Defining parameters
Level: | \( N \) | \(=\) | \( 152 = 2^{3} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 152.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(40\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(152, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22 | 18 | 4 |
Cusp forms | 18 | 18 | 0 |
Eisenstein series | 4 | 0 | 4 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(152, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
152.2.c.a | $2$ | $1.214$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(0\) | \(0\) | \(4\) | \(q+(i-1)q^{2}-2 i q^{4}+2 q^{7}+(2 i+2)q^{8}+\cdots\) |
152.2.c.b | $16$ | $1.214$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-8\) | \(q+\beta _{9}q^{2}+\beta _{4}q^{3}+\beta _{2}q^{4}+(\beta _{1}+\beta _{6}+\cdots)q^{5}+\cdots\) |