Properties

Label 152.2.c.b.77.11
Level $152$
Weight $2$
Character 152.77
Analytic conductor $1.214$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [152,2,Mod(77,152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(152, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("152.77"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 152.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.21372611072\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 3 x^{14} - 4 x^{13} + 4 x^{12} + 4 x^{11} - 10 x^{10} + 24 x^{9} - 40 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 77.11
Root \(1.12629 - 0.855255i\) of defining polynomial
Character \(\chi\) \(=\) 152.77
Dual form 152.2.c.b.77.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.855255 - 1.12629i) q^{2} -1.91886i q^{3} +(-0.537077 - 1.92654i) q^{4} +1.51356i q^{5} +(-2.16120 - 1.64111i) q^{6} +0.580162 q^{7} +(-2.62919 - 1.04278i) q^{8} -0.682013 q^{9} +(1.70471 + 1.29448i) q^{10} -1.31799i q^{11} +(-3.69675 + 1.03057i) q^{12} +3.89230i q^{13} +(0.496186 - 0.653433i) q^{14} +2.90431 q^{15} +(-3.42310 + 2.06940i) q^{16} -1.20142 q^{17} +(-0.583295 + 0.768147i) q^{18} +1.00000i q^{19} +(2.91593 - 0.812898i) q^{20} -1.11325i q^{21} +(-1.48444 - 1.12722i) q^{22} +5.85527 q^{23} +(-2.00094 + 5.04503i) q^{24} +2.70913 q^{25} +(4.38387 + 3.32891i) q^{26} -4.44789i q^{27} +(-0.311591 - 1.11770i) q^{28} +1.29188i q^{29} +(2.48392 - 3.27110i) q^{30} +2.96413 q^{31} +(-0.596871 + 5.62528i) q^{32} -2.52903 q^{33} +(-1.02752 + 1.35316i) q^{34} +0.878110i q^{35} +(0.366293 + 1.31392i) q^{36} -1.18418i q^{37} +(1.12629 + 0.855255i) q^{38} +7.46877 q^{39} +(1.57830 - 3.97943i) q^{40} -9.04577 q^{41} +(-1.25384 - 0.952111i) q^{42} +8.38816i q^{43} +(-2.53915 + 0.707861i) q^{44} -1.03227i q^{45} +(5.00775 - 6.59475i) q^{46} -12.8560 q^{47} +(3.97088 + 6.56843i) q^{48} -6.66341 q^{49} +(2.31700 - 3.05128i) q^{50} +2.30536i q^{51} +(7.49866 - 2.09046i) q^{52} -3.07183i q^{53} +(-5.00963 - 3.80408i) q^{54} +1.99485 q^{55} +(-1.52535 - 0.604978i) q^{56} +1.91886 q^{57} +(1.45503 + 1.10488i) q^{58} +0.258163i q^{59} +(-1.55984 - 5.59526i) q^{60} +14.7200i q^{61} +(2.53509 - 3.33848i) q^{62} -0.395678 q^{63} +(5.82524 + 5.48330i) q^{64} -5.89123 q^{65} +(-2.16297 + 2.84843i) q^{66} -9.54884i q^{67} +(0.645257 + 2.31459i) q^{68} -11.2354i q^{69} +(0.989010 + 0.751008i) q^{70} -6.93697 q^{71} +(1.79314 + 0.711186i) q^{72} +15.2934 q^{73} +(-1.33373 - 1.01277i) q^{74} -5.19844i q^{75} +(1.92654 - 0.537077i) q^{76} -0.764646i q^{77} +(6.38770 - 8.41203i) q^{78} -13.1332 q^{79} +(-3.13216 - 5.18106i) q^{80} -10.5809 q^{81} +(-7.73645 + 10.1882i) q^{82} -3.70615i q^{83} +(-2.14471 + 0.597900i) q^{84} -1.81843i q^{85} +(9.44754 + 7.17402i) q^{86} +2.47893 q^{87} +(-1.37436 + 3.46523i) q^{88} -8.36653 q^{89} +(-1.16264 - 0.882852i) q^{90} +2.25816i q^{91} +(-3.14473 - 11.2804i) q^{92} -5.68774i q^{93} +(-10.9952 + 14.4796i) q^{94} -1.51356 q^{95} +(10.7941 + 1.14531i) q^{96} +17.0442 q^{97} +(-5.69892 + 7.50496i) q^{98} +0.898884i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{4} + 6 q^{6} - 8 q^{7} - 12 q^{8} - 24 q^{9} - 8 q^{10} + 4 q^{12} + 4 q^{14} + 2 q^{16} - 8 q^{17} + 20 q^{18} + 8 q^{20} + 20 q^{22} + 6 q^{24} - 24 q^{25} - 10 q^{26} - 14 q^{28} + 4 q^{30}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/152\mathbb{Z}\right)^\times\).

\(n\) \(39\) \(77\) \(97\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.855255 1.12629i 0.604757 0.796410i
\(3\) 1.91886i 1.10785i −0.832566 0.553926i \(-0.813129\pi\)
0.832566 0.553926i \(-0.186871\pi\)
\(4\) −0.537077 1.92654i −0.268538 0.963269i
\(5\) 1.51356i 0.676885i 0.940987 + 0.338442i \(0.109900\pi\)
−0.940987 + 0.338442i \(0.890100\pi\)
\(6\) −2.16120 1.64111i −0.882305 0.669981i
\(7\) 0.580162 0.219281 0.109640 0.993971i \(-0.465030\pi\)
0.109640 + 0.993971i \(0.465030\pi\)
\(8\) −2.62919 1.04278i −0.929558 0.368677i
\(9\) −0.682013 −0.227338
\(10\) 1.70471 + 1.29448i 0.539078 + 0.409351i
\(11\) 1.31799i 0.397388i −0.980062 0.198694i \(-0.936330\pi\)
0.980062 0.198694i \(-0.0636700\pi\)
\(12\) −3.69675 + 1.03057i −1.06716 + 0.297501i
\(13\) 3.89230i 1.07953i 0.841816 + 0.539765i \(0.181487\pi\)
−0.841816 + 0.539765i \(0.818513\pi\)
\(14\) 0.496186 0.653433i 0.132611 0.174637i
\(15\) 2.90431 0.749889
\(16\) −3.42310 + 2.06940i −0.855774 + 0.517349i
\(17\) −1.20142 −0.291388 −0.145694 0.989330i \(-0.546541\pi\)
−0.145694 + 0.989330i \(0.546541\pi\)
\(18\) −0.583295 + 0.768147i −0.137484 + 0.181054i
\(19\) 1.00000i 0.229416i
\(20\) 2.91593 0.812898i 0.652022 0.181770i
\(21\) 1.11325i 0.242931i
\(22\) −1.48444 1.12722i −0.316484 0.240323i
\(23\) 5.85527 1.22091 0.610454 0.792052i \(-0.290987\pi\)
0.610454 + 0.792052i \(0.290987\pi\)
\(24\) −2.00094 + 5.04503i −0.408439 + 1.02981i
\(25\) 2.70913 0.541827
\(26\) 4.38387 + 3.32891i 0.859748 + 0.652853i
\(27\) 4.44789i 0.855996i
\(28\) −0.311591 1.11770i −0.0588853 0.211226i
\(29\) 1.29188i 0.239896i 0.992780 + 0.119948i \(0.0382727\pi\)
−0.992780 + 0.119948i \(0.961727\pi\)
\(30\) 2.48392 3.27110i 0.453500 0.597219i
\(31\) 2.96413 0.532374 0.266187 0.963921i \(-0.414236\pi\)
0.266187 + 0.963921i \(0.414236\pi\)
\(32\) −0.596871 + 5.62528i −0.105513 + 0.994418i
\(33\) −2.52903 −0.440248
\(34\) −1.02752 + 1.35316i −0.176219 + 0.232064i
\(35\) 0.878110i 0.148428i
\(36\) 0.366293 + 1.31392i 0.0610489 + 0.218987i
\(37\) 1.18418i 0.194677i −0.995251 0.0973387i \(-0.968967\pi\)
0.995251 0.0973387i \(-0.0310330\pi\)
\(38\) 1.12629 + 0.855255i 0.182709 + 0.138741i
\(39\) 7.46877 1.19596
\(40\) 1.57830 3.97943i 0.249552 0.629204i
\(41\) −9.04577 −1.41271 −0.706356 0.707856i \(-0.749662\pi\)
−0.706356 + 0.707856i \(0.749662\pi\)
\(42\) −1.25384 0.952111i −0.193472 0.146914i
\(43\) 8.38816i 1.27918i 0.768715 + 0.639592i \(0.220896\pi\)
−0.768715 + 0.639592i \(0.779104\pi\)
\(44\) −2.53915 + 0.707861i −0.382792 + 0.106714i
\(45\) 1.03227i 0.153881i
\(46\) 5.00775 6.59475i 0.738352 0.972343i
\(47\) −12.8560 −1.87524 −0.937620 0.347661i \(-0.886976\pi\)
−0.937620 + 0.347661i \(0.886976\pi\)
\(48\) 3.97088 + 6.56843i 0.573147 + 0.948072i
\(49\) −6.66341 −0.951916
\(50\) 2.31700 3.05128i 0.327673 0.431516i
\(51\) 2.30536i 0.322815i
\(52\) 7.49866 2.09046i 1.03988 0.289895i
\(53\) 3.07183i 0.421949i −0.977492 0.210974i \(-0.932336\pi\)
0.977492 0.210974i \(-0.0676636\pi\)
\(54\) −5.00963 3.80408i −0.681724 0.517670i
\(55\) 1.99485 0.268986
\(56\) −1.52535 0.604978i −0.203834 0.0808436i
\(57\) 1.91886 0.254159
\(58\) 1.45503 + 1.10488i 0.191055 + 0.145079i
\(59\) 0.258163i 0.0336100i 0.999859 + 0.0168050i \(0.00534945\pi\)
−0.999859 + 0.0168050i \(0.994651\pi\)
\(60\) −1.55984 5.59526i −0.201374 0.722345i
\(61\) 14.7200i 1.88470i 0.334623 + 0.942352i \(0.391391\pi\)
−0.334623 + 0.942352i \(0.608609\pi\)
\(62\) 2.53509 3.33848i 0.321957 0.423988i
\(63\) −0.395678 −0.0498507
\(64\) 5.82524 + 5.48330i 0.728155 + 0.685413i
\(65\) −5.89123 −0.730717
\(66\) −2.16297 + 2.84843i −0.266243 + 0.350618i
\(67\) 9.54884i 1.16658i −0.812265 0.583288i \(-0.801766\pi\)
0.812265 0.583288i \(-0.198234\pi\)
\(68\) 0.645257 + 2.31459i 0.0782489 + 0.280685i
\(69\) 11.2354i 1.35259i
\(70\) 0.989010 + 0.751008i 0.118209 + 0.0897627i
\(71\) −6.93697 −0.823267 −0.411634 0.911349i \(-0.635042\pi\)
−0.411634 + 0.911349i \(0.635042\pi\)
\(72\) 1.79314 + 0.711186i 0.211323 + 0.0838141i
\(73\) 15.2934 1.78996 0.894978 0.446110i \(-0.147191\pi\)
0.894978 + 0.446110i \(0.147191\pi\)
\(74\) −1.33373 1.01277i −0.155043 0.117732i
\(75\) 5.19844i 0.600264i
\(76\) 1.92654 0.537077i 0.220989 0.0616069i
\(77\) 0.764646i 0.0871395i
\(78\) 6.38770 8.41203i 0.723265 0.952475i
\(79\) −13.1332 −1.47760 −0.738798 0.673927i \(-0.764606\pi\)
−0.738798 + 0.673927i \(0.764606\pi\)
\(80\) −3.13216 5.18106i −0.350186 0.579261i
\(81\) −10.5809 −1.17566
\(82\) −7.73645 + 10.1882i −0.854348 + 1.12510i
\(83\) 3.70615i 0.406803i −0.979095 0.203402i \(-0.934800\pi\)
0.979095 0.203402i \(-0.0651997\pi\)
\(84\) −2.14471 + 0.597900i −0.234007 + 0.0652362i
\(85\) 1.81843i 0.197236i
\(86\) 9.44754 + 7.17402i 1.01875 + 0.773595i
\(87\) 2.47893 0.265769
\(88\) −1.37436 + 3.46523i −0.146508 + 0.369395i
\(89\) −8.36653 −0.886850 −0.443425 0.896311i \(-0.646237\pi\)
−0.443425 + 0.896311i \(0.646237\pi\)
\(90\) −1.16264 0.882852i −0.122553 0.0930608i
\(91\) 2.25816i 0.236720i
\(92\) −3.14473 11.2804i −0.327861 1.17606i
\(93\) 5.68774i 0.589792i
\(94\) −10.9952 + 14.4796i −1.13406 + 1.49346i
\(95\) −1.51356 −0.155288
\(96\) 10.7941 + 1.14531i 1.10167 + 0.116893i
\(97\) 17.0442 1.73057 0.865286 0.501278i \(-0.167137\pi\)
0.865286 + 0.501278i \(0.167137\pi\)
\(98\) −5.69892 + 7.50496i −0.575678 + 0.758116i
\(99\) 0.898884i 0.0903412i
\(100\) −1.45501 5.21925i −0.145501 0.521925i
\(101\) 1.97721i 0.196739i −0.995150 0.0983697i \(-0.968637\pi\)
0.995150 0.0983697i \(-0.0313628\pi\)
\(102\) 2.59651 + 1.97167i 0.257093 + 0.195225i
\(103\) −2.30853 −0.227466 −0.113733 0.993511i \(-0.536281\pi\)
−0.113733 + 0.993511i \(0.536281\pi\)
\(104\) 4.05879 10.2336i 0.397997 1.00348i
\(105\) 1.68497 0.164436
\(106\) −3.45979 2.62720i −0.336044 0.255176i
\(107\) 15.0396i 1.45393i −0.686675 0.726965i \(-0.740930\pi\)
0.686675 0.726965i \(-0.259070\pi\)
\(108\) −8.56902 + 2.38886i −0.824555 + 0.229868i
\(109\) 13.4002i 1.28351i −0.766911 0.641753i \(-0.778207\pi\)
0.766911 0.641753i \(-0.221793\pi\)
\(110\) 1.70611 2.24679i 0.162671 0.214223i
\(111\) −2.27227 −0.215674
\(112\) −1.98595 + 1.20059i −0.187655 + 0.113445i
\(113\) 4.89717 0.460687 0.230343 0.973109i \(-0.426015\pi\)
0.230343 + 0.973109i \(0.426015\pi\)
\(114\) 1.64111 2.16120i 0.153704 0.202415i
\(115\) 8.86230i 0.826414i
\(116\) 2.48885 0.693837i 0.231084 0.0644212i
\(117\) 2.65460i 0.245418i
\(118\) 0.290768 + 0.220795i 0.0267673 + 0.0203259i
\(119\) −0.697020 −0.0638957
\(120\) −7.63596 3.02854i −0.697065 0.276467i
\(121\) 9.26291 0.842083
\(122\) 16.5791 + 12.5894i 1.50100 + 1.13979i
\(123\) 17.3575i 1.56508i
\(124\) −1.59197 5.71051i −0.142963 0.512819i
\(125\) 11.6682i 1.04364i
\(126\) −0.338405 + 0.445649i −0.0301475 + 0.0397016i
\(127\) −2.61625 −0.232155 −0.116078 0.993240i \(-0.537032\pi\)
−0.116078 + 0.993240i \(0.537032\pi\)
\(128\) 11.1579 1.87131i 0.986226 0.165402i
\(129\) 16.0957 1.41715
\(130\) −5.03851 + 6.63526i −0.441906 + 0.581951i
\(131\) 2.64498i 0.231093i 0.993302 + 0.115547i \(0.0368620\pi\)
−0.993302 + 0.115547i \(0.963138\pi\)
\(132\) 1.35828 + 4.87227i 0.118223 + 0.424077i
\(133\) 0.580162i 0.0503064i
\(134\) −10.7548 8.16670i −0.929073 0.705495i
\(135\) 6.73215 0.579411
\(136\) 3.15877 + 1.25281i 0.270862 + 0.107428i
\(137\) 4.88035 0.416957 0.208478 0.978027i \(-0.433149\pi\)
0.208478 + 0.978027i \(0.433149\pi\)
\(138\) −12.6544 9.60916i −1.07721 0.817986i
\(139\) 10.3334i 0.876468i 0.898861 + 0.438234i \(0.144396\pi\)
−0.898861 + 0.438234i \(0.855604\pi\)
\(140\) 1.69171 0.471613i 0.142976 0.0398585i
\(141\) 24.6688i 2.07749i
\(142\) −5.93288 + 7.81307i −0.497877 + 0.655659i
\(143\) 5.13000 0.428992
\(144\) 2.33460 1.41136i 0.194550 0.117613i
\(145\) −1.95533 −0.162382
\(146\) 13.0798 17.2249i 1.08249 1.42554i
\(147\) 12.7861i 1.05458i
\(148\) −2.28136 + 0.635994i −0.187527 + 0.0522784i
\(149\) 8.35324i 0.684324i −0.939641 0.342162i \(-0.888841\pi\)
0.939641 0.342162i \(-0.111159\pi\)
\(150\) −5.85497 4.44599i −0.478057 0.363014i
\(151\) −5.84941 −0.476019 −0.238009 0.971263i \(-0.576495\pi\)
−0.238009 + 0.971263i \(0.576495\pi\)
\(152\) 1.04278 2.62919i 0.0845802 0.213255i
\(153\) 0.819386 0.0662434
\(154\) −0.861216 0.653967i −0.0693988 0.0526982i
\(155\) 4.48639i 0.360356i
\(156\) −4.01130 14.3889i −0.321161 1.15203i
\(157\) 0.361645i 0.0288624i −0.999896 0.0144312i \(-0.995406\pi\)
0.999896 0.0144312i \(-0.00459375\pi\)
\(158\) −11.2322 + 14.7918i −0.893587 + 1.17677i
\(159\) −5.89441 −0.467457
\(160\) −8.51420 0.903401i −0.673107 0.0714201i
\(161\) 3.39700 0.267721
\(162\) −9.04937 + 11.9172i −0.710985 + 0.936304i
\(163\) 0.146029i 0.0114379i 0.999984 + 0.00571894i \(0.00182041\pi\)
−0.999984 + 0.00571894i \(0.998180\pi\)
\(164\) 4.85828 + 17.4270i 0.379368 + 1.36082i
\(165\) 3.82784i 0.297997i
\(166\) −4.17422 3.16971i −0.323982 0.246017i
\(167\) 0.406603 0.0314639 0.0157319 0.999876i \(-0.494992\pi\)
0.0157319 + 0.999876i \(0.494992\pi\)
\(168\) −1.16087 + 2.92694i −0.0895628 + 0.225818i
\(169\) −2.14999 −0.165384
\(170\) −2.04808 1.55522i −0.157081 0.119280i
\(171\) 0.682013i 0.0521548i
\(172\) 16.1601 4.50509i 1.23220 0.343510i
\(173\) 12.6466i 0.961507i 0.876856 + 0.480753i \(0.159637\pi\)
−0.876856 + 0.480753i \(0.840363\pi\)
\(174\) 2.12012 2.79200i 0.160726 0.211661i
\(175\) 1.57174 0.118812
\(176\) 2.72744 + 4.51160i 0.205589 + 0.340075i
\(177\) 0.495378 0.0372349
\(178\) −7.15552 + 9.42317i −0.536329 + 0.706297i
\(179\) 5.55598i 0.415274i −0.978206 0.207637i \(-0.933423\pi\)
0.978206 0.207637i \(-0.0665772\pi\)
\(180\) −1.98870 + 0.554407i −0.148229 + 0.0413231i
\(181\) 9.13401i 0.678926i −0.940619 0.339463i \(-0.889755\pi\)
0.940619 0.339463i \(-0.110245\pi\)
\(182\) 2.54336 + 1.93131i 0.188526 + 0.143158i
\(183\) 28.2456 2.08797
\(184\) −15.3946 6.10573i −1.13490 0.450120i
\(185\) 1.79232 0.131774
\(186\) −6.40607 4.86447i −0.469716 0.356680i
\(187\) 1.58346i 0.115794i
\(188\) 6.90466 + 24.7676i 0.503574 + 1.80636i
\(189\) 2.58049i 0.187703i
\(190\) −1.29448 + 1.70471i −0.0939115 + 0.123673i
\(191\) 5.47532 0.396180 0.198090 0.980184i \(-0.436526\pi\)
0.198090 + 0.980184i \(0.436526\pi\)
\(192\) 10.5217 11.1778i 0.759336 0.806688i
\(193\) 16.9697 1.22151 0.610753 0.791821i \(-0.290867\pi\)
0.610753 + 0.791821i \(0.290867\pi\)
\(194\) 14.5771 19.1967i 1.04658 1.37825i
\(195\) 11.3044i 0.809527i
\(196\) 3.57876 + 12.8373i 0.255626 + 0.916951i
\(197\) 23.7727i 1.69374i −0.531803 0.846868i \(-0.678485\pi\)
0.531803 0.846868i \(-0.321515\pi\)
\(198\) 1.01241 + 0.768775i 0.0719487 + 0.0546345i
\(199\) −17.5747 −1.24584 −0.622918 0.782287i \(-0.714053\pi\)
−0.622918 + 0.782287i \(0.714053\pi\)
\(200\) −7.12282 2.82502i −0.503659 0.199759i
\(201\) −18.3229 −1.29239
\(202\) −2.22692 1.69102i −0.156685 0.118979i
\(203\) 0.749498i 0.0526044i
\(204\) 4.44136 1.23816i 0.310958 0.0866882i
\(205\) 13.6913i 0.956244i
\(206\) −1.97438 + 2.60008i −0.137562 + 0.181156i
\(207\) −3.99337 −0.277558
\(208\) −8.05472 13.3237i −0.558494 0.923834i
\(209\) 1.31799 0.0911671
\(210\) 1.44108 1.89777i 0.0994438 0.130959i
\(211\) 17.2804i 1.18963i 0.803863 + 0.594815i \(0.202775\pi\)
−0.803863 + 0.594815i \(0.797225\pi\)
\(212\) −5.91800 + 1.64981i −0.406450 + 0.113309i
\(213\) 13.3111i 0.912059i
\(214\) −16.9390 12.8627i −1.15792 0.879274i
\(215\) −12.6960 −0.865860
\(216\) −4.63815 + 11.6943i −0.315586 + 0.795698i
\(217\) 1.71968 0.116739
\(218\) −15.0926 11.4606i −1.02220 0.776209i
\(219\) 29.3458i 1.98301i
\(220\) −1.07139 3.84316i −0.0722331 0.259106i
\(221\) 4.67630i 0.314562i
\(222\) −1.94337 + 2.55924i −0.130430 + 0.171765i
\(223\) 11.6027 0.776973 0.388487 0.921454i \(-0.372998\pi\)
0.388487 + 0.921454i \(0.372998\pi\)
\(224\) −0.346282 + 3.26357i −0.0231369 + 0.218057i
\(225\) −1.84766 −0.123178
\(226\) 4.18833 5.51565i 0.278604 0.366896i
\(227\) 27.4484i 1.82182i −0.412609 0.910908i \(-0.635382\pi\)
0.412609 0.910908i \(-0.364618\pi\)
\(228\) −1.03057 3.69675i −0.0682514 0.244823i
\(229\) 21.8680i 1.44508i −0.691329 0.722540i \(-0.742975\pi\)
0.691329 0.722540i \(-0.257025\pi\)
\(230\) 9.98156 + 7.57953i 0.658165 + 0.499780i
\(231\) −1.46725 −0.0965377
\(232\) 1.34714 3.39659i 0.0884439 0.222997i
\(233\) −22.1975 −1.45421 −0.727103 0.686528i \(-0.759134\pi\)
−0.727103 + 0.686528i \(0.759134\pi\)
\(234\) −2.98986 2.27036i −0.195453 0.148418i
\(235\) 19.4583i 1.26932i
\(236\) 0.497361 0.138654i 0.0323755 0.00902557i
\(237\) 25.2007i 1.63696i
\(238\) −0.596130 + 0.785049i −0.0386414 + 0.0508872i
\(239\) 21.1350 1.36711 0.683555 0.729899i \(-0.260433\pi\)
0.683555 + 0.729899i \(0.260433\pi\)
\(240\) −9.94172 + 6.01017i −0.641735 + 0.387955i
\(241\) −17.2437 −1.11076 −0.555382 0.831595i \(-0.687428\pi\)
−0.555382 + 0.831595i \(0.687428\pi\)
\(242\) 7.92215 10.4328i 0.509255 0.670643i
\(243\) 6.95957i 0.446457i
\(244\) 28.3587 7.90578i 1.81548 0.506116i
\(245\) 10.0855i 0.644338i
\(246\) 19.5497 + 14.8451i 1.24644 + 0.946491i
\(247\) −3.89230 −0.247661
\(248\) −7.79325 3.09092i −0.494872 0.196274i
\(249\) −7.11158 −0.450678
\(250\) 13.1419 + 9.97933i 0.831165 + 0.631148i
\(251\) 6.08851i 0.384303i −0.981365 0.192152i \(-0.938453\pi\)
0.981365 0.192152i \(-0.0615465\pi\)
\(252\) 0.212509 + 0.762288i 0.0133868 + 0.0480196i
\(253\) 7.71717i 0.485174i
\(254\) −2.23757 + 2.94667i −0.140397 + 0.184891i
\(255\) −3.48930 −0.218509
\(256\) 7.43518 14.1675i 0.464699 0.885469i
\(257\) 10.1741 0.634643 0.317322 0.948318i \(-0.397217\pi\)
0.317322 + 0.948318i \(0.397217\pi\)
\(258\) 13.7659 18.1285i 0.857029 1.12863i
\(259\) 0.687014i 0.0426890i
\(260\) 3.16404 + 11.3497i 0.196226 + 0.703877i
\(261\) 0.881077i 0.0545373i
\(262\) 2.97903 + 2.26213i 0.184045 + 0.139755i
\(263\) −15.8414 −0.976822 −0.488411 0.872614i \(-0.662423\pi\)
−0.488411 + 0.872614i \(0.662423\pi\)
\(264\) 6.64929 + 2.63721i 0.409235 + 0.162309i
\(265\) 4.64940 0.285611
\(266\) 0.653433 + 0.496186i 0.0400645 + 0.0304231i
\(267\) 16.0542i 0.982500i
\(268\) −18.3962 + 5.12846i −1.12373 + 0.313271i
\(269\) 22.8533i 1.39339i 0.717367 + 0.696695i \(0.245347\pi\)
−0.717367 + 0.696695i \(0.754653\pi\)
\(270\) 5.75770 7.58238i 0.350403 0.461449i
\(271\) 12.2830 0.746142 0.373071 0.927803i \(-0.378305\pi\)
0.373071 + 0.927803i \(0.378305\pi\)
\(272\) 4.11259 2.48622i 0.249362 0.150749i
\(273\) 4.33309 0.262251
\(274\) 4.17395 5.49671i 0.252157 0.332068i
\(275\) 3.57060i 0.215316i
\(276\) −21.6455 + 6.03429i −1.30290 + 0.363221i
\(277\) 0.643776i 0.0386808i 0.999813 + 0.0193404i \(0.00615662\pi\)
−0.999813 + 0.0193404i \(0.993843\pi\)
\(278\) 11.6385 + 8.83770i 0.698028 + 0.530050i
\(279\) −2.02157 −0.121029
\(280\) 0.915671 2.30871i 0.0547218 0.137972i
\(281\) −8.93027 −0.532735 −0.266368 0.963872i \(-0.585823\pi\)
−0.266368 + 0.963872i \(0.585823\pi\)
\(282\) 27.7844 + 21.0981i 1.65453 + 1.25638i
\(283\) 14.7397i 0.876187i 0.898929 + 0.438094i \(0.144346\pi\)
−0.898929 + 0.438094i \(0.855654\pi\)
\(284\) 3.72569 + 13.3643i 0.221079 + 0.793028i
\(285\) 2.90431i 0.172036i
\(286\) 4.38746 5.77789i 0.259436 0.341654i
\(287\) −5.24801 −0.309780
\(288\) 0.407074 3.83651i 0.0239870 0.226069i
\(289\) −15.5566 −0.915093
\(290\) −1.67231 + 2.20228i −0.0982015 + 0.129322i
\(291\) 32.7053i 1.91722i
\(292\) −8.21373 29.4633i −0.480672 1.72421i
\(293\) 23.9816i 1.40102i 0.713643 + 0.700509i \(0.247044\pi\)
−0.713643 + 0.700509i \(0.752956\pi\)
\(294\) 14.4009 + 10.9354i 0.839880 + 0.637766i
\(295\) −0.390746 −0.0227501
\(296\) −1.23483 + 3.11342i −0.0717730 + 0.180964i
\(297\) −5.86226 −0.340163
\(298\) −9.40820 7.14415i −0.545002 0.413850i
\(299\) 22.7905i 1.31801i
\(300\) −10.0150 + 2.79196i −0.578216 + 0.161194i
\(301\) 4.86649i 0.280500i
\(302\) −5.00274 + 6.58816i −0.287875 + 0.379106i
\(303\) −3.79398 −0.217958
\(304\) −2.06940 3.42310i −0.118688 0.196328i
\(305\) −22.2796 −1.27573
\(306\) 0.700784 0.922869i 0.0400612 0.0527569i
\(307\) 1.82132i 0.103948i −0.998648 0.0519740i \(-0.983449\pi\)
0.998648 0.0519740i \(-0.0165513\pi\)
\(308\) −1.47312 + 0.410674i −0.0839388 + 0.0234003i
\(309\) 4.42974i 0.251999i
\(310\) 5.05300 + 3.83701i 0.286991 + 0.217928i
\(311\) −4.53302 −0.257044 −0.128522 0.991707i \(-0.541023\pi\)
−0.128522 + 0.991707i \(0.541023\pi\)
\(312\) −19.6368 7.78824i −1.11171 0.440922i
\(313\) 12.4149 0.701730 0.350865 0.936426i \(-0.385888\pi\)
0.350865 + 0.936426i \(0.385888\pi\)
\(314\) −0.407319 0.309299i −0.0229863 0.0174547i
\(315\) 0.598882i 0.0337432i
\(316\) 7.05352 + 25.3015i 0.396792 + 1.42332i
\(317\) 23.0948i 1.29713i 0.761157 + 0.648567i \(0.224632\pi\)
−0.761157 + 0.648567i \(0.775368\pi\)
\(318\) −5.04122 + 6.63883i −0.282698 + 0.372287i
\(319\) 1.70268 0.0953317
\(320\) −8.29931 + 8.81685i −0.463945 + 0.492877i
\(321\) −28.8588 −1.61074
\(322\) 2.90530 3.82602i 0.161906 0.213216i
\(323\) 1.20142i 0.0668490i
\(324\) 5.68275 + 20.3845i 0.315709 + 1.13247i
\(325\) 10.5448i 0.584918i
\(326\) 0.164472 + 0.124892i 0.00910924 + 0.00691714i
\(327\) −25.7131 −1.42194
\(328\) 23.7830 + 9.43271i 1.31320 + 0.520834i
\(329\) −7.45856 −0.411204
\(330\) −4.31127 3.27378i −0.237328 0.180216i
\(331\) 26.3743i 1.44966i −0.688927 0.724831i \(-0.741918\pi\)
0.688927 0.724831i \(-0.258082\pi\)
\(332\) −7.14004 + 1.99049i −0.391861 + 0.109242i
\(333\) 0.807623i 0.0442575i
\(334\) 0.347749 0.457954i 0.0190280 0.0250581i
\(335\) 14.4527 0.789638
\(336\) 2.30375 + 3.81075i 0.125680 + 0.207894i
\(337\) 3.82102 0.208144 0.104072 0.994570i \(-0.466813\pi\)
0.104072 + 0.994570i \(0.466813\pi\)
\(338\) −1.83879 + 2.42152i −0.100017 + 0.131714i
\(339\) 9.39697i 0.510373i
\(340\) −3.50327 + 0.976635i −0.189991 + 0.0529655i
\(341\) 3.90669i 0.211559i
\(342\) −0.768147 0.583295i −0.0415366 0.0315410i
\(343\) −7.92699 −0.428017
\(344\) 8.74697 22.0540i 0.471605 1.18907i
\(345\) 17.0055 0.915545
\(346\) 14.2438 + 10.8161i 0.765754 + 0.581478i
\(347\) 29.8808i 1.60408i 0.597268 + 0.802042i \(0.296253\pi\)
−0.597268 + 0.802042i \(0.703747\pi\)
\(348\) −1.33137 4.77575i −0.0713692 0.256007i
\(349\) 12.7016i 0.679902i 0.940443 + 0.339951i \(0.110411\pi\)
−0.940443 + 0.339951i \(0.889589\pi\)
\(350\) 1.34424 1.77024i 0.0718524 0.0946232i
\(351\) 17.3125 0.924073
\(352\) 7.41404 + 0.786668i 0.395170 + 0.0419296i
\(353\) 22.8398 1.21564 0.607820 0.794074i \(-0.292044\pi\)
0.607820 + 0.794074i \(0.292044\pi\)
\(354\) 0.423675 0.557942i 0.0225181 0.0296543i
\(355\) 10.4995i 0.557257i
\(356\) 4.49347 + 16.1184i 0.238153 + 0.854275i
\(357\) 1.33748i 0.0707870i
\(358\) −6.25767 4.75178i −0.330728 0.251140i
\(359\) 35.4003 1.86835 0.934177 0.356810i \(-0.116136\pi\)
0.934177 + 0.356810i \(0.116136\pi\)
\(360\) −1.07642 + 2.71402i −0.0567325 + 0.143042i
\(361\) −1.00000 −0.0526316
\(362\) −10.2876 7.81191i −0.540703 0.410585i
\(363\) 17.7742i 0.932904i
\(364\) 4.35044 1.21281i 0.228025 0.0635684i
\(365\) 23.1475i 1.21159i
\(366\) 24.1572 31.8129i 1.26272 1.66288i
\(367\) −17.2148 −0.898608 −0.449304 0.893379i \(-0.648328\pi\)
−0.449304 + 0.893379i \(0.648328\pi\)
\(368\) −20.0432 + 12.1169i −1.04482 + 0.631636i
\(369\) 6.16933 0.321163
\(370\) 1.53289 2.01868i 0.0796914 0.104946i
\(371\) 1.78216i 0.0925251i
\(372\) −10.9577 + 3.05476i −0.568128 + 0.158382i
\(373\) 20.3506i 1.05372i −0.849953 0.526858i \(-0.823370\pi\)
0.849953 0.526858i \(-0.176630\pi\)
\(374\) 1.78344 + 1.35426i 0.0922196 + 0.0700273i
\(375\) 22.3897 1.15620
\(376\) 33.8008 + 13.4059i 1.74314 + 0.691358i
\(377\) −5.02837 −0.258974
\(378\) −2.90640 2.20698i −0.149489 0.113515i
\(379\) 4.22765i 0.217160i 0.994088 + 0.108580i \(0.0346303\pi\)
−0.994088 + 0.108580i \(0.965370\pi\)
\(380\) 0.812898 + 2.91593i 0.0417008 + 0.149584i
\(381\) 5.02022i 0.257194i
\(382\) 4.68280 6.16682i 0.239593 0.315522i
\(383\) 9.71281 0.496301 0.248151 0.968721i \(-0.420177\pi\)
0.248151 + 0.968721i \(0.420177\pi\)
\(384\) −3.59078 21.4104i −0.183241 1.09259i
\(385\) 1.15734 0.0589834
\(386\) 14.5134 19.1129i 0.738714 0.972819i
\(387\) 5.72083i 0.290806i
\(388\) −9.15403 32.8362i −0.464725 1.66701i
\(389\) 22.3291i 1.13213i −0.824361 0.566064i \(-0.808466\pi\)
0.824361 0.566064i \(-0.191534\pi\)
\(390\) 12.7321 + 9.66817i 0.644716 + 0.489567i
\(391\) −7.03466 −0.355758
\(392\) 17.5194 + 6.94844i 0.884861 + 0.350949i
\(393\) 5.07534 0.256017
\(394\) −26.7751 20.3317i −1.34891 1.02430i
\(395\) 19.8778i 1.00016i
\(396\) 1.73173 0.482770i 0.0870229 0.0242601i
\(397\) 23.9210i 1.20056i −0.799789 0.600281i \(-0.795055\pi\)
0.799789 0.600281i \(-0.204945\pi\)
\(398\) −15.0308 + 19.7943i −0.753428 + 0.992197i
\(399\) 1.11325 0.0557321
\(400\) −9.27363 + 5.60628i −0.463681 + 0.280314i
\(401\) −16.5237 −0.825154 −0.412577 0.910923i \(-0.635371\pi\)
−0.412577 + 0.910923i \(0.635371\pi\)
\(402\) −15.6707 + 20.6369i −0.781585 + 1.02928i
\(403\) 11.5373i 0.574713i
\(404\) −3.80916 + 1.06191i −0.189513 + 0.0528321i
\(405\) 16.0148i 0.795783i
\(406\) 0.844155 + 0.641012i 0.0418947 + 0.0318129i
\(407\) −1.56073 −0.0773625
\(408\) 2.40397 6.06122i 0.119014 0.300075i
\(409\) 16.0228 0.792278 0.396139 0.918191i \(-0.370350\pi\)
0.396139 + 0.918191i \(0.370350\pi\)
\(410\) −15.4205 11.7096i −0.761562 0.578295i
\(411\) 9.36470i 0.461926i
\(412\) 1.23986 + 4.44747i 0.0610834 + 0.219111i
\(413\) 0.149776i 0.00737002i
\(414\) −3.41535 + 4.49771i −0.167855 + 0.221050i
\(415\) 5.60949 0.275359
\(416\) −21.8953 2.32320i −1.07350 0.113904i
\(417\) 19.8283 0.970998
\(418\) 1.12722 1.48444i 0.0551339 0.0726064i
\(419\) 12.7496i 0.622858i 0.950269 + 0.311429i \(0.100808\pi\)
−0.950269 + 0.311429i \(0.899192\pi\)
\(420\) −0.904957 3.24615i −0.0441574 0.158396i
\(421\) 1.89293i 0.0922560i 0.998936 + 0.0461280i \(0.0146882\pi\)
−0.998936 + 0.0461280i \(0.985312\pi\)
\(422\) 19.4628 + 14.7791i 0.947434 + 0.719437i
\(423\) 8.76796 0.426313
\(424\) −3.20323 + 8.07642i −0.155563 + 0.392225i
\(425\) −3.25482 −0.157882
\(426\) 14.9922 + 11.3844i 0.726373 + 0.551574i
\(427\) 8.53999i 0.413279i
\(428\) −28.9743 + 8.07740i −1.40052 + 0.390436i
\(429\) 9.84374i 0.475260i
\(430\) −10.8583 + 14.2994i −0.523635 + 0.689580i
\(431\) 37.2166 1.79266 0.896331 0.443386i \(-0.146223\pi\)
0.896331 + 0.443386i \(0.146223\pi\)
\(432\) 9.20445 + 15.2255i 0.442849 + 0.732539i
\(433\) −36.0314 −1.73156 −0.865780 0.500425i \(-0.833177\pi\)
−0.865780 + 0.500425i \(0.833177\pi\)
\(434\) 1.47076 1.93686i 0.0705988 0.0929723i
\(435\) 3.75201i 0.179895i
\(436\) −25.8160 + 7.19693i −1.23636 + 0.344671i
\(437\) 5.85527i 0.280095i
\(438\) −33.0520 25.0982i −1.57929 1.19924i
\(439\) −18.6188 −0.888629 −0.444315 0.895871i \(-0.646553\pi\)
−0.444315 + 0.895871i \(0.646553\pi\)
\(440\) −5.24484 2.08018i −0.250038 0.0991689i
\(441\) 4.54453 0.216406
\(442\) −5.26689 3.99943i −0.250520 0.190233i
\(443\) 2.26887i 0.107797i 0.998546 + 0.0538987i \(0.0171648\pi\)
−0.998546 + 0.0538987i \(0.982835\pi\)
\(444\) 1.22038 + 4.37761i 0.0579167 + 0.207752i
\(445\) 12.6633i 0.600296i
\(446\) 9.92326 13.0680i 0.469880 0.618789i
\(447\) −16.0287 −0.758130
\(448\) 3.37958 + 3.18120i 0.159670 + 0.150298i
\(449\) 0.248909 0.0117467 0.00587337 0.999983i \(-0.498130\pi\)
0.00587337 + 0.999983i \(0.498130\pi\)
\(450\) −1.58022 + 2.08101i −0.0744925 + 0.0980999i
\(451\) 11.9222i 0.561395i
\(452\) −2.63016 9.43458i −0.123712 0.443765i
\(453\) 11.2242i 0.527358i
\(454\) −30.9150 23.4754i −1.45091 1.10176i
\(455\) −3.41787 −0.160232
\(456\) −5.04503 2.00094i −0.236255 0.0937024i
\(457\) −6.98767 −0.326869 −0.163435 0.986554i \(-0.552257\pi\)
−0.163435 + 0.986554i \(0.552257\pi\)
\(458\) −24.6298 18.7027i −1.15088 0.873922i
\(459\) 5.34379i 0.249427i
\(460\) 17.0736 4.75974i 0.796059 0.221924i
\(461\) 34.1624i 1.59110i −0.605888 0.795550i \(-0.707182\pi\)
0.605888 0.795550i \(-0.292818\pi\)
\(462\) −1.25487 + 1.65255i −0.0583818 + 0.0768836i
\(463\) 34.5311 1.60480 0.802399 0.596788i \(-0.203556\pi\)
0.802399 + 0.596788i \(0.203556\pi\)
\(464\) −2.67341 4.42222i −0.124110 0.205296i
\(465\) 8.60875 0.399221
\(466\) −18.9845 + 25.0009i −0.879441 + 1.15815i
\(467\) 39.6496i 1.83476i 0.398008 + 0.917382i \(0.369702\pi\)
−0.398008 + 0.917382i \(0.630298\pi\)
\(468\) −5.11418 + 1.42572i −0.236403 + 0.0659041i
\(469\) 5.53987i 0.255808i
\(470\) −21.9158 16.6418i −1.01090 0.767631i
\(471\) −0.693945 −0.0319753
\(472\) 0.269206 0.678759i 0.0123912 0.0312424i
\(473\) 11.0555 0.508332
\(474\) 28.3834 + 21.5530i 1.30369 + 0.989962i
\(475\) 2.70913i 0.124304i
\(476\) 0.374353 + 1.34284i 0.0171585 + 0.0615488i
\(477\) 2.09503i 0.0959247i
\(478\) 18.0758 23.8042i 0.826770 1.08878i
\(479\) −24.8669 −1.13620 −0.568098 0.822961i \(-0.692321\pi\)
−0.568098 + 0.822961i \(0.692321\pi\)
\(480\) −1.73350 + 16.3375i −0.0791229 + 0.745703i
\(481\) 4.60917 0.210160
\(482\) −14.7478 + 19.4215i −0.671742 + 0.884624i
\(483\) 6.51836i 0.296596i
\(484\) −4.97489 17.8453i −0.226132 0.811152i
\(485\) 25.7974i 1.17140i
\(486\) 7.83852 + 5.95221i 0.355563 + 0.269998i
\(487\) −39.7320 −1.80043 −0.900214 0.435448i \(-0.856590\pi\)
−0.900214 + 0.435448i \(0.856590\pi\)
\(488\) 15.3497 38.7016i 0.694847 1.75194i
\(489\) 0.280209 0.0126715
\(490\) −11.3592 8.62566i −0.513157 0.389668i
\(491\) 3.45561i 0.155949i −0.996955 0.0779747i \(-0.975155\pi\)
0.996955 0.0779747i \(-0.0248453\pi\)
\(492\) 33.4400 9.32234i 1.50759 0.420283i
\(493\) 1.55209i 0.0699027i
\(494\) −3.32891 + 4.38387i −0.149775 + 0.197240i
\(495\) −1.36052 −0.0611506
\(496\) −10.1465 + 6.13397i −0.455592 + 0.275423i
\(497\) −4.02457 −0.180527
\(498\) −6.08221 + 8.00973i −0.272550 + 0.358924i
\(499\) 17.5837i 0.787156i 0.919291 + 0.393578i \(0.128763\pi\)
−0.919291 + 0.393578i \(0.871237\pi\)
\(500\) 22.4793 6.26674i 1.00531 0.280257i
\(501\) 0.780212i 0.0348573i
\(502\) −6.85745 5.20723i −0.306063 0.232410i
\(503\) 2.72712 0.121596 0.0607981 0.998150i \(-0.480635\pi\)
0.0607981 + 0.998150i \(0.480635\pi\)
\(504\) 1.04031 + 0.412603i 0.0463391 + 0.0183788i
\(505\) 2.99262 0.133170
\(506\) −8.69180 6.60015i −0.386398 0.293412i
\(507\) 4.12553i 0.183221i
\(508\) 1.40513 + 5.04031i 0.0623425 + 0.223628i
\(509\) 6.73123i 0.298356i −0.988810 0.149178i \(-0.952337\pi\)
0.988810 0.149178i \(-0.0476628\pi\)
\(510\) −2.98424 + 3.92998i −0.132145 + 0.174022i
\(511\) 8.87264 0.392503
\(512\) −9.59779 20.4910i −0.424166 0.905584i
\(513\) 4.44789 0.196379
\(514\) 8.70146 11.4590i 0.383805 0.505436i
\(515\) 3.49410i 0.153968i
\(516\) −8.64462 31.0090i −0.380558 1.36509i
\(517\) 16.9441i 0.745198i
\(518\) −0.773780 0.587572i −0.0339979 0.0258164i
\(519\) 24.2671 1.06521
\(520\) 15.4891 + 6.14323i 0.679244 + 0.269398i
\(521\) 38.2190 1.67440 0.837202 0.546894i \(-0.184190\pi\)
0.837202 + 0.546894i \(0.184190\pi\)
\(522\) −0.992352 0.753545i −0.0434340 0.0329818i
\(523\) 5.37182i 0.234893i −0.993079 0.117447i \(-0.962529\pi\)
0.993079 0.117447i \(-0.0374709\pi\)
\(524\) 5.09566 1.42056i 0.222605 0.0620574i
\(525\) 3.01594i 0.131626i
\(526\) −13.5484 + 17.8421i −0.590739 + 0.777951i
\(527\) −3.56118 −0.155127
\(528\) 8.65711 5.23357i 0.376752 0.227762i
\(529\) 11.2842 0.490616
\(530\) 3.97643 5.23660i 0.172725 0.227463i
\(531\) 0.176071i 0.00764081i
\(532\) 1.11770 0.311591i 0.0484586 0.0135092i
\(533\) 35.2089i 1.52506i
\(534\) 18.0817 + 13.7304i 0.782473 + 0.594173i
\(535\) 22.7633 0.984143
\(536\) −9.95729 + 25.1057i −0.430090 + 1.08440i
\(537\) −10.6611 −0.460062
\(538\) 25.7395 + 19.5454i 1.10971 + 0.842662i
\(539\) 8.78229i 0.378280i
\(540\) −3.61568 12.9697i −0.155594 0.558129i
\(541\) 34.3497i 1.47681i 0.674359 + 0.738404i \(0.264420\pi\)
−0.674359 + 0.738404i \(0.735580\pi\)
\(542\) 10.5051 13.8343i 0.451234 0.594235i
\(543\) −17.5269 −0.752150
\(544\) 0.717095 6.75834i 0.0307452 0.289761i
\(545\) 20.2820 0.868786
\(546\) 3.70590 4.88034i 0.158598 0.208859i
\(547\) 2.58358i 0.110466i −0.998473 0.0552330i \(-0.982410\pi\)
0.998473 0.0552330i \(-0.0175902\pi\)
\(548\) −2.62112 9.40218i −0.111969 0.401641i
\(549\) 10.0392i 0.428464i
\(550\) −4.02155 3.05378i −0.171480 0.130214i
\(551\) −1.29188 −0.0550358
\(552\) −11.7160 + 29.5400i −0.498667 + 1.25731i
\(553\) −7.61936 −0.324008
\(554\) 0.725081 + 0.550593i 0.0308057 + 0.0233924i
\(555\) 3.43921i 0.145986i
\(556\) 19.9077 5.54983i 0.844275 0.235365i
\(557\) 0.498941i 0.0211408i −0.999944 0.0105704i \(-0.996635\pi\)
0.999944 0.0105704i \(-0.00336472\pi\)
\(558\) −1.72896 + 2.27689i −0.0731928 + 0.0963883i
\(559\) −32.6492 −1.38092
\(560\) −1.81716 3.00586i −0.0767890 0.127021i
\(561\) 3.03843 0.128283
\(562\) −7.63766 + 10.0581i −0.322175 + 0.424276i
\(563\) 32.5553i 1.37204i 0.727581 + 0.686021i \(0.240644\pi\)
−0.727581 + 0.686021i \(0.759356\pi\)
\(564\) 47.5254 13.2491i 2.00118 0.557886i
\(565\) 7.41216i 0.311832i
\(566\) 16.6013 + 12.6062i 0.697804 + 0.529880i
\(567\) −6.13863 −0.257798
\(568\) 18.2386 + 7.23371i 0.765275 + 0.303520i
\(569\) 13.6834 0.573636 0.286818 0.957985i \(-0.407402\pi\)
0.286818 + 0.957985i \(0.407402\pi\)
\(570\) 3.27110 + 2.48392i 0.137011 + 0.104040i
\(571\) 12.2520i 0.512732i 0.966580 + 0.256366i \(0.0825253\pi\)
−0.966580 + 0.256366i \(0.917475\pi\)
\(572\) −2.75520 9.88314i −0.115201 0.413235i
\(573\) 10.5064i 0.438909i
\(574\) −4.48839 + 5.91081i −0.187342 + 0.246712i
\(575\) 15.8627 0.661521
\(576\) −3.97289 3.73968i −0.165537 0.155820i
\(577\) 14.6672 0.610605 0.305302 0.952255i \(-0.401242\pi\)
0.305302 + 0.952255i \(0.401242\pi\)
\(578\) −13.3048 + 17.5213i −0.553409 + 0.728789i
\(579\) 32.5624i 1.35325i
\(580\) 1.05017 + 3.76703i 0.0436057 + 0.156417i
\(581\) 2.15017i 0.0892040i
\(582\) −36.8358 27.9714i −1.52689 1.15945i
\(583\) −4.04864 −0.167677
\(584\) −40.2092 15.9476i −1.66387 0.659915i
\(585\) 4.01789 0.166119
\(586\) 27.0103 + 20.5104i 1.11579 + 0.847275i
\(587\) 5.53206i 0.228333i −0.993462 0.114166i \(-0.963580\pi\)
0.993462 0.114166i \(-0.0364197\pi\)
\(588\) 24.6330 6.86714i 1.01585 0.283196i
\(589\) 2.96413i 0.122135i
\(590\) −0.334187 + 0.440095i −0.0137583 + 0.0181184i
\(591\) −45.6165 −1.87641
\(592\) 2.45053 + 4.05355i 0.100716 + 0.166600i
\(593\) 21.5870 0.886470 0.443235 0.896405i \(-0.353831\pi\)
0.443235 + 0.896405i \(0.353831\pi\)
\(594\) −5.01373 + 6.60263i −0.205716 + 0.270909i
\(595\) 1.05498i 0.0432500i
\(596\) −16.0928 + 4.48633i −0.659188 + 0.183767i
\(597\) 33.7233i 1.38020i
\(598\) 25.6688 + 19.4917i 1.04967 + 0.797073i
\(599\) −28.3513 −1.15840 −0.579202 0.815184i \(-0.696636\pi\)
−0.579202 + 0.815184i \(0.696636\pi\)
\(600\) −5.42081 + 13.6677i −0.221303 + 0.557980i
\(601\) −21.9758 −0.896410 −0.448205 0.893931i \(-0.647936\pi\)
−0.448205 + 0.893931i \(0.647936\pi\)
\(602\) 5.48110 + 4.16209i 0.223393 + 0.169634i
\(603\) 6.51243i 0.265207i
\(604\) 3.14158 + 11.2691i 0.127829 + 0.458534i
\(605\) 14.0200i 0.569993i
\(606\) −3.24482 + 4.27313i −0.131812 + 0.173584i
\(607\) −7.89484 −0.320441 −0.160221 0.987081i \(-0.551221\pi\)
−0.160221 + 0.987081i \(0.551221\pi\)
\(608\) −5.62528 0.596871i −0.228135 0.0242063i
\(609\) 1.43818 0.0582780
\(610\) −19.0548 + 25.0934i −0.771505 + 1.01600i
\(611\) 50.0394i 2.02438i
\(612\) −0.440073 1.57858i −0.0177889 0.0638102i
\(613\) 29.5174i 1.19220i −0.802912 0.596098i \(-0.796717\pi\)
0.802912 0.596098i \(-0.203283\pi\)
\(614\) −2.05134 1.55769i −0.0827853 0.0628633i
\(615\) −26.2717 −1.05938
\(616\) −0.797354 + 2.01040i −0.0321263 + 0.0810012i
\(617\) 3.08379 0.124149 0.0620744 0.998072i \(-0.480228\pi\)
0.0620744 + 0.998072i \(0.480228\pi\)
\(618\) 4.98919 + 3.78856i 0.200695 + 0.152398i
\(619\) 10.9487i 0.440066i 0.975492 + 0.220033i \(0.0706164\pi\)
−0.975492 + 0.220033i \(0.929384\pi\)
\(620\) 8.64320 2.40954i 0.347119 0.0967693i
\(621\) 26.0436i 1.04509i
\(622\) −3.87689 + 5.10551i −0.155449 + 0.204712i
\(623\) −4.85394 −0.194469
\(624\) −25.5663 + 15.4558i −1.02347 + 0.618729i
\(625\) −4.11492 −0.164597
\(626\) 10.6179 13.9828i 0.424376 0.558865i
\(627\) 2.52903i 0.101000i
\(628\) −0.696723 + 0.194231i −0.0278023 + 0.00775067i
\(629\) 1.42270i 0.0567267i
\(630\) −0.674517 0.512197i −0.0268734 0.0204064i
\(631\) −20.7432 −0.825773 −0.412886 0.910783i \(-0.635479\pi\)
−0.412886 + 0.910783i \(0.635479\pi\)
\(632\) 34.5295 + 13.6949i 1.37351 + 0.544756i
\(633\) 33.1586 1.31794
\(634\) 26.0116 + 19.7520i 1.03305 + 0.784451i
\(635\) 3.95986i 0.157142i
\(636\) 3.16575 + 11.3558i 0.125530 + 0.450287i
\(637\) 25.9360i 1.02762i
\(638\) 1.45622 1.91772i 0.0576525 0.0759231i
\(639\) 4.73110 0.187160
\(640\) 2.83234 + 16.8881i 0.111958 + 0.667562i
\(641\) −34.5310 −1.36389 −0.681946 0.731403i \(-0.738866\pi\)
−0.681946 + 0.731403i \(0.738866\pi\)
\(642\) −24.6816 + 32.5035i −0.974106 + 1.28281i
\(643\) 21.5300i 0.849062i −0.905413 0.424531i \(-0.860439\pi\)
0.905413 0.424531i \(-0.139561\pi\)
\(644\) −1.82445 6.54446i −0.0718935 0.257888i
\(645\) 24.3618i 0.959245i
\(646\) −1.35316 1.02752i −0.0532392 0.0404274i
\(647\) 22.7527 0.894502 0.447251 0.894409i \(-0.352403\pi\)
0.447251 + 0.894409i \(0.352403\pi\)
\(648\) 27.8191 + 11.0335i 1.09284 + 0.433437i
\(649\) 0.340256 0.0133562
\(650\) 11.8765 + 9.01846i 0.465835 + 0.353733i
\(651\) 3.29981i 0.129330i
\(652\) 0.281331 0.0784288i 0.0110178 0.00307151i
\(653\) 35.6805i 1.39629i 0.715958 + 0.698143i \(0.245990\pi\)
−0.715958 + 0.698143i \(0.754010\pi\)
\(654\) −21.9912 + 28.9605i −0.859925 + 1.13244i
\(655\) −4.00334 −0.156423
\(656\) 30.9646 18.7193i 1.20896 0.730866i
\(657\) −10.4303 −0.406924
\(658\) −6.37897 + 8.40053i −0.248678 + 0.327487i
\(659\) 35.8589i 1.39686i 0.715676 + 0.698432i \(0.246119\pi\)
−0.715676 + 0.698432i \(0.753881\pi\)
\(660\) −7.37448 + 2.05584i −0.287051 + 0.0800236i
\(661\) 25.4409i 0.989537i 0.869025 + 0.494769i \(0.164747\pi\)
−0.869025 + 0.494769i \(0.835253\pi\)
\(662\) −29.7052 22.5567i −1.15453 0.876693i
\(663\) −8.97315 −0.348488
\(664\) −3.86468 + 9.74416i −0.149979 + 0.378147i
\(665\) −0.878110 −0.0340516
\(666\) 0.909621 + 0.690724i 0.0352471 + 0.0267650i
\(667\) 7.56429i 0.292890i
\(668\) −0.218377 0.783335i −0.00844925 0.0303082i
\(669\) 22.2639i 0.860772i
\(670\) 12.3608 16.2780i 0.477539 0.628876i
\(671\) 19.4008 0.748959
\(672\) 6.26233 + 0.664465i 0.241574 + 0.0256323i
\(673\) 34.2142 1.31886 0.659431 0.751765i \(-0.270797\pi\)
0.659431 + 0.751765i \(0.270797\pi\)
\(674\) 3.26795 4.30359i 0.125877 0.165768i
\(675\) 12.0499i 0.463802i
\(676\) 1.15471 + 4.14204i 0.0444120 + 0.159309i
\(677\) 37.9103i 1.45701i −0.685040 0.728505i \(-0.740215\pi\)
0.685040 0.728505i \(-0.259785\pi\)
\(678\) −10.5837 8.03681i −0.406466 0.308652i
\(679\) 9.88837 0.379481
\(680\) −1.89621 + 4.78098i −0.0727164 + 0.183342i
\(681\) −52.6696 −2.01830
\(682\) −4.40008 3.34121i −0.168488 0.127942i
\(683\) 30.3542i 1.16147i −0.814092 0.580736i \(-0.802765\pi\)
0.814092 0.580736i \(-0.197235\pi\)
\(684\) −1.31392 + 0.366293i −0.0502391 + 0.0140056i
\(685\) 7.38671i 0.282232i
\(686\) −6.77960 + 8.92812i −0.258846 + 0.340877i
\(687\) −41.9616 −1.60094
\(688\) −17.3584 28.7135i −0.661785 1.09469i
\(689\) 11.9565 0.455506
\(690\) 14.5440 19.1532i 0.553682 0.729149i
\(691\) 3.50694i 0.133410i −0.997773 0.0667052i \(-0.978751\pi\)
0.997773 0.0667052i \(-0.0212487\pi\)
\(692\) 24.3642 6.79222i 0.926189 0.258201i
\(693\) 0.521498i 0.0198101i
\(694\) 33.6545 + 25.5557i 1.27751 + 0.970081i
\(695\) −15.6402 −0.593268
\(696\) −6.51756 2.58496i −0.247048 0.0979828i
\(697\) 10.8678 0.411647
\(698\) 14.3058 + 10.8631i 0.541481 + 0.411175i
\(699\) 42.5938i 1.61105i
\(700\) −0.844143 3.02801i −0.0319056 0.114448i
\(701\) 13.2168i 0.499190i −0.968350 0.249595i \(-0.919703\pi\)
0.968350 0.249595i \(-0.0802975\pi\)
\(702\) 14.8066 19.4990i 0.558840 0.735941i
\(703\) 1.18418 0.0446621
\(704\) 7.22692 7.67759i 0.272375 0.289360i
\(705\) −37.3378 −1.40622
\(706\) 19.5339 25.7244i 0.735167 0.968149i
\(707\) 1.14710i 0.0431411i
\(708\) −0.266056 0.954365i −0.00999901 0.0358672i
\(709\) 23.2882i 0.874605i 0.899314 + 0.437302i \(0.144066\pi\)
−0.899314 + 0.437302i \(0.855934\pi\)
\(710\) −11.8256 8.97978i −0.443805 0.337005i
\(711\) 8.95699 0.335913
\(712\) 21.9972 + 8.72441i 0.824379 + 0.326961i
\(713\) 17.3558 0.649979
\(714\) 1.50640 + 1.14389i 0.0563755 + 0.0428089i
\(715\) 7.76457i 0.290378i
\(716\) −10.7038 + 2.98399i −0.400020 + 0.111517i
\(717\) 40.5551i 1.51456i
\(718\) 30.2763 39.8711i 1.12990 1.48798i
\(719\) 0.192843 0.00719184 0.00359592 0.999994i \(-0.498855\pi\)
0.00359592 + 0.999994i \(0.498855\pi\)
\(720\) 2.13617 + 3.53355i 0.0796104 + 0.131688i
\(721\) −1.33932 −0.0498789
\(722\) −0.855255 + 1.12629i −0.0318293 + 0.0419163i
\(723\) 33.0882i 1.23056i
\(724\) −17.5970 + 4.90567i −0.653988 + 0.182318i
\(725\) 3.49987i 0.129982i
\(726\) −20.0190 15.2015i −0.742974 0.564180i
\(727\) 14.5604 0.540014 0.270007 0.962858i \(-0.412974\pi\)
0.270007 + 0.962858i \(0.412974\pi\)
\(728\) 2.35476 5.93713i 0.0872731 0.220045i
\(729\) −18.3883 −0.681047
\(730\) 26.0709 + 19.7970i 0.964926 + 0.732720i
\(731\) 10.0777i 0.372739i
\(732\) −15.1701 54.4162i −0.560701 2.01128i
\(733\) 29.0856i 1.07430i −0.843487 0.537150i \(-0.819501\pi\)
0.843487 0.537150i \(-0.180499\pi\)
\(734\) −14.7231 + 19.3890i −0.543439 + 0.715660i
\(735\) −19.3526 −0.713831
\(736\) −3.49484 + 32.9375i −0.128822 + 1.21409i
\(737\) −12.5853 −0.463584
\(738\) 5.27635 6.94848i 0.194225 0.255777i
\(739\) 28.8090i 1.05975i 0.848074 + 0.529877i \(0.177762\pi\)
−0.848074 + 0.529877i \(0.822238\pi\)
\(740\) −0.962615 3.45298i −0.0353864 0.126934i
\(741\) 7.46877i 0.274372i
\(742\) −2.00724 1.52420i −0.0736879 0.0559552i
\(743\) 42.2025 1.54826 0.774129 0.633027i \(-0.218188\pi\)
0.774129 + 0.633027i \(0.218188\pi\)
\(744\) −5.93104 + 14.9541i −0.217442 + 0.548245i
\(745\) 12.6431 0.463208
\(746\) −22.9208 17.4050i −0.839191 0.637242i
\(747\) 2.52764i 0.0924816i
\(748\) 3.05060 0.850440i 0.111541 0.0310952i
\(749\) 8.72538i 0.318818i
\(750\) 19.1489 25.2174i 0.699219 0.920808i
\(751\) 2.64036 0.0963483 0.0481741 0.998839i \(-0.484660\pi\)
0.0481741 + 0.998839i \(0.484660\pi\)
\(752\) 44.0073 26.6042i 1.60478 0.970155i
\(753\) −11.6830 −0.425751
\(754\) −4.30054 + 5.66343i −0.156617 + 0.206250i
\(755\) 8.85344i 0.322210i
\(756\) −4.97142 + 1.38592i −0.180809 + 0.0504056i
\(757\) 4.51764i 0.164197i 0.996624 + 0.0820983i \(0.0261621\pi\)
−0.996624 + 0.0820983i \(0.973838\pi\)
\(758\) 4.76158 + 3.61572i 0.172948 + 0.131329i
\(759\) −14.8081 −0.537502
\(760\) 3.97943 + 1.57830i 0.144349 + 0.0572511i
\(761\) −23.5124 −0.852323 −0.426162 0.904647i \(-0.640134\pi\)
−0.426162 + 0.904647i \(0.640134\pi\)
\(762\) 5.65424 + 4.29357i 0.204832 + 0.155540i
\(763\) 7.77428i 0.281448i
\(764\) −2.94067 10.5484i −0.106390 0.381628i
\(765\) 1.24019i 0.0448392i
\(766\) 8.30693 10.9395i 0.300142 0.395259i
\(767\) −1.00485 −0.0362830
\(768\) −27.1854 14.2671i −0.980969 0.514818i
\(769\) −29.6727 −1.07002 −0.535012 0.844845i \(-0.679693\pi\)
−0.535012 + 0.844845i \(0.679693\pi\)
\(770\) 0.989819 1.30350i 0.0356706 0.0469750i
\(771\) 19.5227i 0.703091i
\(772\) −9.11403 32.6928i −0.328021 1.17664i
\(773\) 10.1647i 0.365598i −0.983150 0.182799i \(-0.941484\pi\)
0.983150 0.182799i \(-0.0585158\pi\)
\(774\) −6.44334 4.89277i −0.231601 0.175867i
\(775\) 8.03023 0.288454
\(776\) −44.8123 17.7732i −1.60867 0.638022i
\(777\) −1.31828 −0.0472931
\(778\) −25.1491 19.0970i −0.901638 0.684662i
\(779\) 9.04577i 0.324098i
\(780\) 21.7784 6.07135i 0.779792 0.217389i
\(781\) 9.14285i 0.327157i
\(782\) −6.01643 + 7.92309i −0.215147 + 0.283329i
\(783\) 5.74612 0.205350
\(784\) 22.8095 13.7893i 0.814625 0.492473i
\(785\) 0.547372 0.0195365
\(786\) 4.34071 5.71633i 0.154828 0.203895i
\(787\) 18.8481i 0.671863i 0.941886 + 0.335931i \(0.109051\pi\)
−0.941886 + 0.335931i \(0.890949\pi\)
\(788\) −45.7991 + 12.7678i −1.63152 + 0.454833i
\(789\) 30.3974i 1.08217i
\(790\) −22.3883 17.0006i −0.796540 0.604855i
\(791\) 2.84115 0.101020
\(792\) 0.937334 2.36333i 0.0333067 0.0839774i
\(793\) −57.2947 −2.03459
\(794\) −26.9421 20.4586i −0.956140 0.726049i
\(795\) 8.92154i 0.316414i
\(796\) 9.43896 + 33.8583i 0.334555 + 1.20008i
\(797\) 13.9098i 0.492709i −0.969180 0.246355i \(-0.920767\pi\)
0.969180 0.246355i \(-0.0792328\pi\)
\(798\) 0.952111 1.25384i 0.0337044 0.0443856i
\(799\) 15.4455 0.546423
\(800\) −1.61700 + 15.2396i −0.0571697 + 0.538802i
\(801\) 5.70608 0.201614
\(802\) −14.1320 + 18.6105i −0.499018 + 0.657161i
\(803\) 20.1565i 0.711308i
\(804\) 9.84078 + 35.2997i 0.347058 + 1.24492i
\(805\) 5.14157i 0.181217i
\(806\) 12.9944 + 9.86732i 0.457707 + 0.347562i
\(807\) 43.8522 1.54367
\(808\) −2.06178 + 5.19844i −0.0725332 + 0.182881i
\(809\) 19.7630 0.694831 0.347415 0.937711i \(-0.387059\pi\)
0.347415 + 0.937711i \(0.387059\pi\)
\(810\) −18.0374 13.6968i −0.633770 0.481255i
\(811\) 30.1099i 1.05730i −0.848839 0.528651i \(-0.822698\pi\)
0.848839 0.528651i \(-0.177302\pi\)
\(812\) 1.44394 0.402538i 0.0506722 0.0141263i
\(813\) 23.5694i 0.826615i
\(814\) −1.33482 + 1.75784i −0.0467855 + 0.0616123i
\(815\) −0.221024 −0.00774213
\(816\) −4.77071 7.89147i −0.167008 0.276257i
\(817\) −8.38816 −0.293465
\(818\) 13.7036 18.0464i 0.479135 0.630978i
\(819\) 1.54010i 0.0538153i
\(820\) −26.3769 + 7.35330i −0.921120 + 0.256788i
\(821\) 26.1788i 0.913645i −0.889558 0.456823i \(-0.848987\pi\)
0.889558 0.456823i \(-0.151013\pi\)
\(822\) −10.5474 8.00921i −0.367883 0.279353i
\(823\) 41.9817 1.46339 0.731696 0.681631i \(-0.238729\pi\)
0.731696 + 0.681631i \(0.238729\pi\)
\(824\) 6.06955 + 2.40728i 0.211443 + 0.0838615i
\(825\) −6.85148 −0.238538
\(826\) 0.168692 + 0.128097i 0.00586956 + 0.00445707i
\(827\) 20.6394i 0.717703i 0.933395 + 0.358851i \(0.116832\pi\)
−0.933395 + 0.358851i \(0.883168\pi\)
\(828\) 2.14475 + 7.69337i 0.0745350 + 0.267363i
\(829\) 36.6292i 1.27218i 0.771613 + 0.636092i \(0.219450\pi\)
−0.771613 + 0.636092i \(0.780550\pi\)
\(830\) 4.79754 6.31793i 0.166525 0.219299i
\(831\) 1.23531 0.0428526
\(832\) −21.3426 + 22.6736i −0.739923 + 0.786065i
\(833\) 8.00558 0.277377
\(834\) 16.9583 22.3325i 0.587217 0.773313i
\(835\) 0.615418i 0.0212974i
\(836\) −0.707861 2.53915i −0.0244819 0.0878184i
\(837\) 13.1841i 0.455710i
\(838\) 14.3598 + 10.9042i 0.496051 + 0.376678i
\(839\) 3.71855 0.128379 0.0641893 0.997938i \(-0.479554\pi\)
0.0641893 + 0.997938i \(0.479554\pi\)
\(840\) −4.43009 1.75704i −0.152853 0.0606237i
\(841\) 27.3311 0.942450
\(842\) 2.13200 + 1.61894i 0.0734736 + 0.0557924i
\(843\) 17.1359i 0.590192i
\(844\) 33.2913 9.28089i 1.14593 0.319461i
\(845\) 3.25414i 0.111946i
\(846\) 7.49884 9.87530i 0.257815 0.339520i
\(847\) 5.37399 0.184652
\(848\) 6.35684 + 10.5152i 0.218295 + 0.361093i
\(849\) 28.2835 0.970686
\(850\) −2.78370 + 3.66588i −0.0954801 + 0.125739i
\(851\) 6.93367i 0.237683i
\(852\) 25.6443 7.14906i 0.878558 0.244923i
\(853\) 49.7965i 1.70500i 0.522726 + 0.852501i \(0.324915\pi\)
−0.522726 + 0.852501i \(0.675085\pi\)
\(854\) 9.61854 + 7.30387i 0.329140 + 0.249933i
\(855\) 1.03227 0.0353028
\(856\) −15.6829 + 39.5418i −0.536030 + 1.35151i
\(857\) 35.6409 1.21747 0.608735 0.793374i \(-0.291677\pi\)
0.608735 + 0.793374i \(0.291677\pi\)
\(858\) −11.0869 8.41891i −0.378502 0.287417i
\(859\) 43.5752i 1.48677i −0.668866 0.743383i \(-0.733220\pi\)
0.668866 0.743383i \(-0.266780\pi\)
\(860\) 6.81873 + 24.4593i 0.232517 + 0.834056i
\(861\) 10.0702i 0.343191i
\(862\) 31.8297 41.9169i 1.08412 1.42769i
\(863\) −43.6579 −1.48613 −0.743067 0.669217i \(-0.766630\pi\)
−0.743067 + 0.669217i \(0.766630\pi\)
\(864\) 25.0206 + 2.65481i 0.851218 + 0.0903186i
\(865\) −19.1415 −0.650829
\(866\) −30.8161 + 40.5820i −1.04717 + 1.37903i
\(867\) 29.8509i 1.01379i
\(868\) −0.923598 3.31302i −0.0313490 0.112451i
\(869\) 17.3093i 0.587179i
\(870\) 4.22586 + 3.20892i 0.143270 + 0.108793i
\(871\) 37.1669 1.25935
\(872\) −13.9734 + 35.2316i −0.473199 + 1.19309i
\(873\) −11.6243 −0.393424
\(874\) 6.59475 + 5.00775i 0.223071 + 0.169390i
\(875\) 6.76947i 0.228850i
\(876\) −56.5359 + 15.7610i −1.91017 + 0.532514i
\(877\) 5.23078i 0.176631i −0.996093 0.0883154i \(-0.971852\pi\)
0.996093 0.0883154i \(-0.0281483\pi\)
\(878\) −15.9239 + 20.9703i −0.537405 + 0.707713i
\(879\) 46.0172 1.55212
\(880\) −6.82858 + 4.12815i −0.230191 + 0.139160i
\(881\) −22.0358 −0.742405 −0.371203 0.928552i \(-0.621054\pi\)
−0.371203 + 0.928552i \(0.621054\pi\)
\(882\) 3.88673 5.11848i 0.130873 0.172348i
\(883\) 56.9658i 1.91705i −0.285008 0.958525i \(-0.591996\pi\)
0.285008 0.958525i \(-0.408004\pi\)
\(884\) −9.00907 + 2.51153i −0.303008 + 0.0844720i
\(885\) 0.749785i 0.0252038i
\(886\) 2.55542 + 1.94047i 0.0858510 + 0.0651912i
\(887\) 3.28694 0.110365 0.0551823 0.998476i \(-0.482426\pi\)
0.0551823 + 0.998476i \(0.482426\pi\)
\(888\) 5.97421 + 2.36946i 0.200481 + 0.0795139i
\(889\) −1.51785 −0.0509071
\(890\) −14.2625 10.8303i −0.478082 0.363033i
\(891\) 13.9455i 0.467191i
\(892\) −6.23153 22.3530i −0.208647 0.748434i
\(893\) 12.8560i 0.430210i
\(894\) −13.7086 + 18.0530i −0.458484 + 0.603782i
\(895\) 8.40932 0.281092
\(896\) 6.47337 1.08566i 0.216260 0.0362695i
\(897\) 43.7316 1.46016
\(898\) 0.212881 0.280345i 0.00710392 0.00935522i
\(899\) 3.82929i 0.127714i
\(900\) 0.992337 + 3.55959i 0.0330779 + 0.118653i
\(901\) 3.69057i 0.122951i
\(902\) 13.4279 + 10.1965i 0.447101 + 0.339508i
\(903\) 9.33810 0.310753
\(904\) −12.8756 5.10665i −0.428235 0.169845i
\(905\) 13.8249 0.459555
\(906\) 12.6417 + 9.59955i 0.419994 + 0.318924i
\(907\) 0.0491571i 0.00163223i 1.00000 0.000816117i \(0.000259778\pi\)
−1.00000 0.000816117i \(0.999740\pi\)
\(908\) −52.8804 + 14.7419i −1.75490 + 0.489228i
\(909\) 1.34848i 0.0447263i
\(910\) −2.92315 + 3.84952i −0.0969014 + 0.127610i
\(911\) 32.4990 1.07674 0.538370 0.842708i \(-0.319040\pi\)
0.538370 + 0.842708i \(0.319040\pi\)
\(912\) −6.56843 + 3.97088i −0.217503 + 0.131489i
\(913\) −4.88466 −0.161659
\(914\) −5.97624 + 7.87017i −0.197676 + 0.260322i
\(915\) 42.7514i 1.41332i
\(916\) −42.1296 + 11.7448i −1.39200 + 0.388059i
\(917\) 1.53452i 0.0506742i
\(918\) 6.01868 + 4.57031i 0.198646 + 0.150843i
\(919\) −19.8145 −0.653619 −0.326810 0.945090i \(-0.605974\pi\)
−0.326810 + 0.945090i \(0.605974\pi\)
\(920\) 9.24139 23.3006i 0.304680 0.768200i
\(921\) −3.49485 −0.115159
\(922\) −38.4769 29.2175i −1.26717 0.962229i
\(923\) 27.0008i 0.888742i
\(924\) 0.788024 + 2.82671i 0.0259241 + 0.0929918i
\(925\) 3.20809i 0.105481i
\(926\) 29.5329 38.8922i 0.970513 1.27808i
\(927\) 1.57445 0.0517116
\(928\) −7.26717 0.771084i −0.238557 0.0253121i
\(929\) 43.9293 1.44127 0.720637 0.693313i \(-0.243850\pi\)
0.720637 + 0.693313i \(0.243850\pi\)
\(930\) 7.36267 9.69598i 0.241432 0.317944i
\(931\) 6.66341i 0.218385i
\(932\) 11.9218 + 42.7643i 0.390510 + 1.40079i
\(933\) 8.69822i 0.284767i
\(934\) 44.6571 + 33.9105i 1.46122 + 1.10959i
\(935\) −2.39666 −0.0783793
\(936\) −2.76815 + 6.97943i −0.0904798 + 0.228130i
\(937\) −23.9026 −0.780863 −0.390431 0.920632i \(-0.627674\pi\)
−0.390431 + 0.920632i \(0.627674\pi\)
\(938\) −6.23953 4.73801i −0.203728 0.154701i
\(939\) 23.8224i 0.777413i
\(940\) −37.4872 + 10.4506i −1.22270 + 0.340862i
\(941\) 20.4109i 0.665375i 0.943037 + 0.332688i \(0.107955\pi\)
−0.943037 + 0.332688i \(0.892045\pi\)
\(942\) −0.593500 + 0.781586i −0.0193373 + 0.0254655i
\(943\) −52.9654 −1.72479
\(944\) −0.534242 0.883718i −0.0173881 0.0287626i
\(945\) 3.90573 0.127054
\(946\) 9.45527 12.4517i 0.307417 0.404841i
\(947\) 2.72706i 0.0886176i 0.999018 + 0.0443088i \(0.0141085\pi\)
−0.999018 + 0.0443088i \(0.985891\pi\)
\(948\) 48.5501 13.5347i 1.57683 0.439587i
\(949\) 59.5265i 1.93231i
\(950\) 3.05128 + 2.31700i 0.0989967 + 0.0751734i
\(951\) 44.3157 1.43703
\(952\) 1.83260 + 0.726835i 0.0593947 + 0.0235569i
\(953\) −32.7679 −1.06146 −0.530729 0.847542i \(-0.678082\pi\)
−0.530729 + 0.847542i \(0.678082\pi\)
\(954\) 2.35962 + 1.79178i 0.0763954 + 0.0580111i
\(955\) 8.28723i 0.268168i
\(956\) −11.3511 40.7174i −0.367122 1.31690i
\(957\) 3.26720i 0.105613i
\(958\) −21.2675 + 28.0074i −0.687123 + 0.904879i
\(959\) 2.83139 0.0914305
\(960\) 16.9183 + 15.9252i 0.546035 + 0.513983i
\(961\) −22.2139 −0.716578
\(962\) 3.94202 5.19128i 0.127096 0.167374i
\(963\) 10.2572i 0.330533i
\(964\) 9.26119 + 33.2206i 0.298283 + 1.06996i
\(965\) 25.6847i 0.826818i
\(966\) −7.34159 5.57486i −0.236212 0.179368i
\(967\) 36.4163 1.17107 0.585535 0.810647i \(-0.300885\pi\)
0.585535 + 0.810647i \(0.300885\pi\)
\(968\) −24.3539 9.65913i −0.782764 0.310456i
\(969\) −2.30536 −0.0740588
\(970\) 29.0554 + 22.0633i 0.932914 + 0.708411i
\(971\) 6.40329i 0.205491i 0.994708 + 0.102746i \(0.0327628\pi\)
−0.994708 + 0.102746i \(0.967237\pi\)
\(972\) 13.4079 3.73782i 0.430058 0.119891i
\(973\) 5.99505i 0.192192i
\(974\) −33.9810 + 44.7499i −1.08882 + 1.43388i
\(975\) 20.2339 0.648003
\(976\) −30.4616 50.3880i −0.975051 1.61288i
\(977\) 11.6473 0.372629 0.186315 0.982490i \(-0.440346\pi\)
0.186315 + 0.982490i \(0.440346\pi\)
\(978\) 0.239650 0.315598i 0.00766317 0.0100917i
\(979\) 11.0270i 0.352424i
\(980\) −19.4301 + 5.41668i −0.620670 + 0.173029i
\(981\) 9.13910i 0.291789i
\(982\) −3.89203 2.95543i −0.124200 0.0943115i
\(983\) −34.7061 −1.10695 −0.553477 0.832864i \(-0.686699\pi\)
−0.553477 + 0.832864i \(0.686699\pi\)
\(984\) 18.1000 45.6362i 0.577008 1.45483i
\(985\) 35.9815 1.14646
\(986\) −1.74811 1.32743i −0.0556712 0.0422741i
\(987\) 14.3119i 0.455553i
\(988\) 2.09046 + 7.49866i 0.0665065 + 0.238564i
\(989\) 49.1150i 1.56176i
\(990\) −1.16359 + 1.53234i −0.0369813 + 0.0487010i
\(991\) 3.30503 0.104988 0.0524939 0.998621i \(-0.483283\pi\)
0.0524939 + 0.998621i \(0.483283\pi\)
\(992\) −1.76920 + 16.6741i −0.0561723 + 0.529402i
\(993\) −50.6085 −1.60601
\(994\) −3.44203 + 4.53285i −0.109175 + 0.143773i
\(995\) 26.6003i 0.843288i
\(996\) 3.81946 + 13.7007i 0.121024 + 0.434124i
\(997\) 15.9009i 0.503586i 0.967781 + 0.251793i \(0.0810203\pi\)
−0.967781 + 0.251793i \(0.918980\pi\)
\(998\) 19.8045 + 15.0386i 0.626899 + 0.476038i
\(999\) −5.26708 −0.166643
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.2.c.b.77.11 16
3.2 odd 2 1368.2.g.b.685.6 16
4.3 odd 2 608.2.c.b.305.12 16
8.3 odd 2 608.2.c.b.305.5 16
8.5 even 2 inner 152.2.c.b.77.12 yes 16
12.11 even 2 5472.2.g.b.2737.7 16
16.3 odd 4 4864.2.a.bn.1.3 8
16.5 even 4 4864.2.a.bq.1.3 8
16.11 odd 4 4864.2.a.bp.1.6 8
16.13 even 4 4864.2.a.bo.1.6 8
24.5 odd 2 1368.2.g.b.685.5 16
24.11 even 2 5472.2.g.b.2737.10 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.c.b.77.11 16 1.1 even 1 trivial
152.2.c.b.77.12 yes 16 8.5 even 2 inner
608.2.c.b.305.5 16 8.3 odd 2
608.2.c.b.305.12 16 4.3 odd 2
1368.2.g.b.685.5 16 24.5 odd 2
1368.2.g.b.685.6 16 3.2 odd 2
4864.2.a.bn.1.3 8 16.3 odd 4
4864.2.a.bo.1.6 8 16.13 even 4
4864.2.a.bp.1.6 8 16.11 odd 4
4864.2.a.bq.1.3 8 16.5 even 4
5472.2.g.b.2737.7 16 12.11 even 2
5472.2.g.b.2737.10 16 24.11 even 2