Properties

Label 392.2.e.c.195.5
Level $392$
Weight $2$
Character 392.195
Analytic conductor $3.130$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [392,2,Mod(195,392)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(392, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("392.195"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 392.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.13013575923\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.339738624.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 14x^{4} - 8x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 195.5
Root \(-0.662827 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 392.195
Dual form 392.2.e.c.195.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 1.22474i) q^{2} -2.61313i q^{3} +(-1.00000 - 1.73205i) q^{4} +3.20041 q^{5} +(-3.20041 - 1.84776i) q^{6} -2.82843 q^{8} -3.82843 q^{9} +(2.26303 - 3.91969i) q^{10} -2.00000 q^{11} +(-4.52607 + 2.61313i) q^{12} +5.07517 q^{13} -8.36308i q^{15} +(-2.00000 + 3.46410i) q^{16} +0.317025i q^{17} +(-2.70711 + 4.68885i) q^{18} +4.77791i q^{19} +(-3.20041 - 5.54328i) q^{20} +(-1.41421 + 2.44949i) q^{22} +1.43488i q^{23} +7.39104i q^{24} +5.24264 q^{25} +(3.58869 - 6.21579i) q^{26} +2.16478i q^{27} +9.37769i q^{29} +(-10.2426 - 5.91359i) q^{30} -2.65131 q^{31} +(2.82843 + 4.89898i) q^{32} +5.22625i q^{33} +(0.388275 + 0.224171i) q^{34} +(3.82843 + 6.63103i) q^{36} -2.44949i q^{37} +(5.85172 + 3.37849i) q^{38} -13.2621i q^{39} -9.05213 q^{40} -4.46088i q^{41} -8.82843 q^{43} +(2.00000 + 3.46410i) q^{44} -12.2525 q^{45} +(1.75736 + 1.01461i) q^{46} +5.30262 q^{47} +(9.05213 + 5.22625i) q^{48} +(3.70711 - 6.42090i) q^{50} +0.828427 q^{51} +(-5.07517 - 8.79045i) q^{52} -3.46410i q^{53} +(2.65131 + 1.53073i) q^{54} -6.40083 q^{55} +12.4853 q^{57} +(11.4853 + 6.63103i) q^{58} -2.61313i q^{59} +(-14.4853 + 8.36308i) q^{60} -3.97696 q^{61} +(-1.87476 + 3.24718i) q^{62} +8.00000 q^{64} +16.2426 q^{65} +(6.40083 + 3.69552i) q^{66} +12.0000 q^{67} +(0.549104 - 0.317025i) q^{68} +3.74952 q^{69} +10.8284 q^{72} -1.39942i q^{73} +(-3.00000 - 1.73205i) q^{74} -13.6997i q^{75} +(8.27558 - 4.77791i) q^{76} +(-16.2426 - 9.37769i) q^{78} -11.8272i q^{79} +(-6.40083 + 11.0866i) q^{80} -5.82843 q^{81} +(-5.46345 - 3.15432i) q^{82} +8.47343i q^{83} +1.01461i q^{85} +(-6.24264 + 10.8126i) q^{86} +24.5051 q^{87} +5.65685 q^{88} -9.87285i q^{89} +(-8.66386 + 15.0062i) q^{90} +(2.48528 - 1.43488i) q^{92} +6.92820i q^{93} +(3.74952 - 6.49435i) q^{94} +15.2913i q^{95} +(12.8017 - 7.39104i) q^{96} +3.82683i q^{97} +7.65685 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 8 q^{9} - 16 q^{11} - 16 q^{16} - 16 q^{18} + 8 q^{25} - 48 q^{30} + 8 q^{36} - 48 q^{43} + 16 q^{44} + 48 q^{46} + 24 q^{50} - 16 q^{51} + 32 q^{57} + 24 q^{58} - 48 q^{60} + 64 q^{64}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 1.22474i 0.500000 0.866025i
\(3\) 2.61313i 1.50869i −0.656479 0.754344i \(-0.727955\pi\)
0.656479 0.754344i \(-0.272045\pi\)
\(4\) −1.00000 1.73205i −0.500000 0.866025i
\(5\) 3.20041 1.43127 0.715634 0.698475i \(-0.246138\pi\)
0.715634 + 0.698475i \(0.246138\pi\)
\(6\) −3.20041 1.84776i −1.30656 0.754344i
\(7\) 0 0
\(8\) −2.82843 −1.00000
\(9\) −3.82843 −1.27614
\(10\) 2.26303 3.91969i 0.715634 1.23951i
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) −4.52607 + 2.61313i −1.30656 + 0.754344i
\(13\) 5.07517 1.40760 0.703800 0.710399i \(-0.251485\pi\)
0.703800 + 0.710399i \(0.251485\pi\)
\(14\) 0 0
\(15\) 8.36308i 2.15934i
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) 0.317025i 0.0768899i 0.999261 + 0.0384450i \(0.0122404\pi\)
−0.999261 + 0.0384450i \(0.987760\pi\)
\(18\) −2.70711 + 4.68885i −0.638071 + 1.10517i
\(19\) 4.77791i 1.09613i 0.836436 + 0.548064i \(0.184635\pi\)
−0.836436 + 0.548064i \(0.815365\pi\)
\(20\) −3.20041 5.54328i −0.715634 1.23951i
\(21\) 0 0
\(22\) −1.41421 + 2.44949i −0.301511 + 0.522233i
\(23\) 1.43488i 0.299193i 0.988747 + 0.149596i \(0.0477974\pi\)
−0.988747 + 0.149596i \(0.952203\pi\)
\(24\) 7.39104i 1.50869i
\(25\) 5.24264 1.04853
\(26\) 3.58869 6.21579i 0.703800 1.21902i
\(27\) 2.16478i 0.416613i
\(28\) 0 0
\(29\) 9.37769i 1.74139i 0.491820 + 0.870697i \(0.336332\pi\)
−0.491820 + 0.870697i \(0.663668\pi\)
\(30\) −10.2426 5.91359i −1.87004 1.07967i
\(31\) −2.65131 −0.476189 −0.238095 0.971242i \(-0.576523\pi\)
−0.238095 + 0.971242i \(0.576523\pi\)
\(32\) 2.82843 + 4.89898i 0.500000 + 0.866025i
\(33\) 5.22625i 0.909774i
\(34\) 0.388275 + 0.224171i 0.0665886 + 0.0384450i
\(35\) 0 0
\(36\) 3.82843 + 6.63103i 0.638071 + 1.10517i
\(37\) 2.44949i 0.402694i −0.979520 0.201347i \(-0.935468\pi\)
0.979520 0.201347i \(-0.0645318\pi\)
\(38\) 5.85172 + 3.37849i 0.949275 + 0.548064i
\(39\) 13.2621i 2.12363i
\(40\) −9.05213 −1.43127
\(41\) 4.46088i 0.696673i −0.937370 0.348337i \(-0.886747\pi\)
0.937370 0.348337i \(-0.113253\pi\)
\(42\) 0 0
\(43\) −8.82843 −1.34632 −0.673161 0.739496i \(-0.735064\pi\)
−0.673161 + 0.739496i \(0.735064\pi\)
\(44\) 2.00000 + 3.46410i 0.301511 + 0.522233i
\(45\) −12.2525 −1.82650
\(46\) 1.75736 + 1.01461i 0.259108 + 0.149596i
\(47\) 5.30262 0.773466 0.386733 0.922192i \(-0.373603\pi\)
0.386733 + 0.922192i \(0.373603\pi\)
\(48\) 9.05213 + 5.22625i 1.30656 + 0.754344i
\(49\) 0 0
\(50\) 3.70711 6.42090i 0.524264 0.908052i
\(51\) 0.828427 0.116003
\(52\) −5.07517 8.79045i −0.703800 1.21902i
\(53\) 3.46410i 0.475831i −0.971286 0.237915i \(-0.923536\pi\)
0.971286 0.237915i \(-0.0764641\pi\)
\(54\) 2.65131 + 1.53073i 0.360797 + 0.208306i
\(55\) −6.40083 −0.863087
\(56\) 0 0
\(57\) 12.4853 1.65372
\(58\) 11.4853 + 6.63103i 1.50809 + 0.870697i
\(59\) 2.61313i 0.340200i −0.985427 0.170100i \(-0.945591\pi\)
0.985427 0.170100i \(-0.0544091\pi\)
\(60\) −14.4853 + 8.36308i −1.87004 + 1.07967i
\(61\) −3.97696 −0.509198 −0.254599 0.967047i \(-0.581943\pi\)
−0.254599 + 0.967047i \(0.581943\pi\)
\(62\) −1.87476 + 3.24718i −0.238095 + 0.412392i
\(63\) 0 0
\(64\) 8.00000 1.00000
\(65\) 16.2426 2.01465
\(66\) 6.40083 + 3.69552i 0.787887 + 0.454887i
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0.549104 0.317025i 0.0665886 0.0384450i
\(69\) 3.74952 0.451389
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 10.8284 1.27614
\(73\) 1.39942i 0.163789i −0.996641 0.0818947i \(-0.973903\pi\)
0.996641 0.0818947i \(-0.0260971\pi\)
\(74\) −3.00000 1.73205i −0.348743 0.201347i
\(75\) 13.6997i 1.58190i
\(76\) 8.27558 4.77791i 0.949275 0.548064i
\(77\) 0 0
\(78\) −16.2426 9.37769i −1.83912 1.06181i
\(79\) 11.8272i 1.33066i −0.746548 0.665331i \(-0.768290\pi\)
0.746548 0.665331i \(-0.231710\pi\)
\(80\) −6.40083 + 11.0866i −0.715634 + 1.23951i
\(81\) −5.82843 −0.647603
\(82\) −5.46345 3.15432i −0.603337 0.348337i
\(83\) 8.47343i 0.930080i 0.885290 + 0.465040i \(0.153960\pi\)
−0.885290 + 0.465040i \(0.846040\pi\)
\(84\) 0 0
\(85\) 1.01461i 0.110050i
\(86\) −6.24264 + 10.8126i −0.673161 + 1.16595i
\(87\) 24.5051 2.62722
\(88\) 5.65685 0.603023
\(89\) 9.87285i 1.04652i −0.852173 0.523260i \(-0.824716\pi\)
0.852173 0.523260i \(-0.175284\pi\)
\(90\) −8.66386 + 15.0062i −0.913251 + 1.58180i
\(91\) 0 0
\(92\) 2.48528 1.43488i 0.259108 0.149596i
\(93\) 6.92820i 0.718421i
\(94\) 3.74952 6.49435i 0.386733 0.669841i
\(95\) 15.2913i 1.56885i
\(96\) 12.8017 7.39104i 1.30656 0.754344i
\(97\) 3.82683i 0.388556i 0.980946 + 0.194278i \(0.0622364\pi\)
−0.980946 + 0.194278i \(0.937764\pi\)
\(98\) 0 0
\(99\) 7.65685 0.769543
\(100\) −5.24264 9.08052i −0.524264 0.908052i
\(101\) −7.72648 −0.768813 −0.384407 0.923164i \(-0.625594\pi\)
−0.384407 + 0.923164i \(0.625594\pi\)
\(102\) 0.585786 1.01461i 0.0580015 0.100462i
\(103\) 15.4530 1.52263 0.761313 0.648385i \(-0.224555\pi\)
0.761313 + 0.648385i \(0.224555\pi\)
\(104\) −14.3548 −1.40760
\(105\) 0 0
\(106\) −4.24264 2.44949i −0.412082 0.237915i
\(107\) −8.48528 −0.820303 −0.410152 0.912017i \(-0.634524\pi\)
−0.410152 + 0.912017i \(0.634524\pi\)
\(108\) 3.74952 2.16478i 0.360797 0.208306i
\(109\) 0.420266i 0.0402542i 0.999797 + 0.0201271i \(0.00640708\pi\)
−0.999797 + 0.0201271i \(0.993593\pi\)
\(110\) −4.52607 + 7.83938i −0.431544 + 0.747455i
\(111\) −6.40083 −0.607539
\(112\) 0 0
\(113\) −16.4853 −1.55080 −0.775402 0.631467i \(-0.782453\pi\)
−0.775402 + 0.631467i \(0.782453\pi\)
\(114\) 8.82843 15.2913i 0.826858 1.43216i
\(115\) 4.59220i 0.428225i
\(116\) 16.2426 9.37769i 1.50809 0.870697i
\(117\) −19.4299 −1.79630
\(118\) −3.20041 1.84776i −0.294622 0.170100i
\(119\) 0 0
\(120\) 23.6544i 2.15934i
\(121\) −7.00000 −0.636364
\(122\) −2.81214 + 4.87076i −0.254599 + 0.440978i
\(123\) −11.6569 −1.05106
\(124\) 2.65131 + 4.59220i 0.238095 + 0.412392i
\(125\) 0.776550 0.0694568
\(126\) 0 0
\(127\) 5.49333i 0.487454i −0.969844 0.243727i \(-0.921630\pi\)
0.969844 0.243727i \(-0.0783701\pi\)
\(128\) 5.65685 9.79796i 0.500000 0.866025i
\(129\) 23.0698i 2.03118i
\(130\) 11.4853 19.8931i 1.00733 1.74474i
\(131\) 3.50981i 0.306653i −0.988176 0.153327i \(-0.951001\pi\)
0.988176 0.153327i \(-0.0489987\pi\)
\(132\) 9.05213 5.22625i 0.787887 0.454887i
\(133\) 0 0
\(134\) 8.48528 14.6969i 0.733017 1.26962i
\(135\) 6.92820i 0.596285i
\(136\) 0.896683i 0.0768899i
\(137\) 0.242641 0.0207302 0.0103651 0.999946i \(-0.496701\pi\)
0.0103651 + 0.999946i \(0.496701\pi\)
\(138\) 2.65131 4.59220i 0.225694 0.390914i
\(139\) 5.04054i 0.427533i 0.976885 + 0.213767i \(0.0685732\pi\)
−0.976885 + 0.213767i \(0.931427\pi\)
\(140\) 0 0
\(141\) 13.8564i 1.16692i
\(142\) 0 0
\(143\) −10.1503 −0.848814
\(144\) 7.65685 13.2621i 0.638071 1.10517i
\(145\) 30.0125i 2.49240i
\(146\) −1.71393 0.989538i −0.141846 0.0818947i
\(147\) 0 0
\(148\) −4.24264 + 2.44949i −0.348743 + 0.201347i
\(149\) 20.1903i 1.65405i 0.562165 + 0.827025i \(0.309969\pi\)
−0.562165 + 0.827025i \(0.690031\pi\)
\(150\) −16.7786 9.68714i −1.36997 0.790951i
\(151\) 15.2913i 1.24439i 0.782863 + 0.622194i \(0.213758\pi\)
−0.782863 + 0.622194i \(0.786242\pi\)
\(152\) 13.5140i 1.09613i
\(153\) 1.21371i 0.0981225i
\(154\) 0 0
\(155\) −8.48528 −0.681554
\(156\) −22.9706 + 13.2621i −1.83912 + 1.06181i
\(157\) 23.9560 1.91190 0.955948 0.293536i \(-0.0948321\pi\)
0.955948 + 0.293536i \(0.0948321\pi\)
\(158\) −14.4853 8.36308i −1.15239 0.665331i
\(159\) −9.05213 −0.717881
\(160\) 9.05213 + 15.6788i 0.715634 + 1.23951i
\(161\) 0 0
\(162\) −4.12132 + 7.13834i −0.323802 + 0.560841i
\(163\) 8.14214 0.637741 0.318871 0.947798i \(-0.396696\pi\)
0.318871 + 0.947798i \(0.396696\pi\)
\(164\) −7.72648 + 4.46088i −0.603337 + 0.348337i
\(165\) 16.7262i 1.30213i
\(166\) 10.3778 + 5.99162i 0.805473 + 0.465040i
\(167\) 14.3548 1.11080 0.555402 0.831582i \(-0.312564\pi\)
0.555402 + 0.831582i \(0.312564\pi\)
\(168\) 0 0
\(169\) 12.7574 0.981335
\(170\) 1.24264 + 0.717439i 0.0953062 + 0.0550251i
\(171\) 18.2919i 1.39882i
\(172\) 8.82843 + 15.2913i 0.673161 + 1.16595i
\(173\) −6.94993 −0.528393 −0.264197 0.964469i \(-0.585107\pi\)
−0.264197 + 0.964469i \(0.585107\pi\)
\(174\) 17.3277 30.0125i 1.31361 2.27524i
\(175\) 0 0
\(176\) 4.00000 6.92820i 0.301511 0.522233i
\(177\) −6.82843 −0.513256
\(178\) −12.0917 6.98116i −0.906313 0.523260i
\(179\) −20.4853 −1.53114 −0.765571 0.643352i \(-0.777543\pi\)
−0.765571 + 0.643352i \(0.777543\pi\)
\(180\) 12.2525 + 21.2220i 0.913251 + 1.58180i
\(181\) 2.10220 0.156256 0.0781278 0.996943i \(-0.475106\pi\)
0.0781278 + 0.996943i \(0.475106\pi\)
\(182\) 0 0
\(183\) 10.3923i 0.768221i
\(184\) 4.05845i 0.299193i
\(185\) 7.83938i 0.576363i
\(186\) 8.48528 + 4.89898i 0.622171 + 0.359211i
\(187\) 0.634051i 0.0463664i
\(188\) −5.30262 9.18440i −0.386733 0.669841i
\(189\) 0 0
\(190\) 18.7279 + 10.8126i 1.35867 + 0.784426i
\(191\) 11.8272i 0.855785i −0.903830 0.427892i \(-0.859256\pi\)
0.903830 0.427892i \(-0.140744\pi\)
\(192\) 20.9050i 1.50869i
\(193\) −14.1421 −1.01797 −0.508987 0.860774i \(-0.669980\pi\)
−0.508987 + 0.860774i \(0.669980\pi\)
\(194\) 4.68690 + 2.70598i 0.336500 + 0.194278i
\(195\) 42.4441i 3.03948i
\(196\) 0 0
\(197\) 26.5241i 1.88977i 0.327409 + 0.944883i \(0.393824\pi\)
−0.327409 + 0.944883i \(0.606176\pi\)
\(198\) 5.41421 9.37769i 0.384771 0.666444i
\(199\) −2.65131 −0.187946 −0.0939731 0.995575i \(-0.529957\pi\)
−0.0939731 + 0.995575i \(0.529957\pi\)
\(200\) −14.8284 −1.04853
\(201\) 31.3575i 2.21179i
\(202\) −5.46345 + 9.46297i −0.384407 + 0.665812i
\(203\) 0 0
\(204\) −0.828427 1.43488i −0.0580015 0.100462i
\(205\) 14.2767i 0.997126i
\(206\) 10.9269 18.9259i 0.761313 1.31863i
\(207\) 5.49333i 0.381813i
\(208\) −10.1503 + 17.5809i −0.703800 + 1.21902i
\(209\) 9.55582i 0.660990i
\(210\) 0 0
\(211\) 20.4853 1.41026 0.705132 0.709076i \(-0.250888\pi\)
0.705132 + 0.709076i \(0.250888\pi\)
\(212\) −6.00000 + 3.46410i −0.412082 + 0.237915i
\(213\) 0 0
\(214\) −6.00000 + 10.3923i −0.410152 + 0.710403i
\(215\) −28.2546 −1.92695
\(216\) 6.12293i 0.416613i
\(217\) 0 0
\(218\) 0.514719 + 0.297173i 0.0348611 + 0.0201271i
\(219\) −3.65685 −0.247107
\(220\) 6.40083 + 11.0866i 0.431544 + 0.747455i
\(221\) 1.60896i 0.108230i
\(222\) −4.52607 + 7.83938i −0.303770 + 0.526145i
\(223\) −24.5051 −1.64098 −0.820491 0.571659i \(-0.806300\pi\)
−0.820491 + 0.571659i \(0.806300\pi\)
\(224\) 0 0
\(225\) −20.0711 −1.33807
\(226\) −11.6569 + 20.1903i −0.775402 + 1.34304i
\(227\) 23.2555i 1.54352i 0.635913 + 0.771761i \(0.280624\pi\)
−0.635913 + 0.771761i \(0.719376\pi\)
\(228\) −12.4853 21.6251i −0.826858 1.43216i
\(229\) 17.5552 1.16008 0.580039 0.814589i \(-0.303037\pi\)
0.580039 + 0.814589i \(0.303037\pi\)
\(230\) 5.62427 + 3.24718i 0.370854 + 0.214112i
\(231\) 0 0
\(232\) 26.5241i 1.74139i
\(233\) −20.2426 −1.32614 −0.663070 0.748558i \(-0.730747\pi\)
−0.663070 + 0.748558i \(0.730747\pi\)
\(234\) −13.7390 + 23.7967i −0.898148 + 1.55564i
\(235\) 16.9706 1.10704
\(236\) −4.52607 + 2.61313i −0.294622 + 0.170100i
\(237\) −30.9059 −2.00756
\(238\) 0 0
\(239\) 13.2621i 0.857851i 0.903340 + 0.428926i \(0.141108\pi\)
−0.903340 + 0.428926i \(0.858892\pi\)
\(240\) 28.9706 + 16.7262i 1.87004 + 1.07967i
\(241\) 22.1187i 1.42479i −0.701778 0.712396i \(-0.747610\pi\)
0.701778 0.712396i \(-0.252390\pi\)
\(242\) −4.94975 + 8.57321i −0.318182 + 0.551107i
\(243\) 21.7248i 1.39364i
\(244\) 3.97696 + 6.88830i 0.254599 + 0.440978i
\(245\) 0 0
\(246\) −8.24264 + 14.2767i −0.525532 + 0.910247i
\(247\) 24.2487i 1.54291i
\(248\) 7.49903 0.476189
\(249\) 22.1421 1.40320
\(250\) 0.549104 0.951076i 0.0347284 0.0601513i
\(251\) 19.1886i 1.21117i 0.795780 + 0.605586i \(0.207061\pi\)
−0.795780 + 0.605586i \(0.792939\pi\)
\(252\) 0 0
\(253\) 2.86976i 0.180420i
\(254\) −6.72792 3.88437i −0.422147 0.243727i
\(255\) 2.65131 0.166031
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 8.15640i 0.508782i −0.967101 0.254391i \(-0.918125\pi\)
0.967101 0.254391i \(-0.0818751\pi\)
\(258\) 28.2546 + 16.3128i 1.75906 + 1.01559i
\(259\) 0 0
\(260\) −16.2426 28.1331i −1.00733 1.74474i
\(261\) 35.9018i 2.22227i
\(262\) −4.29862 2.48181i −0.265570 0.153327i
\(263\) 8.95743i 0.552339i −0.961109 0.276169i \(-0.910935\pi\)
0.961109 0.276169i \(-0.0890651\pi\)
\(264\) 14.7821i 0.909774i
\(265\) 11.0866i 0.681042i
\(266\) 0 0
\(267\) −25.7990 −1.57887
\(268\) −12.0000 20.7846i −0.733017 1.26962i
\(269\) 2.42386 0.147785 0.0738927 0.997266i \(-0.476458\pi\)
0.0738927 + 0.997266i \(0.476458\pi\)
\(270\) 8.48528 + 4.89898i 0.516398 + 0.298142i
\(271\) −13.2565 −0.805278 −0.402639 0.915359i \(-0.631907\pi\)
−0.402639 + 0.915359i \(0.631907\pi\)
\(272\) −1.09821 0.634051i −0.0665886 0.0384450i
\(273\) 0 0
\(274\) 0.171573 0.297173i 0.0103651 0.0179529i
\(275\) −10.4853 −0.632286
\(276\) −3.74952 6.49435i −0.225694 0.390914i
\(277\) 16.7262i 1.00498i −0.864584 0.502489i \(-0.832418\pi\)
0.864584 0.502489i \(-0.167582\pi\)
\(278\) 6.17338 + 3.56420i 0.370255 + 0.213767i
\(279\) 10.1503 0.607685
\(280\) 0 0
\(281\) 8.72792 0.520664 0.260332 0.965519i \(-0.416168\pi\)
0.260332 + 0.965519i \(0.416168\pi\)
\(282\) −16.9706 9.79796i −1.01058 0.583460i
\(283\) 0.185709i 0.0110393i −0.999985 0.00551963i \(-0.998243\pi\)
0.999985 0.00551963i \(-0.00175696\pi\)
\(284\) 0 0
\(285\) 39.9581 2.36691
\(286\) −7.17738 + 12.4316i −0.424407 + 0.735095i
\(287\) 0 0
\(288\) −10.8284 18.7554i −0.638071 1.10517i
\(289\) 16.8995 0.994088
\(290\) 36.7576 + 21.2220i 2.15848 + 1.24620i
\(291\) 10.0000 0.586210
\(292\) −2.42386 + 1.39942i −0.141846 + 0.0818947i
\(293\) −5.07517 −0.296495 −0.148247 0.988950i \(-0.547363\pi\)
−0.148247 + 0.988950i \(0.547363\pi\)
\(294\) 0 0
\(295\) 8.36308i 0.486917i
\(296\) 6.92820i 0.402694i
\(297\) 4.32957i 0.251227i
\(298\) 24.7279 + 14.2767i 1.43245 + 0.827025i
\(299\) 7.28225i 0.421143i
\(300\) −23.7285 + 13.6997i −1.36997 + 0.790951i
\(301\) 0 0
\(302\) 18.7279 + 10.8126i 1.07767 + 0.622194i
\(303\) 20.1903i 1.15990i
\(304\) −16.5512 9.55582i −0.949275 0.548064i
\(305\) −12.7279 −0.728799
\(306\) −1.48648 0.858221i −0.0849766 0.0490613i
\(307\) 6.04601i 0.345064i 0.985004 + 0.172532i \(0.0551948\pi\)
−0.985004 + 0.172532i \(0.944805\pi\)
\(308\) 0 0
\(309\) 40.3805i 2.29717i
\(310\) −6.00000 + 10.3923i −0.340777 + 0.590243i
\(311\) −27.1564 −1.53990 −0.769949 0.638105i \(-0.779718\pi\)
−0.769949 + 0.638105i \(0.779718\pi\)
\(312\) 37.5108i 2.12363i
\(313\) 10.5838i 0.598233i −0.954217 0.299116i \(-0.903308\pi\)
0.954217 0.299116i \(-0.0966919\pi\)
\(314\) 16.9394 29.3400i 0.955948 1.65575i
\(315\) 0 0
\(316\) −20.4853 + 11.8272i −1.15239 + 0.665331i
\(317\) 4.05845i 0.227945i −0.993484 0.113973i \(-0.963642\pi\)
0.993484 0.113973i \(-0.0363576\pi\)
\(318\) −6.40083 + 11.0866i −0.358940 + 0.621703i
\(319\) 18.7554i 1.05010i
\(320\) 25.6033 1.43127
\(321\) 22.1731i 1.23758i
\(322\) 0 0
\(323\) −1.51472 −0.0842812
\(324\) 5.82843 + 10.0951i 0.323802 + 0.560841i
\(325\) 26.6073 1.47591
\(326\) 5.75736 9.97204i 0.318871 0.552300i
\(327\) 1.09821 0.0607310
\(328\) 12.6173i 0.696673i
\(329\) 0 0
\(330\) 20.4853 + 11.8272i 1.12768 + 0.651065i
\(331\) 20.8284 1.14483 0.572417 0.819963i \(-0.306006\pi\)
0.572417 + 0.819963i \(0.306006\pi\)
\(332\) 14.6764 8.47343i 0.805473 0.465040i
\(333\) 9.37769i 0.513894i
\(334\) 10.1503 17.5809i 0.555402 0.961984i
\(335\) 38.4050 2.09829
\(336\) 0 0
\(337\) 4.24264 0.231111 0.115556 0.993301i \(-0.463135\pi\)
0.115556 + 0.993301i \(0.463135\pi\)
\(338\) 9.02082 15.6245i 0.490668 0.849861i
\(339\) 43.0781i 2.33968i
\(340\) 1.75736 1.01461i 0.0953062 0.0550251i
\(341\) 5.30262 0.287153
\(342\) −22.4029 12.9343i −1.21141 0.699408i
\(343\) 0 0
\(344\) 24.9706 1.34632
\(345\) 12.0000 0.646058
\(346\) −4.91434 + 8.51189i −0.264197 + 0.457602i
\(347\) 6.97056 0.374199 0.187100 0.982341i \(-0.440091\pi\)
0.187100 + 0.982341i \(0.440091\pi\)
\(348\) −24.5051 42.4441i −1.31361 2.27524i
\(349\) 22.4029 1.19920 0.599600 0.800300i \(-0.295327\pi\)
0.599600 + 0.800300i \(0.295327\pi\)
\(350\) 0 0
\(351\) 10.9867i 0.586424i
\(352\) −5.65685 9.79796i −0.301511 0.522233i
\(353\) 13.1200i 0.698308i −0.937065 0.349154i \(-0.886469\pi\)
0.937065 0.349154i \(-0.113531\pi\)
\(354\) −4.82843 + 8.36308i −0.256628 + 0.444493i
\(355\) 0 0
\(356\) −17.1003 + 9.87285i −0.906313 + 0.523260i
\(357\) 0 0
\(358\) −14.4853 + 25.0892i −0.765571 + 1.32601i
\(359\) 17.3205i 0.914141i −0.889430 0.457071i \(-0.848899\pi\)
0.889430 0.457071i \(-0.151101\pi\)
\(360\) 34.6554 1.82650
\(361\) −3.82843 −0.201496
\(362\) 1.48648 2.57466i 0.0781278 0.135321i
\(363\) 18.2919i 0.960075i
\(364\) 0 0
\(365\) 4.47871i 0.234427i
\(366\) 12.7279 + 7.34847i 0.665299 + 0.384111i
\(367\) −17.0061 −0.887709 −0.443855 0.896099i \(-0.646389\pi\)
−0.443855 + 0.896099i \(0.646389\pi\)
\(368\) −4.97056 2.86976i −0.259108 0.149596i
\(369\) 17.0782i 0.889054i
\(370\) −9.60124 5.54328i −0.499145 0.288181i
\(371\) 0 0
\(372\) 12.0000 6.92820i 0.622171 0.359211i
\(373\) 9.20361i 0.476545i 0.971198 + 0.238273i \(0.0765811\pi\)
−0.971198 + 0.238273i \(0.923419\pi\)
\(374\) −0.776550 0.448342i −0.0401545 0.0231832i
\(375\) 2.02922i 0.104789i
\(376\) −14.9981 −0.773466
\(377\) 47.5934i 2.45118i
\(378\) 0 0
\(379\) 17.3137 0.889345 0.444673 0.895693i \(-0.353320\pi\)
0.444673 + 0.895693i \(0.353320\pi\)
\(380\) 26.4853 15.2913i 1.35867 0.784426i
\(381\) −14.3548 −0.735416
\(382\) −14.4853 8.36308i −0.741131 0.427892i
\(383\) 5.30262 0.270951 0.135476 0.990781i \(-0.456744\pi\)
0.135476 + 0.990781i \(0.456744\pi\)
\(384\) −25.6033 14.7821i −1.30656 0.754344i
\(385\) 0 0
\(386\) −10.0000 + 17.3205i −0.508987 + 0.881591i
\(387\) 33.7990 1.71810
\(388\) 6.62827 3.82683i 0.336500 0.194278i
\(389\) 3.63818i 0.184463i 0.995738 + 0.0922316i \(0.0294000\pi\)
−0.995738 + 0.0922316i \(0.970600\pi\)
\(390\) −51.9832 30.0125i −2.63227 1.51974i
\(391\) −0.454893 −0.0230049
\(392\) 0 0
\(393\) −9.17157 −0.462645
\(394\) 32.4853 + 18.7554i 1.63658 + 0.944883i
\(395\) 37.8519i 1.90453i
\(396\) −7.65685 13.2621i −0.384771 0.666444i
\(397\) −24.2776 −1.21846 −0.609230 0.792994i \(-0.708521\pi\)
−0.609230 + 0.792994i \(0.708521\pi\)
\(398\) −1.87476 + 3.24718i −0.0939731 + 0.162766i
\(399\) 0 0
\(400\) −10.4853 + 18.1610i −0.524264 + 0.908052i
\(401\) 7.75736 0.387384 0.193692 0.981062i \(-0.437954\pi\)
0.193692 + 0.981062i \(0.437954\pi\)
\(402\) −38.4050 22.1731i −1.91546 1.10589i
\(403\) −13.4558 −0.670283
\(404\) 7.72648 + 13.3827i 0.384407 + 0.665812i
\(405\) −18.6534 −0.926893
\(406\) 0 0
\(407\) 4.89898i 0.242833i
\(408\) −2.34315 −0.116003
\(409\) 3.82683i 0.189225i −0.995514 0.0946124i \(-0.969839\pi\)
0.995514 0.0946124i \(-0.0301612\pi\)
\(410\) −17.4853 10.0951i −0.863536 0.498563i
\(411\) 0.634051i 0.0312754i
\(412\) −15.4530 26.7653i −0.761313 1.31863i
\(413\) 0 0
\(414\) −6.72792 3.88437i −0.330659 0.190906i
\(415\) 27.1185i 1.33119i
\(416\) 14.3548 + 24.8632i 0.703800 + 1.21902i
\(417\) 13.1716 0.645015
\(418\) −11.7034 6.75699i −0.572434 0.330495i
\(419\) 39.8309i 1.94587i −0.231082 0.972934i \(-0.574226\pi\)
0.231082 0.972934i \(-0.425774\pi\)
\(420\) 0 0
\(421\) 26.5241i 1.29271i −0.763038 0.646353i \(-0.776293\pi\)
0.763038 0.646353i \(-0.223707\pi\)
\(422\) 14.4853 25.0892i 0.705132 1.22133i
\(423\) −20.3007 −0.987053
\(424\) 9.79796i 0.475831i
\(425\) 1.66205i 0.0806213i
\(426\) 0 0
\(427\) 0 0
\(428\) 8.48528 + 14.6969i 0.410152 + 0.710403i
\(429\) 26.5241i 1.28060i
\(430\) −19.9790 + 34.6047i −0.963474 + 1.66879i
\(431\) 7.52255i 0.362348i 0.983451 + 0.181174i \(0.0579898\pi\)
−0.983451 + 0.181174i \(0.942010\pi\)
\(432\) −7.49903 4.32957i −0.360797 0.208306i
\(433\) 5.17186i 0.248544i −0.992248 0.124272i \(-0.960341\pi\)
0.992248 0.124272i \(-0.0396595\pi\)
\(434\) 0 0
\(435\) 78.4264 3.76026
\(436\) 0.727922 0.420266i 0.0348611 0.0201271i
\(437\) −6.85572 −0.327953
\(438\) −2.58579 + 4.47871i −0.123554 + 0.214001i
\(439\) 35.7536 1.70643 0.853214 0.521561i \(-0.174650\pi\)
0.853214 + 0.521561i \(0.174650\pi\)
\(440\) 18.1043 0.863087
\(441\) 0 0
\(442\) 1.97056 + 1.13770i 0.0937301 + 0.0541151i
\(443\) −28.2843 −1.34383 −0.671913 0.740630i \(-0.734527\pi\)
−0.671913 + 0.740630i \(0.734527\pi\)
\(444\) 6.40083 + 11.0866i 0.303770 + 0.526145i
\(445\) 31.5972i 1.49785i
\(446\) −17.3277 + 30.0125i −0.820491 + 1.42113i
\(447\) 52.7597 2.49545
\(448\) 0 0
\(449\) −5.65685 −0.266963 −0.133482 0.991051i \(-0.542616\pi\)
−0.133482 + 0.991051i \(0.542616\pi\)
\(450\) −14.1924 + 24.5819i −0.669036 + 1.15880i
\(451\) 8.92177i 0.420110i
\(452\) 16.4853 + 28.5533i 0.775402 + 1.34304i
\(453\) 39.9581 1.87739
\(454\) 28.4821 + 16.4441i 1.33673 + 0.771761i
\(455\) 0 0
\(456\) −35.3137 −1.65372
\(457\) −21.1716 −0.990364 −0.495182 0.868789i \(-0.664899\pi\)
−0.495182 + 0.868789i \(0.664899\pi\)
\(458\) 12.4134 21.5006i 0.580039 1.00466i
\(459\) −0.686292 −0.0320333
\(460\) 7.95393 4.59220i 0.370854 0.214112i
\(461\) 26.6073 1.23923 0.619613 0.784908i \(-0.287290\pi\)
0.619613 + 0.784908i \(0.287290\pi\)
\(462\) 0 0
\(463\) 18.7554i 0.871637i 0.900035 + 0.435818i \(0.143541\pi\)
−0.900035 + 0.435818i \(0.856459\pi\)
\(464\) −32.4853 18.7554i −1.50809 0.870697i
\(465\) 22.1731i 1.02825i
\(466\) −14.3137 + 24.7921i −0.663070 + 1.14847i
\(467\) 0.0769232i 0.00355958i −0.999998 0.00177979i \(-0.999433\pi\)
0.999998 0.00177979i \(-0.000566526\pi\)
\(468\) 19.4299 + 33.6536i 0.898148 + 1.55564i
\(469\) 0 0
\(470\) 12.0000 20.7846i 0.553519 0.958723i
\(471\) 62.6000i 2.88446i
\(472\) 7.39104i 0.340200i
\(473\) 17.6569 0.811863
\(474\) −21.8538 + 37.8519i −1.00378 + 1.73859i
\(475\) 25.0489i 1.14932i
\(476\) 0 0
\(477\) 13.2621i 0.607228i
\(478\) 16.2426 + 9.37769i 0.742921 + 0.428926i
\(479\) 11.7034 0.534744 0.267372 0.963593i \(-0.413845\pi\)
0.267372 + 0.963593i \(0.413845\pi\)
\(480\) 40.9706 23.6544i 1.87004 1.07967i
\(481\) 12.4316i 0.566831i
\(482\) −27.0898 15.6403i −1.23391 0.712396i
\(483\) 0 0
\(484\) 7.00000 + 12.1244i 0.318182 + 0.551107i
\(485\) 12.2474i 0.556128i
\(486\) 26.6073 + 15.3617i 1.20693 + 0.696822i
\(487\) 34.0467i 1.54280i 0.636349 + 0.771401i \(0.280444\pi\)
−0.636349 + 0.771401i \(0.719556\pi\)
\(488\) 11.2485 0.509198
\(489\) 21.2764i 0.962153i
\(490\) 0 0
\(491\) −31.7990 −1.43507 −0.717534 0.696523i \(-0.754729\pi\)
−0.717534 + 0.696523i \(0.754729\pi\)
\(492\) 11.6569 + 20.1903i 0.525532 + 0.910247i
\(493\) −2.97297 −0.133896
\(494\) 29.6985 + 17.1464i 1.33620 + 0.771454i
\(495\) 24.5051 1.10142
\(496\) 5.30262 9.18440i 0.238095 0.412392i
\(497\) 0 0
\(498\) 15.6569 27.1185i 0.701600 1.21521i
\(499\) −8.48528 −0.379853 −0.189927 0.981798i \(-0.560825\pi\)
−0.189927 + 0.981798i \(0.560825\pi\)
\(500\) −0.776550 1.34502i −0.0347284 0.0601513i
\(501\) 37.5108i 1.67586i
\(502\) 23.5011 + 13.5684i 1.04891 + 0.605586i
\(503\) −24.5051 −1.09263 −0.546314 0.837580i \(-0.683969\pi\)
−0.546314 + 0.837580i \(0.683969\pi\)
\(504\) 0 0
\(505\) −24.7279 −1.10038
\(506\) −3.51472 2.02922i −0.156248 0.0902100i
\(507\) 33.3366i 1.48053i
\(508\) −9.51472 + 5.49333i −0.422147 + 0.243727i
\(509\) −14.1273 −0.626182 −0.313091 0.949723i \(-0.601364\pi\)
−0.313091 + 0.949723i \(0.601364\pi\)
\(510\) 1.87476 3.24718i 0.0830157 0.143787i
\(511\) 0 0
\(512\) −22.6274 −1.00000
\(513\) −10.3431 −0.456661
\(514\) −9.98951 5.76745i −0.440619 0.254391i
\(515\) 49.4558 2.17928
\(516\) 39.9581 23.0698i 1.75906 1.01559i
\(517\) −10.6052 −0.466418
\(518\) 0 0
\(519\) 18.1610i 0.797181i
\(520\) −45.9411 −2.01465
\(521\) 18.6089i 0.815271i 0.913145 + 0.407636i \(0.133647\pi\)
−0.913145 + 0.407636i \(0.866353\pi\)
\(522\) −43.9706 25.3864i −1.92454 1.11113i
\(523\) 32.8113i 1.43474i −0.696693 0.717369i \(-0.745346\pi\)
0.696693 0.717369i \(-0.254654\pi\)
\(524\) −6.07917 + 3.50981i −0.265570 + 0.153327i
\(525\) 0 0
\(526\) −10.9706 6.33386i −0.478339 0.276169i
\(527\) 0.840532i 0.0366141i
\(528\) −18.1043 10.4525i −0.787887 0.454887i
\(529\) 20.9411 0.910484
\(530\) −13.5782 7.83938i −0.589799 0.340521i
\(531\) 10.0042i 0.434144i
\(532\) 0 0
\(533\) 22.6398i 0.980637i
\(534\) −18.2426 + 31.5972i −0.789436 + 1.36734i
\(535\) −27.1564 −1.17407
\(536\) −33.9411 −1.46603
\(537\) 53.5306i 2.31002i
\(538\) 1.71393 2.96861i 0.0738927 0.127986i
\(539\) 0 0
\(540\) 12.0000 6.92820i 0.516398 0.298142i
\(541\) 32.8580i 1.41267i −0.707875 0.706337i \(-0.750346\pi\)
0.707875 0.706337i \(-0.249654\pi\)
\(542\) −9.37379 + 16.2359i −0.402639 + 0.697391i
\(543\) 5.49333i 0.235741i
\(544\) −1.55310 + 0.896683i −0.0665886 + 0.0384450i
\(545\) 1.34502i 0.0576145i
\(546\) 0 0
\(547\) −15.1716 −0.648690 −0.324345 0.945939i \(-0.605144\pi\)
−0.324345 + 0.945939i \(0.605144\pi\)
\(548\) −0.242641 0.420266i −0.0103651 0.0179529i
\(549\) 15.2255 0.649809
\(550\) −7.41421 + 12.8418i −0.316143 + 0.547576i
\(551\) −44.8058 −1.90879
\(552\) −10.6052 −0.451389
\(553\) 0 0
\(554\) −20.4853 11.8272i −0.870336 0.502489i
\(555\) −20.4853 −0.869552
\(556\) 8.73048 5.04054i 0.370255 0.213767i
\(557\) 16.7262i 0.708710i −0.935111 0.354355i \(-0.884700\pi\)
0.935111 0.354355i \(-0.115300\pi\)
\(558\) 7.17738 12.4316i 0.303843 0.526271i
\(559\) −44.8058 −1.89508
\(560\) 0 0
\(561\) −1.65685 −0.0699524
\(562\) 6.17157 10.6895i 0.260332 0.450908i
\(563\) 16.7611i 0.706398i −0.935548 0.353199i \(-0.885094\pi\)
0.935548 0.353199i \(-0.114906\pi\)
\(564\) −24.0000 + 13.8564i −1.01058 + 0.583460i
\(565\) −52.7597 −2.21962
\(566\) −0.227446 0.131316i −0.00956028 0.00551963i
\(567\) 0 0
\(568\) 0 0
\(569\) 14.1005 0.591124 0.295562 0.955324i \(-0.404493\pi\)
0.295562 + 0.955324i \(0.404493\pi\)
\(570\) 28.2546 48.9384i 1.18346 2.04980i
\(571\) −23.6569 −0.990009 −0.495004 0.868891i \(-0.664834\pi\)
−0.495004 + 0.868891i \(0.664834\pi\)
\(572\) 10.1503 + 17.5809i 0.424407 + 0.735095i
\(573\) −30.9059 −1.29111
\(574\) 0 0
\(575\) 7.52255i 0.313712i
\(576\) −30.6274 −1.27614
\(577\) 2.11039i 0.0878567i −0.999035 0.0439284i \(-0.986013\pi\)
0.999035 0.0439284i \(-0.0139873\pi\)
\(578\) 11.9497 20.6976i 0.497044 0.860905i
\(579\) 36.9552i 1.53580i
\(580\) 51.9832 30.0125i 2.15848 1.24620i
\(581\) 0 0
\(582\) 7.07107 12.2474i 0.293105 0.507673i
\(583\) 6.92820i 0.286937i
\(584\) 3.95815i 0.163789i
\(585\) −62.1838 −2.57098
\(586\) −3.58869 + 6.21579i −0.148247 + 0.256772i
\(587\) 43.2638i 1.78569i −0.450365 0.892845i \(-0.648706\pi\)
0.450365 0.892845i \(-0.351294\pi\)
\(588\) 0 0
\(589\) 12.6677i 0.521964i
\(590\) −10.2426 5.91359i −0.421683 0.243459i
\(591\) 69.3109 2.85107
\(592\) 8.48528 + 4.89898i 0.348743 + 0.201347i
\(593\) 12.3003i 0.505111i −0.967582 0.252556i \(-0.918729\pi\)
0.967582 0.252556i \(-0.0812711\pi\)
\(594\) −5.30262 3.06147i −0.217569 0.125614i
\(595\) 0 0
\(596\) 34.9706 20.1903i 1.43245 0.827025i
\(597\) 6.92820i 0.283552i
\(598\) 8.91890 + 5.14933i 0.364721 + 0.210572i
\(599\) 35.4815i 1.44974i −0.688887 0.724868i \(-0.741901\pi\)
0.688887 0.724868i \(-0.258099\pi\)
\(600\) 38.7485i 1.58190i
\(601\) 35.1843i 1.43520i −0.696456 0.717600i \(-0.745241\pi\)
0.696456 0.717600i \(-0.254759\pi\)
\(602\) 0 0
\(603\) −45.9411 −1.87087
\(604\) 26.4853 15.2913i 1.07767 0.622194i
\(605\) −22.4029 −0.910807
\(606\) 24.7279 + 14.2767i 1.00450 + 0.579950i
\(607\) 25.6033 1.03921 0.519603 0.854408i \(-0.326080\pi\)
0.519603 + 0.854408i \(0.326080\pi\)
\(608\) −23.4069 + 13.5140i −0.949275 + 0.548064i
\(609\) 0 0
\(610\) −9.00000 + 15.5885i −0.364399 + 0.631158i
\(611\) 26.9117 1.08873
\(612\) −2.10220 + 1.21371i −0.0849766 + 0.0490613i
\(613\) 26.9444i 1.08827i 0.838997 + 0.544137i \(0.183143\pi\)
−0.838997 + 0.544137i \(0.816857\pi\)
\(614\) 7.40482 + 4.27518i 0.298834 + 0.172532i
\(615\) −37.3067 −1.50435
\(616\) 0 0
\(617\) −9.21320 −0.370910 −0.185455 0.982653i \(-0.559376\pi\)
−0.185455 + 0.982653i \(0.559376\pi\)
\(618\) −49.4558 28.5533i −1.98941 1.14858i
\(619\) 29.1158i 1.17026i 0.810938 + 0.585131i \(0.198957\pi\)
−0.810938 + 0.585131i \(0.801043\pi\)
\(620\) 8.48528 + 14.6969i 0.340777 + 0.590243i
\(621\) −3.10620 −0.124648
\(622\) −19.2025 + 33.2597i −0.769949 + 1.33359i
\(623\) 0 0
\(624\) 45.9411 + 26.5241i 1.83912 + 1.06181i
\(625\) −23.7279 −0.949117
\(626\) −12.9625 7.48389i −0.518085 0.299116i
\(627\) −24.9706 −0.997228
\(628\) −23.9560 41.4930i −0.955948 1.65575i
\(629\) 0.776550 0.0309631
\(630\) 0 0
\(631\) 29.7420i 1.18401i −0.805934 0.592006i \(-0.798336\pi\)
0.805934 0.592006i \(-0.201664\pi\)
\(632\) 33.4523i 1.33066i
\(633\) 53.5306i 2.12765i
\(634\) −4.97056 2.86976i −0.197406 0.113973i
\(635\) 17.5809i 0.697677i
\(636\) 9.05213 + 15.6788i 0.358940 + 0.621703i
\(637\) 0 0
\(638\) −22.9706 13.2621i −0.909413 0.525050i
\(639\) 0 0
\(640\) 18.1043 31.3575i 0.715634 1.23951i
\(641\) −16.9289 −0.668653 −0.334326 0.942457i \(-0.608509\pi\)
−0.334326 + 0.942457i \(0.608509\pi\)
\(642\) 27.1564 + 15.6788i 1.07178 + 0.618791i
\(643\) 36.3981i 1.43540i −0.696353 0.717700i \(-0.745195\pi\)
0.696353 0.717700i \(-0.254805\pi\)
\(644\) 0 0
\(645\) 73.8329i 2.90717i
\(646\) −1.07107 + 1.85514i −0.0421406 + 0.0729897i
\(647\) 11.7034 0.460110 0.230055 0.973178i \(-0.426109\pi\)
0.230055 + 0.973178i \(0.426109\pi\)
\(648\) 16.4853 0.647603
\(649\) 5.22625i 0.205148i
\(650\) 18.8142 32.5872i 0.737954 1.27817i
\(651\) 0 0
\(652\) −8.14214 14.1026i −0.318871 0.552300i
\(653\) 35.0613i 1.37205i 0.727576 + 0.686027i \(0.240647\pi\)
−0.727576 + 0.686027i \(0.759353\pi\)
\(654\) 0.776550 1.34502i 0.0303655 0.0525946i
\(655\) 11.2328i 0.438903i
\(656\) 15.4530 + 8.92177i 0.603337 + 0.348337i
\(657\) 5.35757i 0.209019i
\(658\) 0 0
\(659\) 25.5147 0.993912 0.496956 0.867776i \(-0.334451\pi\)
0.496956 + 0.867776i \(0.334451\pi\)
\(660\) 28.9706 16.7262i 1.12768 0.651065i
\(661\) −20.8498 −0.810963 −0.405481 0.914103i \(-0.632896\pi\)
−0.405481 + 0.914103i \(0.632896\pi\)
\(662\) 14.7279 25.5095i 0.572417 0.991455i
\(663\) 4.20441 0.163286
\(664\) 23.9665i 0.930080i
\(665\) 0 0
\(666\) 11.4853 + 6.63103i 0.445046 + 0.256947i
\(667\) −13.4558 −0.521012
\(668\) −14.3548 24.8632i −0.555402 0.961984i
\(669\) 64.0349i 2.47573i
\(670\) 27.1564 47.0363i 1.04914 1.81717i
\(671\) 7.95393 0.307058
\(672\) 0 0
\(673\) 30.3848 1.17125 0.585624 0.810583i \(-0.300850\pi\)
0.585624 + 0.810583i \(0.300850\pi\)
\(674\) 3.00000 5.19615i 0.115556 0.200148i
\(675\) 11.3492i 0.436830i
\(676\) −12.7574 22.0964i −0.490668 0.849861i
\(677\) −1.00400 −0.0385867 −0.0192934 0.999814i \(-0.506142\pi\)
−0.0192934 + 0.999814i \(0.506142\pi\)
\(678\) 52.7597 + 30.4608i 2.02622 + 1.16984i
\(679\) 0 0
\(680\) 2.86976i 0.110050i
\(681\) 60.7696 2.32869
\(682\) 3.74952 6.49435i 0.143576 0.248682i
\(683\) −14.1421 −0.541134 −0.270567 0.962701i \(-0.587211\pi\)
−0.270567 + 0.962701i \(0.587211\pi\)
\(684\) −31.6825 + 18.2919i −1.21141 + 0.699408i
\(685\) 0.776550 0.0296705
\(686\) 0 0
\(687\) 45.8739i 1.75020i
\(688\) 17.6569 30.5826i 0.673161 1.16595i
\(689\) 17.5809i 0.669779i
\(690\) 8.48528 14.6969i 0.323029 0.559503i
\(691\) 19.9314i 0.758226i 0.925350 + 0.379113i \(0.123771\pi\)
−0.925350 + 0.379113i \(0.876229\pi\)
\(692\) 6.94993 + 12.0376i 0.264197 + 0.457602i
\(693\) 0 0
\(694\) 4.92893 8.53716i 0.187100 0.324066i
\(695\) 16.1318i 0.611915i
\(696\) −69.3109 −2.62722
\(697\) 1.41421 0.0535672
\(698\) 15.8412 27.4378i 0.599600 1.03854i
\(699\) 52.8966i 2.00073i
\(700\) 0 0
\(701\) 6.15978i 0.232652i 0.993211 + 0.116326i \(0.0371117\pi\)
−0.993211 + 0.116326i \(0.962888\pi\)
\(702\) 13.4558 + 7.76874i 0.507858 + 0.293212i
\(703\) 11.7034 0.441404
\(704\) −16.0000 −0.603023
\(705\) 44.3462i 1.67018i
\(706\) −16.0687 9.27726i −0.604753 0.349154i
\(707\) 0 0
\(708\) 6.82843 + 11.8272i 0.256628 + 0.444493i
\(709\) 36.7423i 1.37989i −0.723863 0.689944i \(-0.757635\pi\)
0.723863 0.689944i \(-0.242365\pi\)
\(710\) 0 0
\(711\) 45.2795i 1.69811i
\(712\) 27.9246i 1.04652i
\(713\) 3.80430i 0.142472i
\(714\) 0 0
\(715\) −32.4853 −1.21488
\(716\) 20.4853 + 35.4815i 0.765571 + 1.32601i
\(717\) 34.6554 1.29423
\(718\) −21.2132 12.2474i −0.791670 0.457071i
\(719\) −29.3528 −1.09468 −0.547338 0.836912i \(-0.684359\pi\)
−0.547338 + 0.836912i \(0.684359\pi\)
\(720\) 24.5051 42.4441i 0.913251 1.58180i
\(721\) 0 0
\(722\) −2.70711 + 4.68885i −0.100748 + 0.174501i
\(723\) −57.7990 −2.14957
\(724\) −2.10220 3.64113i −0.0781278 0.135321i
\(725\) 49.1639i 1.82590i
\(726\) 22.4029 + 12.9343i 0.831449 + 0.480037i
\(727\) 43.0643 1.59716 0.798582 0.601886i \(-0.205584\pi\)
0.798582 + 0.601886i \(0.205584\pi\)
\(728\) 0 0
\(729\) 39.2843 1.45497
\(730\) −5.48528 3.16693i −0.203019 0.117213i
\(731\) 2.79884i 0.103519i
\(732\) 18.0000 10.3923i 0.665299 0.384111i
\(733\) 7.40482 0.273503 0.136752 0.990605i \(-0.456334\pi\)
0.136752 + 0.990605i \(0.456334\pi\)
\(734\) −12.0251 + 20.8281i −0.443855 + 0.768779i
\(735\) 0 0
\(736\) −7.02944 + 4.05845i −0.259108 + 0.149596i
\(737\) −24.0000 −0.884051
\(738\) 20.9164 + 12.0761i 0.769944 + 0.444527i
\(739\) 15.1716 0.558095 0.279048 0.960277i \(-0.409981\pi\)
0.279048 + 0.960277i \(0.409981\pi\)
\(740\) −13.5782 + 7.83938i −0.499145 + 0.288181i
\(741\) 63.3649 2.32777
\(742\) 0 0
\(743\) 13.2621i 0.486538i −0.969959 0.243269i \(-0.921780\pi\)
0.969959 0.243269i \(-0.0782197\pi\)
\(744\) 19.5959i 0.718421i
\(745\) 64.6172i 2.36739i
\(746\) 11.2721 + 6.50794i 0.412700 + 0.238273i
\(747\) 32.4399i 1.18691i
\(748\) −1.09821 + 0.634051i −0.0401545 + 0.0231832i
\(749\) 0 0
\(750\) −2.48528 1.43488i −0.0907496 0.0523943i
\(751\) 35.7277i 1.30372i 0.758338 + 0.651862i \(0.226012\pi\)
−0.758338 + 0.651862i \(0.773988\pi\)
\(752\) −10.6052 + 18.3688i −0.386733 + 0.669841i
\(753\) 50.1421 1.82728
\(754\) 58.2898 + 33.6536i 2.12279 + 1.22559i
\(755\) 48.9384i 1.78105i
\(756\) 0 0
\(757\) 35.9018i 1.30487i 0.757843 + 0.652437i \(0.226253\pi\)
−0.757843 + 0.652437i \(0.773747\pi\)
\(758\) 12.2426 21.2049i 0.444673 0.770196i
\(759\) −7.49903 −0.272198
\(760\) 43.2503i 1.56885i
\(761\) 21.8561i 0.792282i 0.918190 + 0.396141i \(0.129651\pi\)
−0.918190 + 0.396141i \(0.870349\pi\)
\(762\) −10.1503 + 17.5809i −0.367708 + 0.636889i
\(763\) 0 0
\(764\) −20.4853 + 11.8272i −0.741131 + 0.427892i
\(765\) 3.88437i 0.140440i
\(766\) 3.74952 6.49435i 0.135476 0.234651i
\(767\) 13.2621i 0.478865i
\(768\) −36.2085 + 20.9050i −1.30656 + 0.754344i
\(769\) 46.1940i 1.66580i −0.553425 0.832899i \(-0.686680\pi\)
0.553425 0.832899i \(-0.313320\pi\)
\(770\) 0 0
\(771\) −21.3137 −0.767594
\(772\) 14.1421 + 24.4949i 0.508987 + 0.881591i
\(773\) −31.0001 −1.11500 −0.557499 0.830178i \(-0.688239\pi\)
−0.557499 + 0.830178i \(0.688239\pi\)
\(774\) 23.8995 41.3951i 0.859050 1.48792i
\(775\) −13.8999 −0.499298
\(776\) 10.8239i 0.388556i
\(777\) 0 0
\(778\) 4.45584 + 2.57258i 0.159750 + 0.0922316i
\(779\) 21.3137 0.763643
\(780\) −73.5153 + 42.4441i −2.63227 + 1.51974i
\(781\) 0 0
\(782\) −0.321658 + 0.557127i −0.0115025 + 0.0199228i
\(783\) −20.3007 −0.725487
\(784\) 0 0
\(785\) 76.6690 2.73644
\(786\) −6.48528 + 11.2328i −0.231322 + 0.400662i
\(787\) 38.8255i 1.38398i 0.721908 + 0.691989i \(0.243265\pi\)
−0.721908 + 0.691989i \(0.756735\pi\)
\(788\) 45.9411 26.5241i 1.63658 0.944883i
\(789\) −23.4069 −0.833307
\(790\) −46.3589 26.7653i −1.64937 0.952267i
\(791\) 0 0
\(792\) −21.6569 −0.769543
\(793\) −20.1838 −0.716747
\(794\) −17.1669 + 29.7339i −0.609230 + 1.05522i
\(795\) −28.9706 −1.02748
\(796\) 2.65131 + 4.59220i 0.0939731 + 0.162766i
\(797\) −13.4840 −0.477627 −0.238814 0.971065i \(-0.576759\pi\)
−0.238814 + 0.971065i \(0.576759\pi\)
\(798\) 0 0
\(799\) 1.68106i 0.0594718i
\(800\) 14.8284 + 25.6836i 0.524264 + 0.908052i
\(801\) 37.7975i 1.33551i
\(802\) 5.48528 9.50079i 0.193692 0.335484i
\(803\) 2.79884i 0.0987687i
\(804\) −54.3128 + 31.3575i −1.91546 + 1.10589i
\(805\) 0 0
\(806\) −9.51472 + 16.4800i −0.335142 + 0.580482i
\(807\) 6.33386i 0.222962i
\(808\) 21.8538 0.768813
\(809\) −15.4558 −0.543399 −0.271699 0.962382i \(-0.587586\pi\)
−0.271699 + 0.962382i \(0.587586\pi\)
\(810\) −13.1899 + 22.8456i −0.463447 + 0.802713i
\(811\) 28.4818i 1.00013i 0.865988 + 0.500065i \(0.166690\pi\)
−0.865988 + 0.500065i \(0.833310\pi\)
\(812\) 0 0
\(813\) 34.6410i 1.21491i
\(814\) 6.00000 + 3.46410i 0.210300 + 0.121417i
\(815\) 26.0582 0.912779
\(816\) −1.65685 + 2.86976i −0.0580015 + 0.100462i
\(817\) 42.1814i 1.47574i
\(818\) −4.68690 2.70598i −0.163873 0.0946124i
\(819\) 0 0
\(820\) −24.7279 + 14.2767i −0.863536 + 0.498563i
\(821\) 17.9149i 0.625233i 0.949879 + 0.312616i \(0.101205\pi\)
−0.949879 + 0.312616i \(0.898795\pi\)
\(822\) −0.776550 0.448342i −0.0270853 0.0156377i
\(823\) 20.7846i 0.724506i 0.932080 + 0.362253i \(0.117992\pi\)
−0.932080 + 0.362253i \(0.882008\pi\)
\(824\) −43.7076 −1.52263
\(825\) 27.3994i 0.953923i
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) −9.51472 + 5.49333i −0.330659 + 0.190906i
\(829\) 16.7786 0.582745 0.291373 0.956610i \(-0.405888\pi\)
0.291373 + 0.956610i \(0.405888\pi\)
\(830\) 33.2132 + 19.1757i 1.15285 + 0.665597i
\(831\) −43.7076 −1.51620
\(832\) 40.6014 1.40760
\(833\) 0 0
\(834\) 9.31371 16.1318i 0.322507 0.558599i
\(835\) 45.9411 1.58986
\(836\) −16.5512 + 9.55582i −0.572434 + 0.330495i
\(837\) 5.73951i 0.198387i
\(838\) −48.7827 28.1647i −1.68517 0.972934i
\(839\) −30.4510 −1.05129 −0.525643 0.850705i \(-0.676175\pi\)
−0.525643 + 0.850705i \(0.676175\pi\)
\(840\) 0 0
\(841\) −58.9411 −2.03245
\(842\) −32.4853 18.7554i −1.11952 0.646353i
\(843\) 22.8072i 0.785520i
\(844\) −20.4853 35.4815i −0.705132 1.22133i
\(845\) 40.8288 1.40455
\(846\) −14.3548 + 24.8632i −0.493527 + 0.854813i
\(847\) 0 0
\(848\) 12.0000 + 6.92820i 0.412082 + 0.237915i
\(849\) −0.485281 −0.0166548
\(850\) 2.03559 + 1.17525i 0.0698201 + 0.0403106i
\(851\) 3.51472 0.120483
\(852\) 0 0
\(853\) 32.5532 1.11460 0.557301 0.830311i \(-0.311837\pi\)
0.557301 + 0.830311i \(0.311837\pi\)
\(854\) 0 0
\(855\) 58.5416i 2.00208i
\(856\) 24.0000 0.820303
\(857\) 34.4734i 1.17759i 0.808283 + 0.588794i \(0.200397\pi\)
−0.808283 + 0.588794i \(0.799603\pi\)
\(858\) 32.4853 + 18.7554i 1.10903 + 0.640298i
\(859\) 44.5319i 1.51941i −0.650268 0.759705i \(-0.725343\pi\)
0.650268 0.759705i \(-0.274657\pi\)
\(860\) 28.2546 + 48.9384i 0.963474 + 1.66879i
\(861\) 0 0
\(862\) 9.21320 + 5.31925i 0.313803 + 0.181174i
\(863\) 4.05845i 0.138151i −0.997611 0.0690756i \(-0.977995\pi\)
0.997611 0.0690756i \(-0.0220050\pi\)
\(864\) −10.6052 + 6.12293i −0.360797 + 0.208306i
\(865\) −22.2426 −0.756272
\(866\) −6.33421 3.65706i −0.215245 0.124272i
\(867\) 44.1605i 1.49977i
\(868\) 0 0
\(869\) 23.6544i 0.802419i
\(870\) 55.4558 96.0523i 1.88013 3.25648i
\(871\) 60.9021 2.06359
\(872\) 1.18869i 0.0402542i
\(873\) 14.6508i 0.495853i
\(874\) −4.84772 + 8.39651i −0.163977 + 0.284016i
\(875\) 0 0
\(876\) 3.65685 + 6.33386i 0.123554 + 0.214001i
\(877\) 32.1915i 1.08703i −0.839399 0.543515i \(-0.817093\pi\)
0.839399 0.543515i \(-0.182907\pi\)
\(878\) 25.2816 43.7891i 0.853214 1.47781i
\(879\) 13.2621i 0.447318i
\(880\) 12.8017 22.1731i 0.431544 0.747455i
\(881\) 34.8448i 1.17395i 0.809605 + 0.586975i \(0.199681\pi\)
−0.809605 + 0.586975i \(0.800319\pi\)
\(882\) 0 0
\(883\) 38.4264 1.29315 0.646576 0.762850i \(-0.276200\pi\)
0.646576 + 0.762850i \(0.276200\pi\)
\(884\) 2.78680 1.60896i 0.0937301 0.0541151i
\(885\) −21.8538 −0.734607
\(886\) −20.0000 + 34.6410i −0.671913 + 1.16379i
\(887\) 39.9581 1.34166 0.670830 0.741611i \(-0.265938\pi\)
0.670830 + 0.741611i \(0.265938\pi\)
\(888\) 18.1043 0.607539
\(889\) 0 0
\(890\) −38.6985 22.3426i −1.29718 0.748925i
\(891\) 11.6569 0.390519
\(892\) 24.5051 + 42.4441i 0.820491 + 1.42113i
\(893\) 25.3354i 0.847818i
\(894\) 37.3067 64.6172i 1.24772 2.16112i
\(895\) −65.5614 −2.19147
\(896\) 0 0
\(897\) 19.0294 0.635374
\(898\) −4.00000 + 6.92820i −0.133482 + 0.231197i
\(899\) 24.8632i 0.829233i
\(900\) 20.0711 + 34.7641i 0.669036 + 1.15880i
\(901\) 1.09821 0.0365866
\(902\) 10.9269 + 6.30864i 0.363826 + 0.210055i
\(903\) 0 0
\(904\) 46.6274 1.55080
\(905\) 6.72792 0.223644
\(906\) 28.2546 48.9384i 0.938697 1.62587i
\(907\) −16.0000 −0.531271 −0.265636 0.964073i \(-0.585582\pi\)
−0.265636 + 0.964073i \(0.585582\pi\)
\(908\) 40.2797 23.2555i 1.33673 0.771761i
\(909\) 29.5803 0.981115
\(910\) 0 0
\(911\) 5.49333i 0.182002i 0.995851 + 0.0910010i \(0.0290066\pi\)
−0.995851 + 0.0910010i \(0.970993\pi\)
\(912\) −24.9706 + 43.2503i −0.826858 + 1.43216i
\(913\) 16.9469i 0.560859i
\(914\) −14.9706 + 25.9298i −0.495182 + 0.857681i
\(915\) 33.2597i 1.09953i
\(916\) −17.5552 30.4064i −0.580039 1.00466i
\(917\) 0 0
\(918\) −0.485281 + 0.840532i −0.0160167 + 0.0277417i
\(919\) 17.9149i 0.590957i 0.955349 + 0.295478i \(0.0954790\pi\)
−0.955349 + 0.295478i \(0.904521\pi\)
\(920\) 12.9887i 0.428225i
\(921\) 15.7990 0.520594
\(922\) 18.8142 32.5872i 0.619613 1.07320i
\(923\) 0 0
\(924\) 0 0
\(925\) 12.8418i 0.422236i
\(926\) 22.9706 + 13.2621i 0.754860 + 0.435818i
\(927\) −59.1605 −1.94309
\(928\) −45.9411 + 26.5241i −1.50809 + 0.870697i
\(929\) 1.58513i 0.0520063i −0.999662 0.0260032i \(-0.991722\pi\)
0.999662 0.0260032i \(-0.00827800\pi\)
\(930\) 27.1564 + 15.6788i 0.890493 + 0.514127i
\(931\) 0 0
\(932\) 20.2426 + 35.0613i 0.663070 + 1.14847i
\(933\) 70.9631i 2.32323i
\(934\) −0.0942114 0.0543929i −0.00308269 0.00177979i
\(935\) 2.02922i 0.0663627i
\(936\) 54.9561 1.79630
\(937\) 16.9694i 0.554366i 0.960817 + 0.277183i \(0.0894008\pi\)
−0.960817 + 0.277183i \(0.910599\pi\)
\(938\) 0 0
\(939\) −27.6569 −0.902547
\(940\) −16.9706 29.3939i −0.553519 0.958723i
\(941\) 2.42386 0.0790157 0.0395078 0.999219i \(-0.487421\pi\)
0.0395078 + 0.999219i \(0.487421\pi\)
\(942\) −76.6690 44.2649i −2.49801 1.44223i
\(943\) 6.40083 0.208440
\(944\) 9.05213 + 5.22625i 0.294622 + 0.170100i
\(945\) 0 0
\(946\) 12.4853 21.6251i 0.405932 0.703094i
\(947\) 51.4558 1.67209 0.836045 0.548661i \(-0.184862\pi\)
0.836045 + 0.548661i \(0.184862\pi\)
\(948\) 30.9059 + 53.5306i 1.00378 + 1.73859i
\(949\) 7.10228i 0.230550i
\(950\) 30.6785 + 17.7122i 0.995341 + 0.574660i
\(951\) −10.6052 −0.343898
\(952\) 0 0
\(953\) −41.3137 −1.33828 −0.669141 0.743135i \(-0.733338\pi\)
−0.669141 + 0.743135i \(0.733338\pi\)
\(954\) 16.2426 + 9.37769i 0.525875 + 0.303614i
\(955\) 37.8519i 1.22486i
\(956\) 22.9706 13.2621i 0.742921 0.428926i
\(957\) −49.0102 −1.58427
\(958\) 8.27558 14.3337i 0.267372 0.463102i
\(959\) 0 0
\(960\) 66.9046i 2.15934i
\(961\) −23.9706 −0.773244
\(962\) −15.2255 8.79045i −0.490890 0.283416i
\(963\) 32.4853 1.04682
\(964\) −38.3107 + 22.1187i −1.23391 + 0.712396i
\(965\) −45.2607 −1.45699
\(966\) 0 0
\(967\) 21.0308i 0.676305i −0.941091 0.338152i \(-0.890198\pi\)
0.941091 0.338152i \(-0.109802\pi\)
\(968\) 19.7990 0.636364
\(969\) 3.95815i 0.127154i
\(970\) 15.0000 + 8.66025i 0.481621 + 0.278064i
\(971\) 24.7862i 0.795428i 0.917509 + 0.397714i \(0.130196\pi\)
−0.917509 + 0.397714i \(0.869804\pi\)
\(972\) 37.6284 21.7248i 1.20693 0.696822i
\(973\) 0 0
\(974\) 41.6985 + 24.0746i 1.33611 + 0.771401i
\(975\) 69.5282i 2.22669i
\(976\) 7.95393 13.7766i 0.254599 0.440978i
\(977\) 37.2132 1.19056 0.595278 0.803520i \(-0.297042\pi\)
0.595278 + 0.803520i \(0.297042\pi\)
\(978\) −26.0582 15.0447i −0.833249 0.481077i
\(979\) 19.7457i 0.631075i
\(980\) 0 0
\(981\) 1.60896i 0.0513701i
\(982\) −22.4853 + 38.9456i −0.717534 + 1.24281i
\(983\) 26.0582 0.831127 0.415564 0.909564i \(-0.363584\pi\)
0.415564 + 0.909564i \(0.363584\pi\)
\(984\) 32.9706 1.05106
\(985\) 84.8881i 2.70476i
\(986\) −2.10220 + 3.64113i −0.0669478 + 0.115957i
\(987\) 0 0
\(988\) 42.0000 24.2487i 1.33620 0.771454i
\(989\) 12.6677i 0.402810i
\(990\) 17.3277 30.0125i 0.550711 0.953859i
\(991\) 32.2636i 1.02489i −0.858721 0.512444i \(-0.828740\pi\)
0.858721 0.512444i \(-0.171260\pi\)
\(992\) −7.49903 12.9887i −0.238095 0.412392i
\(993\) 54.4273i 1.72720i
\(994\) 0 0
\(995\) −8.48528 −0.269002
\(996\) −22.1421 38.3513i −0.701600 1.21521i
\(997\) 5.39683 0.170919 0.0854596 0.996342i \(-0.472764\pi\)
0.0854596 + 0.996342i \(0.472764\pi\)
\(998\) −6.00000 + 10.3923i −0.189927 + 0.328963i
\(999\) 5.30262 0.167767
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.2.e.c.195.5 8
4.3 odd 2 1568.2.e.c.783.8 8
7.2 even 3 392.2.m.e.227.2 8
7.3 odd 6 392.2.m.c.19.4 8
7.4 even 3 392.2.m.c.19.3 8
7.5 odd 6 392.2.m.e.227.1 8
7.6 odd 2 inner 392.2.e.c.195.6 yes 8
8.3 odd 2 inner 392.2.e.c.195.7 yes 8
8.5 even 2 1568.2.e.c.783.7 8
28.3 even 6 1568.2.q.c.1391.1 8
28.11 odd 6 1568.2.q.c.1391.4 8
28.19 even 6 1568.2.q.d.815.4 8
28.23 odd 6 1568.2.q.d.815.1 8
28.27 even 2 1568.2.e.c.783.1 8
56.3 even 6 392.2.m.e.19.2 8
56.5 odd 6 1568.2.q.c.815.4 8
56.11 odd 6 392.2.m.e.19.1 8
56.13 odd 2 1568.2.e.c.783.2 8
56.19 even 6 392.2.m.c.227.3 8
56.27 even 2 inner 392.2.e.c.195.8 yes 8
56.37 even 6 1568.2.q.c.815.1 8
56.45 odd 6 1568.2.q.d.1391.1 8
56.51 odd 6 392.2.m.c.227.4 8
56.53 even 6 1568.2.q.d.1391.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
392.2.e.c.195.5 8 1.1 even 1 trivial
392.2.e.c.195.6 yes 8 7.6 odd 2 inner
392.2.e.c.195.7 yes 8 8.3 odd 2 inner
392.2.e.c.195.8 yes 8 56.27 even 2 inner
392.2.m.c.19.3 8 7.4 even 3
392.2.m.c.19.4 8 7.3 odd 6
392.2.m.c.227.3 8 56.19 even 6
392.2.m.c.227.4 8 56.51 odd 6
392.2.m.e.19.1 8 56.11 odd 6
392.2.m.e.19.2 8 56.3 even 6
392.2.m.e.227.1 8 7.5 odd 6
392.2.m.e.227.2 8 7.2 even 3
1568.2.e.c.783.1 8 28.27 even 2
1568.2.e.c.783.2 8 56.13 odd 2
1568.2.e.c.783.7 8 8.5 even 2
1568.2.e.c.783.8 8 4.3 odd 2
1568.2.q.c.815.1 8 56.37 even 6
1568.2.q.c.815.4 8 56.5 odd 6
1568.2.q.c.1391.1 8 28.3 even 6
1568.2.q.c.1391.4 8 28.11 odd 6
1568.2.q.d.815.1 8 28.23 odd 6
1568.2.q.d.815.4 8 28.19 even 6
1568.2.q.d.1391.1 8 56.45 odd 6
1568.2.q.d.1391.4 8 56.53 even 6