Properties

Label 152.2.c
Level $152$
Weight $2$
Character orbit 152.c
Rep. character $\chi_{152}(77,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $2$
Sturm bound $40$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 152.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(40\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(152, [\chi])\).

Total New Old
Modular forms 22 18 4
Cusp forms 18 18 0
Eisenstein series 4 0 4

Trace form

\( 18 q - 2 q^{2} + 2 q^{4} + 6 q^{6} - 4 q^{7} - 8 q^{8} - 18 q^{9} - 8 q^{10} + 4 q^{12} - 6 q^{16} - 4 q^{17} + 14 q^{18} + 8 q^{20} + 12 q^{22} - 4 q^{23} + 6 q^{24} - 14 q^{25} - 6 q^{26} - 14 q^{28}+ \cdots - 42 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(152, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
152.2.c.a 152.c 8.b $2$ $1.214$ \(\Q(\sqrt{-1}) \) None 152.2.c.a \(-2\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i-1)q^{2}-2 i q^{4}+2 q^{7}+(2 i+2)q^{8}+\cdots\)
152.2.c.b 152.c 8.b $16$ $1.214$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 152.2.c.b \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{9}q^{2}+\beta _{4}q^{3}+\beta _{2}q^{4}+(\beta _{1}+\beta _{6}+\cdots)q^{5}+\cdots\)