\) 8.47343i 0.930080i −0.885290 0.465040i \(-0.846040\pi\)
0.885290 0.465040i \(-0.153960\pi\)
\(84\) 0 0
\(85\) 1.01461i 0.110050i
\(86\) −6.24264 10.8126i −0.673161 1.16595i
\(87\) 12.2525 + 21.2220i 1.31361 + 2.27524i
\(88\) −2.82843 4.89898i −0.301511 0.522233i
\(89\) −8.55014 4.93642i −0.906313 0.523260i −0.0270697 0.999634i \(-0.508618\pi\)
−0.879243 + 0.476374i \(0.841951\pi\)
\(90\) 8.66386 15.0062i 0.913251 1.58180i
\(91\) 0 0
\(92\) 2.48528 1.43488i 0.259108 0.149596i
\(93\) −6.00000 3.46410i −0.622171 0.359211i
\(94\) 7.49903 0.773466
\(95\) 13.2426 7.64564i 1.35867 0.784426i
\(96\) 14.7821i 1.50869i
\(97\) 3.82683i 0.388556i −0.980946 0.194278i \(-0.937764\pi\)
0.980946 0.194278i \(-0.0622364\pi\)
\(98\) 0 0
\(99\) 7.65685 0.769543
\(100\) 10.4853 1.04853
\(101\) −3.86324 6.69133i −0.384407 0.665812i 0.607280 0.794488i \(-0.292261\pi\)
−0.991687 + 0.128676i \(0.958927\pi\)
\(102\) −1.17157 −0.116003
\(103\) 7.72648 13.3827i 0.761313 1.31863i −0.180862 0.983509i \(-0.557889\pi\)
0.942174 0.335124i \(-0.108778\pi\)
\(104\) 14.3548 1.40760
\(105\) 0 0
\(106\) −4.24264 2.44949i −0.412082 0.237915i
\(107\) 4.24264 7.34847i 0.410152 0.710403i −0.584754 0.811210i \(-0.698809\pi\)
0.994906 + 0.100807i \(0.0321425\pi\)
\(108\) 3.74952 + 2.16478i 0.360797 + 0.208306i
\(109\) 0.363961 0.210133i 0.0348611 0.0201271i −0.482468 0.875914i \(-0.660260\pi\)
0.517329 + 0.855786i \(0.326926\pi\)
\(110\) 4.52607 + 7.83938i 0.431544 + 0.747455i
\(111\) 6.40083 0.607539
\(112\) 0 0
\(113\) −16.4853 −1.55080 −0.775402 0.631467i \(-0.782453\pi\)
−0.775402 + 0.631467i \(0.782453\pi\)
\(114\) 8.82843 + 15.2913i 0.826858 + 1.43216i
\(115\) −3.97696 + 2.29610i −0.370854 + 0.214112i
\(116\) −16.2426 9.37769i −1.50809 0.870697i
\(117\) −9.71496 + 16.8268i −0.898148 + 1.55564i
\(118\) 3.20041 + 1.84776i 0.294622 + 0.170100i
\(119\) 0 0
\(120\) 23.6544i 2.15934i
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) −5.62427 −0.509198
\(123\) 5.82843 + 10.0951i 0.525532 + 0.910247i
\(124\) 5.30262 0.476189
\(125\) −0.776550 −0.0694568
\(126\) 0 0
\(127\) 5.49333i 0.487454i −0.969844 0.243727i \(-0.921630\pi\)
0.969844 0.243727i \(-0.0783701\pi\)
\(128\) 5.65685 + 9.79796i 0.500000 + 0.866025i
\(129\) −19.9790 + 11.5349i −1.75906 + 1.01559i
\(130\) −22.9706 −2.01465
\(131\) −3.03958 1.75490i −0.265570 0.153327i 0.361303 0.932448i \(-0.382332\pi\)
−0.626873 + 0.779122i \(0.715665\pi\)
\(132\) −9.05213 + 5.22625i −0.787887 + 0.454887i
\(133\) 0 0
\(134\) 8.48528 14.6969i 0.733017 1.26962i
\(135\) −6.00000 3.46410i −0.516398 0.298142i
\(136\) 0.776550 0.448342i 0.0665886 0.0384450i
\(137\) −0.121320 0.210133i −0.0103651 0.0179529i 0.860796 0.508950i \(-0.169966\pi\)
−0.871161 + 0.490997i \(0.836633\pi\)
\(138\) −2.65131 4.59220i −0.225694 0.390914i
\(139\) 5.04054i 0.427533i −0.976885 0.213767i \(-0.931427\pi\)
0.976885 0.213767i \(-0.0685732\pi\)
\(140\) 0 0
\(141\) 13.8564i 1.16692i
\(142\) 0 0
\(143\) −5.07517 8.79045i −0.424407 0.735095i
\(144\) −15.3137 −1.27614
\(145\) 25.9916 + 15.0062i 2.15848 + 1.24620i
\(146\) 1.71393 + 0.989538i 0.141846 + 0.0818947i
\(147\) 0 0
\(148\) −4.24264 + 2.44949i −0.348743 + 0.201347i
\(149\) −17.4853 10.0951i −1.43245 0.827025i −0.435143 0.900361i \(-0.643302\pi\)
−0.997307 + 0.0733360i \(0.976635\pi\)
\(150\) 19.3743i 1.58190i
\(151\) 13.2426 7.64564i 1.07767 0.622194i 0.147404 0.989076i \(-0.452908\pi\)
0.930267 + 0.366883i \(0.119575\pi\)
\(152\) −11.7034 6.75699i −0.949275 0.548064i
\(153\) 1.21371i 0.0981225i
\(154\) 0 0
\(155\) −8.48528 −0.681554
\(156\) 26.5241i 2.12363i
\(157\) 11.9780 + 20.7465i 0.955948 + 1.65575i 0.732184 + 0.681107i \(0.238501\pi\)
0.223764 + 0.974643i \(0.428165\pi\)
\(158\) 16.7262i 1.33066i
\(159\) −4.52607 + 7.83938i −0.358940 + 0.621703i
\(160\) −9.05213 15.6788i −0.715634 1.23951i
\(161\) 0 0
\(162\) −4.12132 + 7.13834i −0.323802 + 0.560841i
\(163\) −4.07107 + 7.05130i −0.318871 + 0.552300i −0.980253 0.197749i \(-0.936637\pi\)
0.661382 + 0.750049i \(0.269970\pi\)
\(164\) −7.72648 4.46088i −0.603337 0.348337i
\(165\) 14.4853 8.36308i 1.12768 0.651065i
\(166\) 10.3778 5.99162i 0.805473 0.465040i
\(167\) −14.3548 −1.11080 −0.555402 0.831582i \(-0.687436\pi\)
−0.555402 + 0.831582i \(0.687436\pi\)
\(168\) 0 0
\(169\) 12.7574 0.981335
\(170\) −1.24264 + 0.717439i −0.0953062 + 0.0550251i
\(171\) 15.8412 9.14594i 1.21141 0.699408i
\(172\) 8.82843 15.2913i 0.673161 1.16595i
\(173\) −3.47496 + 6.01882i −0.264197 + 0.457602i −0.967353 0.253433i \(-0.918440\pi\)
0.703156 + 0.711035i \(0.251773\pi\)
\(174\) −17.3277 + 30.0125i −1.31361 + 2.27524i
\(175\) 0 0
\(176\) 4.00000 6.92820i 0.301511 0.522233i
\(177\) 3.41421 5.91359i 0.256628 0.444493i
\(178\) 13.9623i 1.04652i
\(179\) 10.2426 + 17.7408i 0.765571 + 1.32601i 0.939944 + 0.341328i \(0.110877\pi\)
−0.174373 + 0.984680i \(0.555790\pi\)
\(180\) 24.5051 1.82650
\(181\) −2.10220 −0.156256 −0.0781278 0.996943i \(-0.524894\pi\)
−0.0781278 + 0.996943i \(0.524894\pi\)
\(182\) 0 0
\(183\) 10.3923i 0.768221i
\(184\) 3.51472 + 2.02922i 0.259108 + 0.149596i
\(185\) 6.78910 3.91969i 0.499145 0.288181i
\(186\) 9.79796i 0.718421i
\(187\) −0.549104 0.317025i −0.0401545 0.0231832i
\(188\) 5.30262 + 9.18440i 0.386733 + 0.669841i
\(189\) 0 0
\(190\) 18.7279 + 10.8126i 1.35867 + 0.784426i
\(191\) 10.2426 + 5.91359i 0.741131 + 0.427892i 0.822481 0.568793i \(-0.192590\pi\)
−0.0813491 + 0.996686i \(0.525923\pi\)
\(192\) 18.1043 10.4525i 1.30656 0.754344i
\(193\) 7.07107 + 12.2474i 0.508987 + 0.881591i 0.999946 + 0.0104081i \(0.00331306\pi\)
−0.490959 + 0.871183i \(0.663354\pi\)
\(194\) 4.68690 2.70598i 0.336500 0.194278i
\(195\) 42.4441i 3.03948i
\(196\) 0 0
\(197\) 26.5241i 1.88977i 0.327409 + 0.944883i \(0.393824\pi\)
−0.327409 + 0.944883i \(0.606176\pi\)
\(198\) 5.41421 + 9.37769i 0.384771 + 0.666444i
\(199\) −1.32565 2.29610i −0.0939731 0.162766i 0.815206 0.579170i \(-0.196623\pi\)
−0.909180 + 0.416404i \(0.863290\pi\)
\(200\) 7.41421 + 12.8418i 0.524264 + 0.908052i
\(201\) −27.1564 15.6788i −1.91546 1.10589i
\(202\) 5.46345 9.46297i 0.384407 0.665812i
\(203\) 0 0
\(204\) −0.828427 1.43488i −0.0580015 0.100462i
\(205\) 12.3640 + 7.13834i 0.863536 + 0.498563i
\(206\) 21.8538 1.52263
\(207\) −4.75736 + 2.74666i −0.330659 + 0.190906i
\(208\) 10.1503 + 17.5809i 0.703800 + 1.21902i
\(209\) 9.55582i 0.660990i
\(210\) 0 0
\(211\) 20.4853 1.41026 0.705132 0.709076i \(-0.250888\pi\)
0.705132 + 0.709076i \(0.250888\pi\)
\(212\) 6.92820i 0.475831i
\(213\) 0 0
\(214\) 12.0000 0.820303
\(215\) −14.1273 + 24.4692i −0.963474 + 1.66879i
\(216\) 6.12293i 0.416613i
\(217\) 0 0
\(218\) 0.514719 + 0.297173i 0.0348611 + 0.0201271i
\(219\) 1.82843 3.16693i 0.123554 0.214001i
\(220\) −6.40083 + 11.0866i −0.431544 + 0.747455i
\(221\) 1.39340 0.804479i 0.0937301 0.0541151i
\(222\) 4.52607 + 7.83938i 0.303770 + 0.526145i
\(223\) 24.5051 1.64098 0.820491 0.571659i \(-0.193700\pi\)
0.820491 + 0.571659i \(0.193700\pi\)
\(224\) 0 0
\(225\) −20.0711 −1.33807
\(226\) −11.6569 20.1903i −0.775402 1.34304i
\(227\) −20.1399 + 11.6278i −1.33673 + 0.771761i −0.986321 0.164836i \(-0.947290\pi\)
−0.350408 + 0.936597i \(0.613957\pi\)
\(228\) −12.4853 + 21.6251i −0.826858 + 1.43216i
\(229\) 8.77758 15.2032i 0.580039 1.00466i −0.415435 0.909623i \(-0.636371\pi\)
0.995474 0.0950341i \(-0.0302960\pi\)
\(230\) −5.62427 3.24718i −0.370854 0.214112i
\(231\) 0 0
\(232\) 26.5241i 1.74139i
\(233\) 10.1213 17.5306i 0.663070 1.14847i −0.316735 0.948514i \(-0.602587\pi\)
0.979805 0.199956i \(-0.0640801\pi\)
\(234\) −27.4781 −1.79630
\(235\) −8.48528 14.6969i −0.553519 0.958723i
\(236\) 5.22625i 0.340200i
\(237\) 30.9059 2.00756
\(238\) 0 0
\(239\) 13.2621i 0.857851i 0.903340 + 0.428926i \(0.141108\pi\)
−0.903340 + 0.428926i \(0.858892\pi\)
\(240\) −28.9706 + 16.7262i −1.87004 + 1.07967i
\(241\) 19.1554 11.0594i 1.23391 0.712396i 0.266064 0.963955i \(-0.414277\pi\)
0.967842 + 0.251559i \(0.0809434\pi\)
\(242\) 9.89949 0.636364
\(243\) 18.8142 + 10.8624i 1.20693 + 0.696822i
\(244\) −3.97696 6.88830i −0.254599 0.440978i
\(245\) 0 0
\(246\) −8.24264 + 14.2767i −0.525532 + 0.910247i
\(247\) −21.0000 12.1244i −1.33620 0.771454i
\(248\) 3.74952 + 6.49435i 0.238095 + 0.412392i
\(249\) −11.0711 19.1757i −0.701600 1.21521i
\(250\) −0.549104 0.951076i −0.0347284 0.0601513i
\(251\) 19.1886i 1.21117i −0.795780 0.605586i \(-0.792939\pi\)
0.795780 0.605586i \(-0.207061\pi\)
\(252\) 0 0
\(253\) 2.86976i 0.180420i
\(254\) 6.72792 3.88437i 0.422147 0.243727i
\(255\) 1.32565 + 2.29610i 0.0830157 + 0.143787i
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −7.06365 4.07820i −0.440619 0.254391i 0.263241 0.964730i \(-0.415208\pi\)
−0.703860 + 0.710339i \(0.748542\pi\)
\(258\) −28.2546 16.3128i −1.75906 1.01559i
\(259\) 0 0
\(260\) −16.2426 28.1331i −1.00733 1.74474i
\(261\) 31.0919 + 17.9509i 1.92454 + 1.11113i
\(262\) 4.96362i 0.306653i
\(263\) −7.75736 + 4.47871i −0.478339 + 0.276169i −0.719724 0.694260i \(-0.755732\pi\)
0.241385 + 0.970429i \(0.422398\pi\)
\(264\) −12.8017 7.39104i −0.787887 0.454887i
\(265\) 11.0866i 0.681042i
\(266\) 0 0
\(267\) −25.7990 −1.57887
\(268\) 24.0000 1.46603
\(269\) 1.21193 + 2.09913i 0.0738927 + 0.127986i 0.900604 0.434640i \(-0.143124\pi\)
−0.826711 + 0.562626i \(0.809791\pi\)
\(270\) 9.79796i 0.596285i
\(271\) −6.62827 + 11.4805i −0.402639 + 0.697391i −0.994044 0.108984i \(-0.965240\pi\)
0.591405 + 0.806375i \(0.298574\pi\)
\(272\) 1.09821 + 0.634051i 0.0665886 + 0.0384450i
\(273\) 0 0
\(274\) 0.171573 0.297173i 0.0103651 0.0179529i
\(275\) 5.24264 9.08052i 0.316143 0.547576i
\(276\) 3.74952 6.49435i 0.225694 0.390914i
\(277\) −14.4853 + 8.36308i −0.870336 + 0.502489i −0.867460 0.497507i \(-0.834249\pi\)
−0.00287626 + 0.999996i \(0.500916\pi\)
\(278\) 6.17338 3.56420i 0.370255 0.213767i
\(279\) −10.1503 −0.607685
\(280\) 0 0
\(281\) 8.72792 0.520664 0.260332 0.965519i \(-0.416168\pi\)
0.260332 + 0.965519i \(0.416168\pi\)
\(282\) 16.9706 9.79796i 1.01058 0.583460i
\(283\) 0.160829 0.0928546i 0.00956028 0.00551963i −0.495212 0.868772i \(-0.664910\pi\)
0.504773 + 0.863252i \(0.331576\pi\)
\(284\) 0 0
\(285\) 19.9790 34.6047i 1.18346 2.04980i
\(286\) 7.17738 12.4316i 0.424407 0.735095i
\(287\) 0 0
\(288\) −10.8284 18.7554i −0.638071 1.10517i
\(289\) −8.44975 + 14.6354i −0.497044 + 0.860905i
\(290\) 42.4441i 2.49240i
\(291\) −5.00000 8.66025i −0.293105 0.507673i
\(292\) 2.79884i 0.163789i
\(293\) 5.07517 0.296495 0.148247 0.988950i \(-0.452637\pi\)
0.148247 + 0.988950i \(0.452637\pi\)
\(294\) 0 0
\(295\) 8.36308i 0.486917i
\(296\) −6.00000 3.46410i −0.348743 0.201347i
\(297\) 3.74952 2.16478i 0.217569 0.125614i
\(298\) 28.5533i 1.65405i
\(299\) 6.30661 + 3.64113i 0.364721 + 0.210572i
\(300\) 23.7285 13.6997i 1.36997 0.790951i
\(301\) 0 0
\(302\) 18.7279 + 10.8126i 1.07767 + 0.622194i
\(303\) −17.4853 10.0951i −1.00450 0.579950i
\(304\) 19.1116i 1.09613i
\(305\) 6.36396 + 11.0227i 0.364399 + 0.631158i
\(306\) −1.48648 + 0.858221i −0.0849766 + 0.0490613i
\(307\) 6.04601i 0.345064i −0.985004 0.172532i \(-0.944805\pi\)
0.985004 0.172532i \(-0.0551948\pi\)
\(308\) 0 0
\(309\) 40.3805i 2.29717i
\(310\) −6.00000 10.3923i −0.340777 0.590243i
\(311\) −13.5782 23.5181i −0.769949 1.33359i −0.937590 0.347743i \(-0.886948\pi\)
0.167641 0.985848i \(-0.446385\pi\)
\(312\) 32.4853 18.7554i 1.83912 1.06181i
\(313\) −9.16586 5.29191i −0.518085 0.299116i 0.218066 0.975934i \(-0.430025\pi\)
−0.736151 + 0.676818i \(0.763359\pi\)
\(314\) −16.9394 + 29.3400i −0.955948 + 1.65575i
\(315\) 0 0
\(316\) −20.4853 + 11.8272i −1.15239 + 0.665331i
\(317\) 3.51472 + 2.02922i 0.197406 + 0.113973i 0.595445 0.803396i \(-0.296976\pi\)
−0.398039 + 0.917369i \(0.630309\pi\)
\(318\) −12.8017 −0.717881
\(319\) −16.2426 + 9.37769i −0.909413 + 0.525050i
\(320\) 12.8017 22.1731i 0.715634 1.23951i
\(321\) 22.1731i 1.23758i
\(322\) 0 0
\(323\) −1.51472 −0.0842812
\(324\) −11.6569 −0.647603
\(325\) 13.3036 + 23.0426i 0.737954 + 1.27817i
\(326\) −11.5147 −0.637741
\(327\) 0.549104 0.951076i 0.0303655 0.0525946i
\(328\) 12.6173i 0.696673i
\(329\) 0 0
\(330\) 20.4853 + 11.8272i 1.12768 + 0.651065i
\(331\) −10.4142 + 18.0379i −0.572417 + 0.991455i 0.423900 + 0.905709i \(0.360661\pi\)
−0.996317 + 0.0857463i \(0.972673\pi\)
\(332\) 14.6764 + 8.47343i 0.805473 + 0.465040i
\(333\) 8.12132 4.68885i 0.445046 0.256947i
\(334\) −10.1503 17.5809i −0.555402 0.961984i
\(335\) −38.4050 −2.09829
\(336\) 0 0
\(337\) 4.24264 0.231111 0.115556 0.993301i \(-0.463135\pi\)
0.115556 + 0.993301i \(0.463135\pi\)
\(338\) 9.02082 + 15.6245i 0.490668 + 0.849861i
\(339\) −37.3067 + 21.5391i −2.02622 + 1.16984i
\(340\) −1.75736 1.01461i −0.0953062 0.0550251i
\(341\) 2.65131 4.59220i 0.143576 0.248682i
\(342\) 22.4029 + 12.9343i 1.21141 + 0.699408i
\(343\) 0 0
\(344\) 24.9706 1.34632
\(345\) −6.00000 + 10.3923i −0.323029 + 0.559503i
\(346\) −9.82868 −0.528393
\(347\) −3.48528 6.03668i −0.187100 0.324066i 0.757182 0.653204i \(-0.226575\pi\)
−0.944282 + 0.329137i \(0.893242\pi\)
\(348\) −49.0102 −2.62722
\(349\) −22.4029 −1.19920 −0.599600 0.800300i \(-0.704673\pi\)
−0.599600 + 0.800300i \(0.704673\pi\)
\(350\) 0 0
\(351\) 10.9867i 0.586424i
\(352\) 11.3137 0.603023
\(353\) 11.3623 6.56001i 0.604753 0.349154i −0.166156 0.986099i \(-0.553136\pi\)
0.770909 + 0.636945i \(0.219802\pi\)
\(354\) 9.65685 0.513256
\(355\) 0 0
\(356\) 17.1003 9.87285i 0.906313 0.523260i
\(357\) 0 0
\(358\) −14.4853 + 25.0892i −0.765571 + 1.32601i
\(359\) 15.0000 + 8.66025i 0.791670 + 0.457071i 0.840550 0.541734i \(-0.182232\pi\)
−0.0488803 + 0.998805i \(0.515565\pi\)
\(360\) 17.3277 + 30.0125i 0.913251 + 1.58180i
\(361\) 1.91421 + 3.31552i 0.100748 + 0.174501i
\(362\) −1.48648 2.57466i −0.0781278 0.135321i
\(363\) 18.2919i 0.960075i
\(364\) 0 0
\(365\) 4.47871i 0.234427i
\(366\) −12.7279 + 7.34847i −0.665299 + 0.384111i
\(367\) −8.50303 14.7277i −0.443855 0.768779i 0.554117 0.832439i \(-0.313056\pi\)
−0.997972 + 0.0636601i \(0.979723\pi\)
\(368\) 5.73951i 0.299193i
\(369\) 14.7901 + 8.53909i 0.769944 + 0.444527i
\(370\) 9.60124 + 5.54328i 0.499145 + 0.288181i
\(371\) 0 0
\(372\) 12.0000 6.92820i 0.622171 0.359211i
\(373\) −7.97056 4.60181i −0.412700 0.238273i 0.279249 0.960219i \(-0.409914\pi\)
−0.691949 + 0.721946i \(0.743248\pi\)
\(374\) 0.896683i 0.0463664i
\(375\) −1.75736 + 1.01461i −0.0907496 + 0.0523943i
\(376\) −7.49903 + 12.9887i −0.386733 + 0.669841i
\(377\) 47.5934i 2.45118i
\(378\) 0 0
\(379\) 17.3137 0.889345 0.444673 0.895693i \(-0.353320\pi\)
0.444673 + 0.895693i \(0.353320\pi\)
\(380\) 30.5826i 1.56885i
\(381\) −7.17738 12.4316i −0.367708 0.636889i
\(382\) 16.7262i 0.855785i
\(383\) 2.65131 4.59220i 0.135476 0.234651i −0.790303 0.612716i \(-0.790077\pi\)
0.925779 + 0.378065i \(0.123410\pi\)
\(384\) 25.6033 + 14.7821i 1.30656 + 0.754344i
\(385\) 0 0
\(386\) −10.0000 + 17.3205i −0.508987 + 0.881591i
\(387\) −16.8995 + 29.2708i −0.859050 + 1.48792i
\(388\) 6.62827 + 3.82683i 0.336500 + 0.194278i
\(389\) 3.15076 1.81909i 0.159750 0.0922316i −0.417994 0.908450i \(-0.637267\pi\)
0.577744 + 0.816218i \(0.303933\pi\)
\(390\) −51.9832 + 30.0125i −2.63227 + 1.51974i
\(391\) 0.454893 0.0230049
\(392\) 0 0
\(393\) −9.17157 −0.462645
\(394\) −32.4853 + 18.7554i −1.63658 + 0.944883i
\(395\) 32.7807 18.9259i 1.64937 0.952267i
\(396\) −7.65685 + 13.2621i −0.384771 + 0.666444i
\(397\) −12.1388 + 21.0251i −0.609230 + 1.05522i 0.382137 + 0.924105i \(0.375188\pi\)
−0.991368 + 0.131112i \(0.958145\pi\)
\(398\) 1.87476 3.24718i 0.0939731 0.162766i
\(399\) 0 0
\(400\) −10.4853 + 18.1610i −0.524264 + 0.908052i
\(401\) −3.87868 + 6.71807i −0.193692 + 0.335484i −0.946471 0.322789i \(-0.895380\pi\)
0.752779 + 0.658273i \(0.228713\pi\)
\(402\) 44.3462i 2.21179i
\(403\) 6.72792 + 11.6531i 0.335142 + 0.580482i
\(404\) 15.4530 0.768813
\(405\) 18.6534 0.926893
\(406\) 0 0
\(407\) 4.89898i 0.242833i
\(408\) 1.17157 2.02922i 0.0580015 0.100462i
\(409\) 3.31414 1.91342i 0.163873 0.0946124i −0.415820 0.909447i \(-0.636505\pi\)
0.579694 + 0.814834i \(0.303172\pi\)
\(410\) 20.1903i 0.997126i
\(411\) −0.549104 0.317025i −0.0270853 0.0156377i
\(412\) 15.4530 + 26.7653i 0.761313 + 1.31863i
\(413\) 0 0
\(414\) −6.72792 3.88437i −0.330659 0.190906i
\(415\) −23.4853 13.5592i −1.15285 0.665597i
\(416\) −14.3548 + 24.8632i −0.703800 + 1.21902i
\(417\) −6.58579 11.4069i −0.322507 0.558599i
\(418\) −11.7034 + 6.75699i −0.572434 + 0.330495i
\(419\) 39.8309i 1.94587i 0.231082 + 0.972934i \(0.425774\pi\)
−0.231082 + 0.972934i \(0.574226\pi\)
\(420\) 0 0
\(421\) 26.5241i 1.29271i −0.763038 0.646353i \(-0.776293\pi\)
0.763038 0.646353i \(-0.223707\pi\)
\(422\) 14.4853 + 25.0892i 0.705132 + 1.22133i
\(423\) −10.1503 17.5809i −0.493527 0.854813i
\(424\) 8.48528 4.89898i 0.412082 0.237915i
\(425\) 1.43938 + 0.831025i 0.0698201 + 0.0403106i
\(426\) 0 0
\(427\) 0 0
\(428\) 8.48528 + 14.6969i 0.410152 + 0.710403i
\(429\) −22.9706 13.2621i −1.10903 0.640298i
\(430\) −39.9581 −1.92695
\(431\) 6.51472 3.76127i 0.313803 0.181174i −0.334824 0.942281i \(-0.608677\pi\)
0.648627 + 0.761106i \(0.275344\pi\)
\(432\) −7.49903 + 4.32957i −0.360797 + 0.208306i
\(433\) 5.17186i 0.248544i 0.992248 + 0.124272i \(0.0396595\pi\)
−0.992248 + 0.124272i \(0.960341\pi\)
\(434\) 0 0
\(435\) 78.4264 3.76026
\(436\) 0.840532i 0.0402542i
\(437\) −3.42786 5.93723i −0.163977 0.284016i
\(438\) 5.17157 0.247107
\(439\) 17.8768 30.9636i 0.853214 1.47781i −0.0250778 0.999686i \(-0.507983\pi\)
0.878292 0.478125i \(-0.158683\pi\)
\(440\) −18.1043 −0.863087
\(441\) 0 0
\(442\) 1.97056 + 1.13770i 0.0937301 + 0.0541151i
\(443\) 14.1421 24.4949i 0.671913 1.16379i −0.305448 0.952209i \(-0.598806\pi\)
0.977361 0.211579i \(-0.0678605\pi\)
\(444\) −6.40083 + 11.0866i −0.303770 + 0.526145i
\(445\) −27.3640 + 15.7986i −1.29718 + 0.748925i
\(446\) 17.3277 + 30.0125i 0.820491 + 1.42113i
\(447\) −52.7597 −2.49545
\(448\) 0 0
\(449\) −5.65685 −0.266963 −0.133482 0.991051i \(-0.542616\pi\)
−0.133482 + 0.991051i \(0.542616\pi\)
\(450\) −14.1924 24.5819i −0.669036 1.15880i
\(451\) −7.72648 + 4.46088i −0.363826 + 0.210055i
\(452\) 16.4853 28.5533i 0.775402 1.34304i
\(453\) 19.9790 34.6047i 0.938697 1.62587i
\(454\) −28.4821 16.4441i −1.33673 0.771761i
\(455\) 0 0
\(456\) −35.3137 −1.65372
\(457\) 10.5858 18.3351i 0.495182 0.857681i −0.504802 0.863235i \(-0.668435\pi\)
0.999985 + 0.00555421i \(0.00176797\pi\)
\(458\) 24.8268 1.16008
\(459\) 0.343146 + 0.594346i 0.0160167 + 0.0277417i
\(460\) 9.18440i 0.428225i
\(461\) −26.6073 −1.23923 −0.619613 0.784908i \(-0.712710\pi\)
−0.619613 + 0.784908i \(0.712710\pi\)
\(462\) 0 0
\(463\) 18.7554i 0.871637i 0.900035 + 0.435818i \(0.143541\pi\)
−0.900035 + 0.435818i \(0.856459\pi\)
\(464\) 32.4853 18.7554i 1.50809 0.870697i
\(465\) −19.2025 + 11.0866i −0.890493 + 0.514127i
\(466\) 28.6274 1.32614
\(467\) −0.0666175 0.0384616i −0.00308269 0.00177979i 0.498458 0.866914i \(-0.333900\pi\)
−0.501541 + 0.865134i \(0.667233\pi\)
\(468\) −19.4299 33.6536i −0.898148 1.55564i
\(469\) 0 0
\(470\) 12.0000 20.7846i 0.553519 0.958723i
\(471\) 54.2132 + 31.3000i 2.49801 + 1.44223i
\(472\) −6.40083 + 3.69552i −0.294622 + 0.170100i
\(473\) −8.82843 15.2913i −0.405932 0.703094i
\(474\) 21.8538 + 37.8519i 1.00378 + 1.73859i
\(475\) 25.0489i 1.14932i
\(476\) 0 0
\(477\) 13.2621i 0.607228i
\(478\) −16.2426 + 9.37769i −0.742921 + 0.428926i
\(479\) 5.85172 + 10.1355i 0.267372 + 0.463102i 0.968182 0.250246i \(-0.0805114\pi\)
−0.700810 + 0.713348i \(0.747178\pi\)
\(480\) −40.9706 23.6544i −1.87004 1.07967i
\(481\) −10.7661 6.21579i −0.490890 0.283416i
\(482\) 27.0898 + 15.6403i 1.23391 + 0.712396i
\(483\) 0 0
\(484\) 7.00000 + 12.1244i 0.318182 + 0.551107i
\(485\) −10.6066 6.12372i −0.481621 0.278064i
\(486\) 30.7235i 1.39364i
\(487\) 29.4853 17.0233i 1.33611 0.771401i 0.349878 0.936795i \(-0.386223\pi\)
0.986228 + 0.165394i \(0.0528897\pi\)
\(488\) 5.62427 9.74153i 0.254599 0.440978i
\(489\) 21.2764i 0.962153i
\(490\) 0 0
\(491\) −31.7990 −1.43507 −0.717534 0.696523i \(-0.754729\pi\)
−0.717534 + 0.696523i \(0.754729\pi\)
\(492\) −23.3137 −1.05106
\(493\) −1.48648 2.57466i −0.0669478 0.115957i
\(494\) 34.2929i 1.54291i
\(495\) 12.2525 21.2220i 0.550711 0.953859i
\(496\) −5.30262 + 9.18440i −0.238095 + 0.412392i
\(497\) 0 0
\(498\) 15.6569 27.1185i 0.701600 1.21521i
\(499\) 4.24264 7.34847i 0.189927 0.328963i −0.755299 0.655380i \(-0.772508\pi\)
0.945226 + 0.326418i \(0.105842\pi\)
\(500\) 0.776550 1.34502i 0.0347284 0.0601513i
\(501\) −32.4853 + 18.7554i −1.45134 + 0.837929i
\(502\) 23.5011 13.5684i 1.04891 0.605586i
\(503\) 24.5051 1.09263 0.546314 0.837580i \(-0.316031\pi\)
0.546314 + 0.837580i \(0.316031\pi\)
\(504\) 0 0
\(505\) −24.7279 −1.10038
\(506\) 3.51472 2.02922i 0.156248 0.0902100i
\(507\) 28.8703 16.6683i 1.28218 0.740265i
\(508\) 9.51472 + 5.49333i 0.422147 + 0.243727i
\(509\) −7.06365 + 12.2346i −0.313091 + 0.542289i −0.979030 0.203717i \(-0.934698\pi\)
0.665939 + 0.746006i \(0.268031\pi\)
\(510\) −1.87476 + 3.24718i −0.0830157 + 0.143787i
\(511\) 0 0
\(512\) −22.6274 −1.00000
\(513\) 5.17157 8.95743i 0.228331 0.395480i
\(514\) 11.5349i 0.508782i
\(515\) −24.7279 42.8300i −1.08964 1.88732i
\(516\) 46.1396i 2.03118i
\(517\) 10.6052 0.466418
\(518\) 0 0
\(519\) 18.1610i 0.797181i
\(520\) 22.9706 39.7862i 1.00733 1.74474i
\(521\) −16.1158 + 9.30445i −0.706045 + 0.407636i −0.809595 0.586989i \(-0.800313\pi\)
0.103550 + 0.994624i \(0.466980\pi\)
\(522\) 50.7728i 2.22227i
\(523\) −28.4154 16.4057i −1.24252 0.717369i −0.272914 0.962039i \(-0.587987\pi\)
−0.969607 + 0.244669i \(0.921321\pi\)
\(524\) 6.07917 3.50981i 0.265570 0.153327i
\(525\) 0 0
\(526\) −10.9706 6.33386i −0.478339 0.276169i
\(527\) 0.727922 + 0.420266i 0.0317088 + 0.0183071i
\(528\) 20.9050i 0.909774i
\(529\) −10.4706 18.1355i −0.455242 0.788502i
\(530\) −13.5782 + 7.83938i −0.589799 + 0.340521i
\(531\) 10.0042i 0.434144i
\(532\) 0 0
\(533\) 22.6398i 0.980637i
\(534\) −18.2426 31.5972i −0.789436 1.36734i
\(535\) −13.5782 23.5181i −0.587037 1.01678i
\(536\) 16.9706 + 29.3939i 0.733017 + 1.26962i
\(537\) 46.3589 + 26.7653i 2.00053 + 1.15501i
\(538\) −1.71393 + 2.96861i −0.0738927 + 0.127986i
\(539\) 0 0
\(540\) 12.0000 6.92820i 0.516398 0.298142i
\(541\) 28.4558 + 16.4290i 1.22341 + 0.706337i 0.965644 0.259869i \(-0.0836795\pi\)
0.257768 + 0.966207i \(0.417013\pi\)
\(542\) −18.7476 −0.805278
\(543\) −4.75736 + 2.74666i −0.204158 + 0.117871i
\(544\) 1.79337i 0.0768899i
\(545\) 1.34502i 0.0576145i
\(546\) 0 0
\(547\) −15.1716 −0.648690 −0.324345 0.945939i \(-0.605144\pi\)
−0.324345 + 0.945939i \(0.605144\pi\)
\(548\) 0.485281 0.0207302
\(549\) 7.61276 + 13.1857i 0.324905 + 0.562751i
\(550\) 14.8284 0.632286
\(551\) −22.4029 + 38.8029i −0.954395 + 1.65306i
\(552\) 10.6052 0.451389
\(553\) 0 0
\(554\) −20.4853 11.8272i −0.870336 0.502489i
\(555\) 10.2426 17.7408i 0.434776 0.753054i
\(556\) 8.73048 + 5.04054i 0.370255 + 0.213767i
\(557\) −14.4853 + 8.36308i −0.613761 + 0.354355i −0.774436 0.632652i \(-0.781966\pi\)
0.160675 + 0.987007i \(0.448633\pi\)
\(558\) −7.17738 12.4316i −0.303843 0.526271i
\(559\) 44.8058 1.89508
\(560\) 0 0
\(561\) −1.65685 −0.0699524
\(562\) 6.17157 + 10.6895i 0.260332 + 0.450908i
\(563\) 14.5156 8.38057i 0.611759 0.353199i −0.161895 0.986808i \(-0.551760\pi\)
0.773653 + 0.633609i \(0.218427\pi\)
\(564\) 24.0000 + 13.8564i 1.01058 + 0.583460i
\(565\) −26.3799 + 45.6912i −1.10981 + 1.92225i
\(566\) 0.227446 + 0.131316i 0.00956028 + 0.00551963i
\(567\) 0 0
\(568\) 0 0
\(569\) −7.05025 + 12.2114i −0.295562 + 0.511928i −0.975115 0.221698i \(-0.928840\pi\)
0.679554 + 0.733626i \(0.262174\pi\)
\(570\) 56.5092 2.36691
\(571\) 11.8284 + 20.4874i 0.495004 + 0.857373i 0.999983 0.00575900i \(-0.00183316\pi\)
−0.504979 + 0.863132i \(0.668500\pi\)
\(572\) 20.3007 0.848814
\(573\) 30.9059 1.29111
\(574\) 0 0
\(575\) 7.52255i 0.313712i
\(576\) 15.3137 26.5241i 0.638071 1.10517i
\(577\) 1.82765 1.05520i 0.0760862 0.0439284i −0.461474 0.887154i \(-0.652679\pi\)
0.537560 + 0.843225i \(0.319346\pi\)
\(578\) −23.8995 −0.994088
\(579\) 32.0041 + 18.4776i 1.33005 + 0.767902i
\(580\) −51.9832 + 30.0125i −2.15848 + 1.24620i
\(581\) 0 0
\(582\) 7.07107 12.2474i 0.293105 0.507673i
\(583\) −6.00000 3.46410i −0.248495 0.143468i
\(584\) −3.42786 + 1.97908i −0.141846 + 0.0818947i
\(585\) 31.0919 + 53.8527i 1.28549 + 2.22654i
\(586\) 3.58869 + 6.21579i 0.148247 + 0.256772i
\(587\) 43.2638i 1.78569i 0.450365 + 0.892845i \(0.351294\pi\)
−0.450365 + 0.892845i \(0.648706\pi\)
\(588\) 0 0
\(589\) 12.6677i 0.521964i
\(590\) 10.2426 5.91359i 0.421683 0.243459i
\(591\) 34.6554 + 60.0250i 1.42553 + 2.46910i
\(592\) 9.79796i 0.402694i
\(593\) −10.6523 6.15013i −0.437439 0.252556i 0.265072 0.964229i \(-0.414604\pi\)
−0.702511 + 0.711673i \(0.747938\pi\)
\(594\) 5.30262 + 3.06147i 0.217569 + 0.125614i
\(595\) 0 0
\(596\) 34.9706 20.1903i 1.43245 0.827025i
\(597\) −6.00000 3.46410i −0.245564 0.141776i
\(598\) 10.2987i 0.421143i
\(599\) −30.7279 + 17.7408i −1.25551 + 0.724868i −0.972198 0.234160i \(-0.924766\pi\)
−0.283311 + 0.959028i \(0.591433\pi\)
\(600\) 33.5572 + 19.3743i 1.36997 + 0.790951i
\(601\) 35.1843i 1.43520i 0.696456 + 0.717600i \(0.254759\pi\)
−0.696456 + 0.717600i \(0.745241\pi\)
\(602\) 0 0
\(603\) −45.9411 −1.87087
\(604\) 30.5826i 1.24439i
\(605\) −11.2014 19.4015i −0.455403 0.788782i
\(606\) 28.5533i 1.15990i
\(607\) 12.8017 22.1731i 0.519603 0.899979i −0.480137 0.877193i \(-0.659413\pi\)
0.999740 0.0227854i \(-0.00725346\pi\)
\(608\) 23.4069 13.5140i 0.949275 0.548064i
\(609\) 0 0
\(610\) −9.00000 + 15.5885i −0.364399 + 0.631158i
\(611\) −13.4558 + 23.3062i −0.544365 + 0.942868i
\(612\) −2.10220 1.21371i −0.0849766 0.0490613i
\(613\) 23.3345 13.4722i 0.942473 0.544137i 0.0517380 0.998661i \(-0.483524\pi\)
0.890735 + 0.454524i \(0.150191\pi\)
\(614\) 7.40482 4.27518i 0.298834 0.172532i
\(615\) 37.3067 1.50435
\(616\) 0 0
\(617\) −9.21320 −0.370910 −0.185455 0.982653i \(-0.559376\pi\)
−0.185455 + 0.982653i \(0.559376\pi\)
\(618\) 49.4558 28.5533i 1.98941 1.14858i
\(619\) −25.2150 + 14.5579i −1.01348 + 0.585131i −0.912208 0.409728i \(-0.865624\pi\)
−0.101270 + 0.994859i \(0.532290\pi\)
\(620\) 8.48528 14.6969i 0.340777 0.590243i
\(621\) −1.55310 + 2.69005i −0.0623238 + 0.107948i
\(622\) 19.2025 33.2597i 0.769949 1.33359i
\(623\) 0 0
\(624\) 45.9411 + 26.5241i 1.83912 + 1.06181i
\(625\) 11.8640 20.5490i 0.474558 0.821959i
\(626\) 14.9678i 0.598233i
\(627\) 12.4853 + 21.6251i 0.498614 + 0.863625i
\(628\) −47.9120 −1.91190
\(629\) −0.776550 −0.0309631
\(630\) 0 0
\(631\) 29.7420i 1.18401i −0.805934 0.592006i \(-0.798336\pi\)
0.805934 0.592006i \(-0.201664\pi\)
\(632\) −28.9706 16.7262i −1.15239 0.665331i
\(633\) 46.3589 26.7653i 1.84260 1.06383i
\(634\) 5.73951i 0.227945i
\(635\) −15.2255 8.79045i −0.604206 0.348839i
\(636\) −9.05213 15.6788i −0.358940 0.621703i
\(637\) 0 0
\(638\) −22.9706 13.2621i −0.909413 0.525050i
\(639\) 0 0
\(640\) 36.2085 1.43127
\(641\) 8.46447 + 14.6609i 0.334326 + 0.579070i 0.983355 0.181694i \(-0.0581579\pi\)
−0.649029 + 0.760764i \(0.724825\pi\)
\(642\) 27.1564 15.6788i 1.07178 0.618791i
\(643\) 36.3981i 1.43540i 0.696353 + 0.717700i \(0.254805\pi\)
−0.696353 + 0.717700i \(0.745195\pi\)
\(644\) 0 0
\(645\) 73.8329i 2.90717i
\(646\) −1.07107 1.85514i −0.0421406 0.0729897i
\(647\) 5.85172 + 10.1355i 0.230055 + 0.398467i 0.957824 0.287355i \(-0.0927761\pi\)
−0.727769 + 0.685822i \(0.759443\pi\)
\(648\) −8.24264 14.2767i −0.323802 0.560841i
\(649\) 4.52607 + 2.61313i 0.177664 + 0.102574i
\(650\) −18.8142 + 32.5872i −0.737954 + 1.27817i
\(651\) 0 0
\(652\) −8.14214 14.1026i −0.318871 0.552300i
\(653\) −30.3640 17.5306i −1.18823 0.686027i −0.230329 0.973113i \(-0.573980\pi\)
−0.957905 + 0.287086i \(0.907313\pi\)
\(654\) 1.55310 0.0607310
\(655\) −9.72792 + 5.61642i −0.380101 + 0.219452i
\(656\) 15.4530 8.92177i 0.603337 0.348337i
\(657\) 5.35757i 0.209019i
\(658\) 0 0
\(659\) 25.5147 0.993912 0.496956 0.867776i \(-0.334451\pi\)
0.496956 + 0.867776i \(0.334451\pi\)
\(660\) 33.4523i 1.30213i
\(661\) −10.4249 18.0564i −0.405481 0.702314i 0.588896 0.808209i \(-0.299563\pi\)
−0.994377 + 0.105894i \(0.966229\pi\)
\(662\) −29.4558 −1.14483
\(663\) 2.10220 3.64113i 0.0816429 0.141410i
\(664\) 23.9665i 0.930080i
\(665\) 0 0
\(666\) 11.4853 + 6.63103i 0.445046 + 0.256947i
\(667\) 6.72792 11.6531i 0.260506 0.451210i
\(668\) 14.3548 24.8632i 0.555402 0.961984i
\(669\) 55.4558 32.0174i 2.14405 1.23787i
\(670\) −27.1564 47.0363i −1.04914 1.81717i
\(671\) −7.95393 −0.307058
\(672\) 0 0
\(673\) 30.3848 1.17125 0.585624 0.810583i \(-0.300850\pi\)
0.585624 + 0.810583i \(0.300850\pi\)
\(674\) 3.00000 + 5.19615i 0.115556 + 0.200148i
\(675\) −9.82868 + 5.67459i −0.378306 + 0.218415i
\(676\) −12.7574 + 22.0964i −0.490668 + 0.849861i
\(677\) −0.501998 + 0.869487i −0.0192934 + 0.0334171i −0.875511 0.483198i \(-0.839475\pi\)
0.856218 + 0.516615i \(0.172808\pi\)
\(678\) −52.7597 30.4608i −2.02622 1.16984i
\(679\) 0 0
\(680\) 2.86976i 0.110050i
\(681\) −30.3848 + 52.6280i −1.16435 + 2.01671i
\(682\) 7.49903 0.287153
\(683\) 7.07107 + 12.2474i 0.270567 + 0.468636i 0.969007 0.247033i \(-0.0794555\pi\)
−0.698440 + 0.715668i \(0.746122\pi\)
\(684\) 36.5838i 1.39882i
\(685\) −0.776550 −0.0296705
\(686\) 0 0
\(687\) 45.8739i 1.75020i
\(688\) 17.6569 + 30.5826i 0.673161 + 1.16595i
\(689\) 15.2255 8.79045i 0.580046 0.334890i
\(690\) −16.9706 −0.646058
\(691\) 17.2611 + 9.96570i 0.656643 + 0.379113i 0.790997 0.611820i \(-0.209562\pi\)
−0.134354 + 0.990933i \(0.542896\pi\)
\(692\) −6.94993 12.0376i −0.264197 0.457602i
\(693\) 0 0
\(694\) 4.92893 8.53716i 0.187100 0.324066i
\(695\) −13.9706 8.06591i −0.529934 0.305957i
\(696\) −34.6554 60.0250i −1.31361 2.27524i
\(697\) −0.707107 1.22474i −0.0267836 0.0463905i
\(698\) −15.8412 27.4378i −0.599600 1.03854i
\(699\) 52.8966i 2.00073i
\(700\) 0 0
\(701\) 6.15978i 0.232652i 0.993211 + 0.116326i \(0.0371117\pi\)
−0.993211 + 0.116326i \(0.962888\pi\)
\(702\) −13.4558 + 7.76874i −0.507858 + 0.293212i
\(703\) 5.85172 + 10.1355i 0.220702 + 0.382267i
\(704\) 8.00000 + 13.8564i 0.301511 + 0.522233i
\(705\) −38.4050 22.1731i −1.44641 0.835088i
\(706\) 16.0687 + 9.27726i 0.604753 + 0.349154i
\(707\) 0 0
\(708\) 6.82843 + 11.8272i 0.256628 + 0.444493i
\(709\) 31.8198 + 18.3712i 1.19502 + 0.689944i 0.959440 0.281912i \(-0.0909685\pi\)
0.235578 + 0.971856i \(0.424302\pi\)
\(710\) 0 0
\(711\) 39.2132 22.6398i 1.47061 0.849057i
\(712\) 24.1834 + 13.9623i 0.906313 + 0.523260i
\(713\) 3.80430i 0.142472i
\(714\) 0 0
\(715\) −32.4853 −1.21488
\(716\) −40.9706 −1.53114
\(717\) 17.3277 + 30.0125i 0.647115 + 1.12084i
\(718\) 24.4949i 0.914141i
\(719\) −14.6764 + 25.4203i −0.547338 + 0.948017i 0.451118 + 0.892464i \(0.351025\pi\)
−0.998456 + 0.0555524i \(0.982308\pi\)
\(720\) −24.5051 + 42.4441i −0.913251 + 1.58180i
\(721\) 0 0
\(722\) −2.70711 + 4.68885i −0.100748 + 0.174501i
\(723\) 28.8995 50.0554i 1.07478 1.86158i
\(724\) 2.10220 3.64113i 0.0781278 0.135321i
\(725\) 42.5772 24.5819i 1.58128 0.912950i
\(726\) 22.4029 12.9343i 0.831449 0.480037i
\(727\) −43.0643 −1.59716 −0.798582 0.601886i \(-0.794416\pi\)
−0.798582 + 0.601886i \(0.794416\pi\)
\(728\) 0 0
\(729\) 39.2843 1.45497
\(730\) 5.48528 3.16693i 0.203019 0.117213i
\(731\) 2.42386 1.39942i 0.0896498 0.0517593i
\(732\) −18.0000 10.3923i −0.665299 0.384111i
\(733\) 3.70241 6.41276i 0.136752 0.236861i −0.789514 0.613733i \(-0.789667\pi\)
0.926265 + 0.376872i \(0.123000\pi\)
\(734\) 12.0251 20.8281i 0.443855 0.768779i
\(735\) 0 0
\(736\) −7.02944 + 4.05845i −0.259108 + 0.149596i
\(737\) 12.0000 20.7846i 0.442026 0.765611i
\(738\) 24.1522i 0.889054i
\(739\) −7.58579 13.1390i −0.279048 0.483325i 0.692101 0.721801i \(-0.256685\pi\)
−0.971148 + 0.238476i \(0.923352\pi\)
\(740\) 15.6788i 0.576363i
\(741\) −63.3649 −2.32777
\(742\) 0 0
\(743\) 13.2621i 0.486538i −0.969959 0.243269i \(-0.921780\pi\)
0.969959 0.243269i \(-0.0782197\pi\)
\(744\) 16.9706 + 9.79796i 0.622171 + 0.359211i
\(745\) −55.9601 + 32.3086i −2.05022 + 1.18370i
\(746\) 13.0159i 0.476545i
\(747\) −28.0938 16.2200i −1.02790 0.593457i
\(748\) 1.09821 0.634051i 0.0401545 0.0231832i
\(749\) 0 0
\(750\) −2.48528 1.43488i −0.0907496 0.0523943i
\(751\) −30.9411 17.8639i −1.12906 0.651862i −0.185360 0.982671i \(-0.559345\pi\)
−0.943698 + 0.330809i \(0.892678\pi\)
\(752\) −21.2105 −0.773466
\(753\) −25.0711 43.4244i −0.913641 1.58247i
\(754\) 58.2898 33.6536i 2.12279 1.22559i
\(755\) 48.9384i 1.78105i
\(756\) 0 0
\(757\) 35.9018i 1.30487i 0.757843 + 0.652437i \(0.226253\pi\)
−0.757843 + 0.652437i \(0.773747\pi\)
\(758\) 12.2426 + 21.2049i 0.444673 + 0.770196i
\(759\) −3.74952 6.49435i −0.136099 0.235730i
\(760\) −37.4558 + 21.6251i −1.35867 + 0.784426i
\(761\) 18.9279 + 10.9280i 0.686137 + 0.396141i 0.802163 0.597105i \(-0.203682\pi\)
−0.116026 + 0.993246i \(0.537016\pi\)
\(762\) 10.1503 17.5809i 0.367708 0.636889i
\(763\) 0 0
\(764\) −20.4853 + 11.8272i −0.741131 + 0.427892i
\(765\) 3.36396 + 1.94218i 0.121624 + 0.0702198i
\(766\) 7.49903 0.270951
\(767\) −11.4853 + 6.63103i −0.414709 + 0.239433i
\(768\) 41.8100i 1.50869i
\(769\) 46.1940i 1.66580i 0.553425 + 0.832899i \(0.313320\pi\)
−0.553425 + 0.832899i \(0.686680\pi\)
\(770\) 0 0
\(771\) −21.3137 −0.767594
\(772\) −28.2843 −1.01797
\(773\) −15.5001 26.8469i −0.557499 0.965616i −0.997704 0.0677190i \(-0.978428\pi\)
0.440206 0.897897i \(-0.354905\pi\)
\(774\) −47.7990 −1.71810
\(775\) −6.94993 + 12.0376i −0.249649 + 0.432404i
\(776\) 10.8239i 0.388556i
\(777\) 0 0
\(778\) 4.45584 + 2.57258i 0.159750 + 0.0922316i
\(779\) −10.6569 + 18.4582i −0.381821 + 0.661334i
\(780\) −73.5153 42.4441i −2.63227 1.51974i
\(781\) 0 0
\(782\) 0.321658 + 0.557127i 0.0115025 + 0.0199228i
\(783\) 20.3007 0.725487
\(784\) 0 0
\(785\) 76.6690 2.73644
\(786\) −6.48528 11.2328i −0.231322 0.400662i
\(787\) −33.6238 + 19.4127i −1.19856 + 0.691989i −0.960234 0.279196i \(-0.909932\pi\)
−0.238326 + 0.971185i \(0.576599\pi\)
\(788\) −45.9411 26.5241i −1.63658 0.944883i
\(789\) −11.7034 + 20.2710i −0.416654 + 0.721665i
\(790\) 46.3589 + 26.7653i 1.64937 + 0.952267i
\(791\) 0 0
\(792\) −21.6569 −0.769543
\(793\) 10.0919 17.4797i 0.358373 0.620721i
\(794\) −34.3338 −1.21846
\(795\) 14.4853 + 25.0892i 0.513740 + 0.889824i
\(796\) 5.30262 0.187946
\(797\) 13.4840 0.477627 0.238814 0.971065i \(-0.423241\pi\)
0.238814 + 0.971065i \(0.423241\pi\)
\(798\) 0 0
\(799\) 1.68106i 0.0594718i
\(800\) −29.6569 −1.04853
\(801\) −32.7336 + 18.8987i −1.15658 + 0.667754i
\(802\) −10.9706 −0.387384
\(803\) 2.42386 + 1.39942i 0.0855362 + 0.0493844i
\(804\) 54.3128 31.3575i 1.91546 1.10589i
\(805\) 0 0
\(806\) −9.51472 + 16.4800i −0.335142 + 0.580482i
\(807\) 5.48528 + 3.16693i 0.193091 + 0.111481i
\(808\) 10.9269 + 18.9259i 0.384407 + 0.665812i
\(809\) 7.72792 + 13.3852i 0.271699 + 0.470597i 0.969297 0.245893i \(-0.0790811\pi\)
−0.697598 + 0.716490i \(0.745748\pi\)
\(810\) 13.1899 + 22.8456i 0.463447 + 0.802713i
\(811\) 28.4818i 1.00013i −0.865988 0.500065i \(-0.833310\pi\)
0.865988 0.500065i \(-0.166690\pi\)
\(812\) 0 0
\(813\) 34.6410i 1.21491i
\(814\) −6.00000 + 3.46410i −0.210300 + 0.121417i
\(815\) 13.0291 + 22.5671i 0.456389 + 0.790490i
\(816\) 3.31371 0.116003
\(817\) −36.5302 21.0907i −1.27803 0.737871i
\(818\) 4.68690 + 2.70598i 0.163873 + 0.0946124i
\(819\) 0 0
\(820\) −24.7279 + 14.2767i −0.863536 + 0.498563i
\(821\) −15.5147 8.95743i −0.541467 0.312616i 0.204206 0.978928i \(-0.434539\pi\)
−0.745673 + 0.666312i \(0.767872\pi\)
\(822\) 0.896683i 0.0312754i
\(823\) 18.0000 10.3923i 0.627441 0.362253i −0.152320 0.988331i \(-0.548674\pi\)
0.779760 + 0.626078i \(0.215341\pi\)
\(824\) −21.8538 + 37.8519i −0.761313 + 1.31863i
\(825\) 27.3994i 0.953923i
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 10.9867i 0.381813i
\(829\) 8.38931 + 14.5307i 0.291373 + 0.504672i 0.974135 0.225969i \(-0.0725547\pi\)
−0.682762 + 0.730641i \(0.739221\pi\)
\(830\) 38.3513i 1.33119i
\(831\) −21.8538 + 37.8519i −0.758099 + 1.31307i
\(832\) −40.6014 −1.40760
\(833\) 0 0
\(834\) 9.31371 16.1318i 0.322507 0.558599i
\(835\) −22.9706 + 39.7862i −0.794929 + 1.37686i
\(836\) −16.5512 9.55582i −0.572434 0.330495i
\(837\) −4.97056 + 2.86976i −0.171808 + 0.0991933i
\(838\) −48.7827 + 28.1647i −1.68517 + 0.972934i
\(839\) 30.4510 1.05129 0.525643 0.850705i \(-0.323825\pi\)
0.525643 + 0.850705i \(0.323825\pi\)
\(840\) 0 0
\(841\) −58.9411 −2.03245
\(842\) 32.4853 18.7554i 1.11952 0.646353i
\(843\) 19.7516 11.4036i 0.680281 0.392760i
\(844\) −20.4853 + 35.4815i −0.705132 + 1.22133i
\(845\) 20.4144 35.3588i 0.702277 1.21638i
\(846\) 14.3548 24.8632i 0.493527 0.854813i
\(847\) 0 0
\(848\) 12.0000 + 6.92820i 0.412082 + 0.237915i
\(849\) 0.242641 0.420266i 0.00832741 0.0144235i
\(850\) 2.35049i 0.0806213i
\(851\) −1.75736 3.04384i −0.0602415 0.104341i
\(852\) 0 0
\(853\) −32.5532 −1.11460 −0.557301 0.830311i \(-0.688163\pi\)
−0.557301 + 0.830311i \(0.688163\pi\)
\(854\) 0 0
\(855\) 58.5416i 2.00208i
\(856\) −12.0000 + 20.7846i −0.410152 + 0.710403i
\(857\) −29.8548 + 17.2367i −1.01982 + 0.588794i −0.914052 0.405597i \(-0.867064\pi\)
−0.105769 + 0.994391i \(0.533730\pi\)
\(858\) 37.5108i 1.28060i
\(859\) −38.5658 22.2660i −1.31585 0.759705i −0.332790 0.943001i \(-0.607990\pi\)
−0.983058 + 0.183296i \(0.941323\pi\)
\(860\) −28.2546 48.9384i −0.963474 1.66879i
\(861\) 0 0
\(862\) 9.21320 + 5.31925i 0.313803 + 0.181174i
\(863\) 3.51472 + 2.02922i 0.119642 + 0.0690756i 0.558627 0.829419i \(-0.311328\pi\)
−0.438985 + 0.898495i \(0.644662\pi\)
\(864\) −10.6052 6.12293i −0.360797 0.208306i
\(865\) 11.1213 + 19.2627i 0.378136 + 0.654951i
\(866\) −6.33421 + 3.65706i −0.215245 + 0.124272i
\(867\) 44.1605i 1.49977i
\(868\) 0 0
\(869\) 23.6544i 0.802419i
\(870\) 55.4558 + 96.0523i 1.88013 + 3.25648i
\(871\) 30.4510 + 52.7427i 1.03179 + 1.78712i
\(872\) −1.02944 + 0.594346i −0.0348611 + 0.0201271i
\(873\) −12.6879 7.32538i −0.429421 0.247926i
\(874\) 4.84772 8.39651i 0.163977 0.284016i
\(875\) 0 0
\(876\) 3.65685 + 6.33386i 0.123554 + 0.214001i
\(877\) 27.8787 + 16.0958i 0.941396 + 0.543515i 0.890398 0.455183i \(-0.150426\pi\)
0.0509984 + 0.998699i \(0.483760\pi\)
\(878\) 50.5633 1.70643
\(879\) 11.4853 6.63103i 0.387389 0.223659i
\(880\) −12.8017 22.1731i −0.431544 0.747455i
\(881\) 34.8448i 1.17395i −0.809605 0.586975i \(-0.800319\pi\)
0.809605 0.586975i \(-0.199681\pi\)
\(882\) 0 0
\(883\) 38.4264 1.29315 0.646576 0.762850i \(-0.276200\pi\)
0.646576 + 0.762850i \(0.276200\pi\)
\(884\) 3.21792i 0.108230i
\(885\) −10.9269 18.9259i −0.367303 0.636188i
\(886\) 40.0000 1.34383
\(887\) 19.9790 34.6047i 0.670830 1.16191i −0.306839 0.951761i \(-0.599271\pi\)
0.977669 0.210150i \(-0.0673953\pi\)
\(888\) −18.1043 −0.607539
\(889\) 0 0
\(890\) −38.6985 22.3426i −1.29718 0.748925i
\(891\) −5.82843 + 10.0951i −0.195260 + 0.338200i
\(892\) −24.5051 + 42.4441i −0.820491 + 1.42113i
\(893\) 21.9411 12.6677i 0.734232 0.423909i
\(894\) −37.3067 64.6172i −1.24772 2.16112i
\(895\) 65.5614 2.19147
\(896\) 0 0
\(897\) 19.0294 0.635374
\(898\) −4.00000 6.92820i −0.133482 0.231197i
\(899\) 21.5321 12.4316i 0.718137 0.414616i
\(900\) 20.0711 34.7641i 0.669036 1.15880i
\(901\) 0.549104 0.951076i 0.0182933 0.0316849i
\(902\) −10.9269 6.30864i −0.363826 0.210055i
\(903\) 0 0
\(904\) 46.6274 1.55080
\(905\) −3.36396 + 5.82655i −0.111822 + 0.193681i
\(906\) 56.5092 1.87739
\(907\) 8.00000 + 13.8564i 0.265636 + 0.460094i 0.967730 0.251990i \(-0.0810849\pi\)
−0.702094 + 0.712084i \(0.747752\pi\)
\(908\) 46.5110i 1.54352i
\(909\) −29.5803 −0.981115
\(910\) 0 0
\(911\) 5.49333i 0.182002i 0.995851 + 0.0910010i \(0.0290066\pi\)
−0.995851 + 0.0910010i \(0.970993\pi\)
\(912\) −24.9706 43.2503i −0.826858 1.43216i
\(913\) 14.6764 8.47343i 0.485718 0.280430i
\(914\) 29.9411 0.990364
\(915\) 28.8037 + 16.6298i 0.952221 + 0.549765i
\(916\) 17.5552 + 30.4064i 0.580039 + 1.00466i
\(917\) 0 0
\(918\) −0.485281 + 0.840532i −0.0160167 + 0.0277417i
\(919\) −15.5147 8.95743i −0.511783 0.295478i 0.221783 0.975096i \(-0.428812\pi\)
−0.733566 + 0.679618i \(0.762146\pi\)
\(920\) 11.2485 6.49435i 0.370854 0.214112i
\(921\) −7.89949 13.6823i −0.260297 0.450848i
\(922\) −18.8142 32.5872i −0.619613 1.07320i
\(923\) 0 0
\(924\) 0 0
\(925\) 12.8418i 0.422236i
\(926\) −22.9706 + 13.2621i −0.754860 + 0.435818i
\(927\) −29.5803 51.2345i −0.971543 1.68276i
\(928\) 45.9411 + 26.5241i 1.50809 + 0.870697i
\(929\) −1.37276 0.792563i −0.0450388 0.0260032i 0.477312 0.878734i \(-0.341611\pi\)
−0.522350 + 0.852731i \(0.674945\pi\)
\(930\) −27.1564 15.6788i −0.890493 0.514127i
\(931\) 0 0
\(932\) 20.2426 + 35.0613i 0.663070 + 1.14847i
\(933\) −61.4558 35.4815i −2.01197 1.16161i
\(934\) 0.108786i 0.00355958i
\(935\) −1.75736 + 1.01461i −0.0574718 + 0.0331814i
\(936\) 27.4781 47.5934i 0.898148 1.55564i
\(937\) 16.9694i 0.554366i −0.960817 0.277183i \(-0.910599\pi\)
0.960817 0.277183i \(-0.0894008\pi\)
\(938\) 0 0
\(939\) −27.6569 −0.902547
\(940\) 33.9411 1.10704
\(941\) 1.21193 + 2.09913i 0.0395078 + 0.0684296i 0.885103 0.465395i \(-0.154088\pi\)
−0.845595 + 0.533824i \(0.820754\pi\)
\(942\) 88.5298i 2.88446i
\(943\) 3.20041 5.54328i 0.104220 0.180514i
\(944\) −9.05213 5.22625i −0.294622 0.170100i
\(945\) 0 0
\(946\) 12.4853 21.6251i 0.405932 0.703094i
\(947\) −25.7279 + 44.5621i −0.836045 + 1.44807i 0.0571315 + 0.998367i \(0.481805\pi\)
−0.893177 + 0.449706i \(0.851529\pi\)
\(948\) −30.9059 + 53.5306i −1.00378 + 1.73859i
\(949\) −6.15076 + 3.55114i −0.199662 + 0.115275i
\(950\) 30.6785 17.7122i 0.995341 0.574660i
\(951\) 10.6052 0.343898
\(952\) 0 0
\(953\) −41.3137 −1.33828 −0.669141 0.743135i \(-0.733338\pi\)
−0.669141 + 0.743135i \(0.733338\pi\)
\(954\) −16.2426 + 9.37769i −0.525875 + 0.303614i
\(955\) 32.7807 18.9259i 1.06076 0.612429i
\(956\) −22.9706 13.2621i −0.742921 0.428926i
\(957\) −24.5051 + 42.4441i −0.792137 + 1.37202i
\(958\) −8.27558 + 14.3337i −0.267372 + 0.463102i
\(959\) 0 0
\(960\) 66.9046i 2.15934i
\(961\) 11.9853 20.7591i 0.386622 0.669649i
\(962\) 17.5809i 0.566831i
\(963\) −16.2426 28.1331i −0.523412 0.906576i
\(964\) 44.2374i 1.42479i
\(965\) 45.2607 1.45699
\(966\) 0 0
\(967\) 21.0308i 0.676305i −0.941091 0.338152i \(-0.890198\pi\)
0.941091 0.338152i \(-0.109802\pi\)
\(968\) −9.89949 + 17.1464i −0.318182 + 0.551107i
\(969\) −3.42786 + 1.97908i −0.110119 + 0.0635771i
\(970\) 17.3205i 0.556128i
\(971\) 21.4655 + 12.3931i 0.688861 + 0.397714i 0.803185 0.595729i \(-0.203137\pi\)
−0.114324 + 0.993443i \(0.536470\pi\)
\(972\) −37.6284 + 21.7248i −1.20693 + 0.696822i
\(973\) 0 0
\(974\) 41.6985 + 24.0746i 1.33611 + 0.771401i
\(975\) 60.2132 + 34.7641i 1.92837 + 1.11334i
\(976\) 15.9079 0.509198
\(977\) −18.6066 32.2276i −0.595278 1.03105i −0.993508 0.113766i \(-0.963709\pi\)
0.398230 0.917286i \(-0.369625\pi\)
\(978\) −26.0582 + 15.0447i −0.833249 + 0.481077i
\(979\) 19.7457i 0.631075i
\(980\) 0 0
\(981\) 1.60896i 0.0513701i
\(982\) −22.4853 38.9456i −0.717534 1.24281i
\(983\) 13.0291 + 22.5671i 0.415564 + 0.719777i 0.995487 0.0948934i \(-0.0302510\pi\)
−0.579924 + 0.814671i \(0.696918\pi\)
\(984\) −16.4853 28.5533i −0.525532 0.910247i
\(985\) 73.5153 + 42.4441i 2.34239 + 1.35238i
\(986\) 2.10220 3.64113i 0.0669478 0.115957i
\(987\) 0 0
\(988\) 42.0000 24.2487i 1.33620 0.771454i
\(989\) 10.9706 + 6.33386i 0.348844 + 0.201405i
\(990\) 34.6554 1.10142
\(991\) −27.9411 + 16.1318i −0.887579 + 0.512444i −0.873150 0.487452i \(-0.837926\pi\)
−0.0144292 + 0.999896i \(0.504593\pi\)
\(992\) −14.9981 −0.476189
\(993\) 54.4273i 1.72720i
\(994\) 0 0
\(995\) −8.48528 −0.269002
\(996\) 44.2843 1.40320
\(997\) 2.69841 + 4.67379i 0.0854596 + 0.148020i 0.905587 0.424161i \(-0.139431\pi\)
−0.820127 + 0.572181i \(0.806097\pi\)
\(998\) 12.0000 0.379853
\(999\) 2.65131 4.59220i 0.0838837 0.145291i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.2.m.c.19.4 8
4.3 odd 2 1568.2.q.c.1391.1 8
7.2 even 3 392.2.e.c.195.6 yes 8
7.3 odd 6 392.2.m.e.227.2 8
7.4 even 3 392.2.m.e.227.1 8
7.5 odd 6 392.2.e.c.195.5 8
7.6 odd 2 inner 392.2.m.c.19.3 8
8.3 odd 2 392.2.m.e.19.2 8
8.5 even 2 1568.2.q.d.1391.1 8
28.3 even 6 1568.2.q.d.815.1 8
28.11 odd 6 1568.2.q.d.815.4 8
28.19 even 6 1568.2.e.c.783.8 8
28.23 odd 6 1568.2.e.c.783.1 8
28.27 even 2 1568.2.q.c.1391.4 8
56.3 even 6 inner 392.2.m.c.227.4 8
56.5 odd 6 1568.2.e.c.783.7 8
56.11 odd 6 inner 392.2.m.c.227.3 8
56.13 odd 2 1568.2.q.d.1391.4 8
56.19 even 6 392.2.e.c.195.7 yes 8
56.27 even 2 392.2.m.e.19.1 8
56.37 even 6 1568.2.e.c.783.2 8
56.45 odd 6 1568.2.q.c.815.1 8
56.51 odd 6 392.2.e.c.195.8 yes 8
56.53 even 6 1568.2.q.c.815.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
392.2.e.c.195.5 8 7.5 odd 6
392.2.e.c.195.6 yes 8 7.2 even 3
392.2.e.c.195.7 yes 8 56.19 even 6
392.2.e.c.195.8 yes 8 56.51 odd 6
392.2.m.c.19.3 8 7.6 odd 2 inner
392.2.m.c.19.4 8 1.1 even 1 trivial
392.2.m.c.227.3 8 56.11 odd 6 inner
392.2.m.c.227.4 8 56.3 even 6 inner
392.2.m.e.19.1 8 56.27 even 2
392.2.m.e.19.2 8 8.3 odd 2
392.2.m.e.227.1 8 7.4 even 3
392.2.m.e.227.2 8 7.3 odd 6
1568.2.e.c.783.1 8 28.23 odd 6
1568.2.e.c.783.2 8 56.37 even 6
1568.2.e.c.783.7 8 56.5 odd 6
1568.2.e.c.783.8 8 28.19 even 6
1568.2.q.c.815.1 8 56.45 odd 6
1568.2.q.c.815.4 8 56.53 even 6
1568.2.q.c.1391.1 8 4.3 odd 2
1568.2.q.c.1391.4 8 28.27 even 2
1568.2.q.d.815.1 8 28.3 even 6
1568.2.q.d.815.4 8 28.11 odd 6
1568.2.q.d.1391.1 8 8.5 even 2
1568.2.q.d.1391.4 8 56.13 odd 2