Properties

Label 608.2.c.b.305.5
Level $608$
Weight $2$
Character 608.305
Analytic conductor $4.855$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [608,2,Mod(305,608)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(608, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("608.305"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 608.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.85490444289\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 3 x^{14} - 4 x^{13} + 4 x^{12} + 4 x^{11} - 10 x^{10} + 24 x^{9} - 40 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: no (minimal twist has level 152)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 305.5
Root \(1.12629 + 0.855255i\) of defining polynomial
Character \(\chi\) \(=\) 608.305
Dual form 608.2.c.b.305.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.91886i q^{3} -1.51356i q^{5} -0.580162 q^{7} -0.682013 q^{9} -1.31799i q^{11} -3.89230i q^{13} -2.90431 q^{15} -1.20142 q^{17} +1.00000i q^{19} +1.11325i q^{21} -5.85527 q^{23} +2.70913 q^{25} -4.44789i q^{27} -1.29188i q^{29} -2.96413 q^{31} -2.52903 q^{33} +0.878110i q^{35} +1.18418i q^{37} -7.46877 q^{39} -9.04577 q^{41} +8.38816i q^{43} +1.03227i q^{45} +12.8560 q^{47} -6.66341 q^{49} +2.30536i q^{51} +3.07183i q^{53} -1.99485 q^{55} +1.91886 q^{57} +0.258163i q^{59} -14.7200i q^{61} +0.395678 q^{63} -5.89123 q^{65} -9.54884i q^{67} +11.2354i q^{69} +6.93697 q^{71} +15.2934 q^{73} -5.19844i q^{75} +0.764646i q^{77} +13.1332 q^{79} -10.5809 q^{81} -3.70615i q^{83} +1.81843i q^{85} -2.47893 q^{87} -8.36653 q^{89} +2.25816i q^{91} +5.68774i q^{93} +1.51356 q^{95} +17.0442 q^{97} +0.898884i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{7} - 24 q^{9} - 8 q^{17} - 24 q^{25} - 16 q^{31} - 8 q^{39} + 16 q^{41} - 24 q^{47} + 24 q^{49} - 16 q^{55} + 32 q^{63} + 16 q^{65} - 48 q^{71} + 48 q^{79} - 16 q^{81} + 48 q^{87} - 16 q^{89}+ \cdots + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/608\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.91886i − 1.10785i −0.832566 0.553926i \(-0.813129\pi\)
0.832566 0.553926i \(-0.186871\pi\)
\(4\) 0 0
\(5\) − 1.51356i − 0.676885i −0.940987 0.338442i \(-0.890100\pi\)
0.940987 0.338442i \(-0.109900\pi\)
\(6\) 0 0
\(7\) −0.580162 −0.219281 −0.109640 0.993971i \(-0.534970\pi\)
−0.109640 + 0.993971i \(0.534970\pi\)
\(8\) 0 0
\(9\) −0.682013 −0.227338
\(10\) 0 0
\(11\) − 1.31799i − 0.397388i −0.980062 0.198694i \(-0.936330\pi\)
0.980062 0.198694i \(-0.0636700\pi\)
\(12\) 0 0
\(13\) − 3.89230i − 1.07953i −0.841816 0.539765i \(-0.818513\pi\)
0.841816 0.539765i \(-0.181487\pi\)
\(14\) 0 0
\(15\) −2.90431 −0.749889
\(16\) 0 0
\(17\) −1.20142 −0.291388 −0.145694 0.989330i \(-0.546541\pi\)
−0.145694 + 0.989330i \(0.546541\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i
\(20\) 0 0
\(21\) 1.11325i 0.242931i
\(22\) 0 0
\(23\) −5.85527 −1.22091 −0.610454 0.792052i \(-0.709013\pi\)
−0.610454 + 0.792052i \(0.709013\pi\)
\(24\) 0 0
\(25\) 2.70913 0.541827
\(26\) 0 0
\(27\) − 4.44789i − 0.855996i
\(28\) 0 0
\(29\) − 1.29188i − 0.239896i −0.992780 0.119948i \(-0.961727\pi\)
0.992780 0.119948i \(-0.0382727\pi\)
\(30\) 0 0
\(31\) −2.96413 −0.532374 −0.266187 0.963921i \(-0.585764\pi\)
−0.266187 + 0.963921i \(0.585764\pi\)
\(32\) 0 0
\(33\) −2.52903 −0.440248
\(34\) 0 0
\(35\) 0.878110i 0.148428i
\(36\) 0 0
\(37\) 1.18418i 0.194677i 0.995251 + 0.0973387i \(0.0310330\pi\)
−0.995251 + 0.0973387i \(0.968967\pi\)
\(38\) 0 0
\(39\) −7.46877 −1.19596
\(40\) 0 0
\(41\) −9.04577 −1.41271 −0.706356 0.707856i \(-0.749662\pi\)
−0.706356 + 0.707856i \(0.749662\pi\)
\(42\) 0 0
\(43\) 8.38816i 1.27918i 0.768715 + 0.639592i \(0.220896\pi\)
−0.768715 + 0.639592i \(0.779104\pi\)
\(44\) 0 0
\(45\) 1.03227i 0.153881i
\(46\) 0 0
\(47\) 12.8560 1.87524 0.937620 0.347661i \(-0.113024\pi\)
0.937620 + 0.347661i \(0.113024\pi\)
\(48\) 0 0
\(49\) −6.66341 −0.951916
\(50\) 0 0
\(51\) 2.30536i 0.322815i
\(52\) 0 0
\(53\) 3.07183i 0.421949i 0.977492 + 0.210974i \(0.0676636\pi\)
−0.977492 + 0.210974i \(0.932336\pi\)
\(54\) 0 0
\(55\) −1.99485 −0.268986
\(56\) 0 0
\(57\) 1.91886 0.254159
\(58\) 0 0
\(59\) 0.258163i 0.0336100i 0.999859 + 0.0168050i \(0.00534945\pi\)
−0.999859 + 0.0168050i \(0.994651\pi\)
\(60\) 0 0
\(61\) − 14.7200i − 1.88470i −0.334623 0.942352i \(-0.608609\pi\)
0.334623 0.942352i \(-0.391391\pi\)
\(62\) 0 0
\(63\) 0.395678 0.0498507
\(64\) 0 0
\(65\) −5.89123 −0.730717
\(66\) 0 0
\(67\) − 9.54884i − 1.16658i −0.812265 0.583288i \(-0.801766\pi\)
0.812265 0.583288i \(-0.198234\pi\)
\(68\) 0 0
\(69\) 11.2354i 1.35259i
\(70\) 0 0
\(71\) 6.93697 0.823267 0.411634 0.911349i \(-0.364958\pi\)
0.411634 + 0.911349i \(0.364958\pi\)
\(72\) 0 0
\(73\) 15.2934 1.78996 0.894978 0.446110i \(-0.147191\pi\)
0.894978 + 0.446110i \(0.147191\pi\)
\(74\) 0 0
\(75\) − 5.19844i − 0.600264i
\(76\) 0 0
\(77\) 0.764646i 0.0871395i
\(78\) 0 0
\(79\) 13.1332 1.47760 0.738798 0.673927i \(-0.235394\pi\)
0.738798 + 0.673927i \(0.235394\pi\)
\(80\) 0 0
\(81\) −10.5809 −1.17566
\(82\) 0 0
\(83\) − 3.70615i − 0.406803i −0.979095 0.203402i \(-0.934800\pi\)
0.979095 0.203402i \(-0.0651997\pi\)
\(84\) 0 0
\(85\) 1.81843i 0.197236i
\(86\) 0 0
\(87\) −2.47893 −0.265769
\(88\) 0 0
\(89\) −8.36653 −0.886850 −0.443425 0.896311i \(-0.646237\pi\)
−0.443425 + 0.896311i \(0.646237\pi\)
\(90\) 0 0
\(91\) 2.25816i 0.236720i
\(92\) 0 0
\(93\) 5.68774i 0.589792i
\(94\) 0 0
\(95\) 1.51356 0.155288
\(96\) 0 0
\(97\) 17.0442 1.73057 0.865286 0.501278i \(-0.167137\pi\)
0.865286 + 0.501278i \(0.167137\pi\)
\(98\) 0 0
\(99\) 0.898884i 0.0903412i
\(100\) 0 0
\(101\) 1.97721i 0.196739i 0.995150 + 0.0983697i \(0.0313628\pi\)
−0.995150 + 0.0983697i \(0.968637\pi\)
\(102\) 0 0
\(103\) 2.30853 0.227466 0.113733 0.993511i \(-0.463719\pi\)
0.113733 + 0.993511i \(0.463719\pi\)
\(104\) 0 0
\(105\) 1.68497 0.164436
\(106\) 0 0
\(107\) − 15.0396i − 1.45393i −0.686675 0.726965i \(-0.740930\pi\)
0.686675 0.726965i \(-0.259070\pi\)
\(108\) 0 0
\(109\) 13.4002i 1.28351i 0.766911 + 0.641753i \(0.221793\pi\)
−0.766911 + 0.641753i \(0.778207\pi\)
\(110\) 0 0
\(111\) 2.27227 0.215674
\(112\) 0 0
\(113\) 4.89717 0.460687 0.230343 0.973109i \(-0.426015\pi\)
0.230343 + 0.973109i \(0.426015\pi\)
\(114\) 0 0
\(115\) 8.86230i 0.826414i
\(116\) 0 0
\(117\) 2.65460i 0.245418i
\(118\) 0 0
\(119\) 0.697020 0.0638957
\(120\) 0 0
\(121\) 9.26291 0.842083
\(122\) 0 0
\(123\) 17.3575i 1.56508i
\(124\) 0 0
\(125\) − 11.6682i − 1.04364i
\(126\) 0 0
\(127\) 2.61625 0.232155 0.116078 0.993240i \(-0.462968\pi\)
0.116078 + 0.993240i \(0.462968\pi\)
\(128\) 0 0
\(129\) 16.0957 1.41715
\(130\) 0 0
\(131\) 2.64498i 0.231093i 0.993302 + 0.115547i \(0.0368620\pi\)
−0.993302 + 0.115547i \(0.963138\pi\)
\(132\) 0 0
\(133\) − 0.580162i − 0.0503064i
\(134\) 0 0
\(135\) −6.73215 −0.579411
\(136\) 0 0
\(137\) 4.88035 0.416957 0.208478 0.978027i \(-0.433149\pi\)
0.208478 + 0.978027i \(0.433149\pi\)
\(138\) 0 0
\(139\) 10.3334i 0.876468i 0.898861 + 0.438234i \(0.144396\pi\)
−0.898861 + 0.438234i \(0.855604\pi\)
\(140\) 0 0
\(141\) − 24.6688i − 2.07749i
\(142\) 0 0
\(143\) −5.13000 −0.428992
\(144\) 0 0
\(145\) −1.95533 −0.162382
\(146\) 0 0
\(147\) 12.7861i 1.05458i
\(148\) 0 0
\(149\) 8.35324i 0.684324i 0.939641 + 0.342162i \(0.111159\pi\)
−0.939641 + 0.342162i \(0.888841\pi\)
\(150\) 0 0
\(151\) 5.84941 0.476019 0.238009 0.971263i \(-0.423505\pi\)
0.238009 + 0.971263i \(0.423505\pi\)
\(152\) 0 0
\(153\) 0.819386 0.0662434
\(154\) 0 0
\(155\) 4.48639i 0.360356i
\(156\) 0 0
\(157\) 0.361645i 0.0288624i 0.999896 + 0.0144312i \(0.00459375\pi\)
−0.999896 + 0.0144312i \(0.995406\pi\)
\(158\) 0 0
\(159\) 5.89441 0.467457
\(160\) 0 0
\(161\) 3.39700 0.267721
\(162\) 0 0
\(163\) 0.146029i 0.0114379i 0.999984 + 0.00571894i \(0.00182041\pi\)
−0.999984 + 0.00571894i \(0.998180\pi\)
\(164\) 0 0
\(165\) 3.82784i 0.297997i
\(166\) 0 0
\(167\) −0.406603 −0.0314639 −0.0157319 0.999876i \(-0.505008\pi\)
−0.0157319 + 0.999876i \(0.505008\pi\)
\(168\) 0 0
\(169\) −2.14999 −0.165384
\(170\) 0 0
\(171\) − 0.682013i − 0.0521548i
\(172\) 0 0
\(173\) − 12.6466i − 0.961507i −0.876856 0.480753i \(-0.840363\pi\)
0.876856 0.480753i \(-0.159637\pi\)
\(174\) 0 0
\(175\) −1.57174 −0.118812
\(176\) 0 0
\(177\) 0.495378 0.0372349
\(178\) 0 0
\(179\) − 5.55598i − 0.415274i −0.978206 0.207637i \(-0.933423\pi\)
0.978206 0.207637i \(-0.0665772\pi\)
\(180\) 0 0
\(181\) 9.13401i 0.678926i 0.940619 + 0.339463i \(0.110245\pi\)
−0.940619 + 0.339463i \(0.889755\pi\)
\(182\) 0 0
\(183\) −28.2456 −2.08797
\(184\) 0 0
\(185\) 1.79232 0.131774
\(186\) 0 0
\(187\) 1.58346i 0.115794i
\(188\) 0 0
\(189\) 2.58049i 0.187703i
\(190\) 0 0
\(191\) −5.47532 −0.396180 −0.198090 0.980184i \(-0.563474\pi\)
−0.198090 + 0.980184i \(0.563474\pi\)
\(192\) 0 0
\(193\) 16.9697 1.22151 0.610753 0.791821i \(-0.290867\pi\)
0.610753 + 0.791821i \(0.290867\pi\)
\(194\) 0 0
\(195\) 11.3044i 0.809527i
\(196\) 0 0
\(197\) 23.7727i 1.69374i 0.531803 + 0.846868i \(0.321515\pi\)
−0.531803 + 0.846868i \(0.678485\pi\)
\(198\) 0 0
\(199\) 17.5747 1.24584 0.622918 0.782287i \(-0.285947\pi\)
0.622918 + 0.782287i \(0.285947\pi\)
\(200\) 0 0
\(201\) −18.3229 −1.29239
\(202\) 0 0
\(203\) 0.749498i 0.0526044i
\(204\) 0 0
\(205\) 13.6913i 0.956244i
\(206\) 0 0
\(207\) 3.99337 0.277558
\(208\) 0 0
\(209\) 1.31799 0.0911671
\(210\) 0 0
\(211\) 17.2804i 1.18963i 0.803863 + 0.594815i \(0.202775\pi\)
−0.803863 + 0.594815i \(0.797225\pi\)
\(212\) 0 0
\(213\) − 13.3111i − 0.912059i
\(214\) 0 0
\(215\) 12.6960 0.865860
\(216\) 0 0
\(217\) 1.71968 0.116739
\(218\) 0 0
\(219\) − 29.3458i − 1.98301i
\(220\) 0 0
\(221\) 4.67630i 0.314562i
\(222\) 0 0
\(223\) −11.6027 −0.776973 −0.388487 0.921454i \(-0.627002\pi\)
−0.388487 + 0.921454i \(0.627002\pi\)
\(224\) 0 0
\(225\) −1.84766 −0.123178
\(226\) 0 0
\(227\) − 27.4484i − 1.82182i −0.412609 0.910908i \(-0.635382\pi\)
0.412609 0.910908i \(-0.364618\pi\)
\(228\) 0 0
\(229\) 21.8680i 1.44508i 0.691329 + 0.722540i \(0.257025\pi\)
−0.691329 + 0.722540i \(0.742975\pi\)
\(230\) 0 0
\(231\) 1.46725 0.0965377
\(232\) 0 0
\(233\) −22.1975 −1.45421 −0.727103 0.686528i \(-0.759134\pi\)
−0.727103 + 0.686528i \(0.759134\pi\)
\(234\) 0 0
\(235\) − 19.4583i − 1.26932i
\(236\) 0 0
\(237\) − 25.2007i − 1.63696i
\(238\) 0 0
\(239\) −21.1350 −1.36711 −0.683555 0.729899i \(-0.739567\pi\)
−0.683555 + 0.729899i \(0.739567\pi\)
\(240\) 0 0
\(241\) −17.2437 −1.11076 −0.555382 0.831595i \(-0.687428\pi\)
−0.555382 + 0.831595i \(0.687428\pi\)
\(242\) 0 0
\(243\) 6.95957i 0.446457i
\(244\) 0 0
\(245\) 10.0855i 0.644338i
\(246\) 0 0
\(247\) 3.89230 0.247661
\(248\) 0 0
\(249\) −7.11158 −0.450678
\(250\) 0 0
\(251\) − 6.08851i − 0.384303i −0.981365 0.192152i \(-0.938453\pi\)
0.981365 0.192152i \(-0.0615465\pi\)
\(252\) 0 0
\(253\) 7.71717i 0.485174i
\(254\) 0 0
\(255\) 3.48930 0.218509
\(256\) 0 0
\(257\) 10.1741 0.634643 0.317322 0.948318i \(-0.397217\pi\)
0.317322 + 0.948318i \(0.397217\pi\)
\(258\) 0 0
\(259\) − 0.687014i − 0.0426890i
\(260\) 0 0
\(261\) 0.881077i 0.0545373i
\(262\) 0 0
\(263\) 15.8414 0.976822 0.488411 0.872614i \(-0.337577\pi\)
0.488411 + 0.872614i \(0.337577\pi\)
\(264\) 0 0
\(265\) 4.64940 0.285611
\(266\) 0 0
\(267\) 16.0542i 0.982500i
\(268\) 0 0
\(269\) − 22.8533i − 1.39339i −0.717367 0.696695i \(-0.754653\pi\)
0.717367 0.696695i \(-0.245347\pi\)
\(270\) 0 0
\(271\) −12.2830 −0.746142 −0.373071 0.927803i \(-0.621695\pi\)
−0.373071 + 0.927803i \(0.621695\pi\)
\(272\) 0 0
\(273\) 4.33309 0.262251
\(274\) 0 0
\(275\) − 3.57060i − 0.215316i
\(276\) 0 0
\(277\) − 0.643776i − 0.0386808i −0.999813 0.0193404i \(-0.993843\pi\)
0.999813 0.0193404i \(-0.00615662\pi\)
\(278\) 0 0
\(279\) 2.02157 0.121029
\(280\) 0 0
\(281\) −8.93027 −0.532735 −0.266368 0.963872i \(-0.585823\pi\)
−0.266368 + 0.963872i \(0.585823\pi\)
\(282\) 0 0
\(283\) 14.7397i 0.876187i 0.898929 + 0.438094i \(0.144346\pi\)
−0.898929 + 0.438094i \(0.855654\pi\)
\(284\) 0 0
\(285\) − 2.90431i − 0.172036i
\(286\) 0 0
\(287\) 5.24801 0.309780
\(288\) 0 0
\(289\) −15.5566 −0.915093
\(290\) 0 0
\(291\) − 32.7053i − 1.91722i
\(292\) 0 0
\(293\) − 23.9816i − 1.40102i −0.713643 0.700509i \(-0.752956\pi\)
0.713643 0.700509i \(-0.247044\pi\)
\(294\) 0 0
\(295\) 0.390746 0.0227501
\(296\) 0 0
\(297\) −5.86226 −0.340163
\(298\) 0 0
\(299\) 22.7905i 1.31801i
\(300\) 0 0
\(301\) − 4.86649i − 0.280500i
\(302\) 0 0
\(303\) 3.79398 0.217958
\(304\) 0 0
\(305\) −22.2796 −1.27573
\(306\) 0 0
\(307\) − 1.82132i − 0.103948i −0.998648 0.0519740i \(-0.983449\pi\)
0.998648 0.0519740i \(-0.0165513\pi\)
\(308\) 0 0
\(309\) − 4.42974i − 0.251999i
\(310\) 0 0
\(311\) 4.53302 0.257044 0.128522 0.991707i \(-0.458977\pi\)
0.128522 + 0.991707i \(0.458977\pi\)
\(312\) 0 0
\(313\) 12.4149 0.701730 0.350865 0.936426i \(-0.385888\pi\)
0.350865 + 0.936426i \(0.385888\pi\)
\(314\) 0 0
\(315\) − 0.598882i − 0.0337432i
\(316\) 0 0
\(317\) − 23.0948i − 1.29713i −0.761157 0.648567i \(-0.775368\pi\)
0.761157 0.648567i \(-0.224632\pi\)
\(318\) 0 0
\(319\) −1.70268 −0.0953317
\(320\) 0 0
\(321\) −28.8588 −1.61074
\(322\) 0 0
\(323\) − 1.20142i − 0.0668490i
\(324\) 0 0
\(325\) − 10.5448i − 0.584918i
\(326\) 0 0
\(327\) 25.7131 1.42194
\(328\) 0 0
\(329\) −7.45856 −0.411204
\(330\) 0 0
\(331\) − 26.3743i − 1.44966i −0.688927 0.724831i \(-0.741918\pi\)
0.688927 0.724831i \(-0.258082\pi\)
\(332\) 0 0
\(333\) − 0.807623i − 0.0442575i
\(334\) 0 0
\(335\) −14.4527 −0.789638
\(336\) 0 0
\(337\) 3.82102 0.208144 0.104072 0.994570i \(-0.466813\pi\)
0.104072 + 0.994570i \(0.466813\pi\)
\(338\) 0 0
\(339\) − 9.39697i − 0.510373i
\(340\) 0 0
\(341\) 3.90669i 0.211559i
\(342\) 0 0
\(343\) 7.92699 0.428017
\(344\) 0 0
\(345\) 17.0055 0.915545
\(346\) 0 0
\(347\) 29.8808i 1.60408i 0.597268 + 0.802042i \(0.296253\pi\)
−0.597268 + 0.802042i \(0.703747\pi\)
\(348\) 0 0
\(349\) − 12.7016i − 0.679902i −0.940443 0.339951i \(-0.889589\pi\)
0.940443 0.339951i \(-0.110411\pi\)
\(350\) 0 0
\(351\) −17.3125 −0.924073
\(352\) 0 0
\(353\) 22.8398 1.21564 0.607820 0.794074i \(-0.292044\pi\)
0.607820 + 0.794074i \(0.292044\pi\)
\(354\) 0 0
\(355\) − 10.4995i − 0.557257i
\(356\) 0 0
\(357\) − 1.33748i − 0.0707870i
\(358\) 0 0
\(359\) −35.4003 −1.86835 −0.934177 0.356810i \(-0.883864\pi\)
−0.934177 + 0.356810i \(0.883864\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 0 0
\(363\) − 17.7742i − 0.932904i
\(364\) 0 0
\(365\) − 23.1475i − 1.21159i
\(366\) 0 0
\(367\) 17.2148 0.898608 0.449304 0.893379i \(-0.351672\pi\)
0.449304 + 0.893379i \(0.351672\pi\)
\(368\) 0 0
\(369\) 6.16933 0.321163
\(370\) 0 0
\(371\) − 1.78216i − 0.0925251i
\(372\) 0 0
\(373\) 20.3506i 1.05372i 0.849953 + 0.526858i \(0.176630\pi\)
−0.849953 + 0.526858i \(0.823370\pi\)
\(374\) 0 0
\(375\) −22.3897 −1.15620
\(376\) 0 0
\(377\) −5.02837 −0.258974
\(378\) 0 0
\(379\) 4.22765i 0.217160i 0.994088 + 0.108580i \(0.0346303\pi\)
−0.994088 + 0.108580i \(0.965370\pi\)
\(380\) 0 0
\(381\) − 5.02022i − 0.257194i
\(382\) 0 0
\(383\) −9.71281 −0.496301 −0.248151 0.968721i \(-0.579823\pi\)
−0.248151 + 0.968721i \(0.579823\pi\)
\(384\) 0 0
\(385\) 1.15734 0.0589834
\(386\) 0 0
\(387\) − 5.72083i − 0.290806i
\(388\) 0 0
\(389\) 22.3291i 1.13213i 0.824361 + 0.566064i \(0.191534\pi\)
−0.824361 + 0.566064i \(0.808466\pi\)
\(390\) 0 0
\(391\) 7.03466 0.355758
\(392\) 0 0
\(393\) 5.07534 0.256017
\(394\) 0 0
\(395\) − 19.8778i − 1.00016i
\(396\) 0 0
\(397\) 23.9210i 1.20056i 0.799789 + 0.600281i \(0.204945\pi\)
−0.799789 + 0.600281i \(0.795055\pi\)
\(398\) 0 0
\(399\) −1.11325 −0.0557321
\(400\) 0 0
\(401\) −16.5237 −0.825154 −0.412577 0.910923i \(-0.635371\pi\)
−0.412577 + 0.910923i \(0.635371\pi\)
\(402\) 0 0
\(403\) 11.5373i 0.574713i
\(404\) 0 0
\(405\) 16.0148i 0.795783i
\(406\) 0 0
\(407\) 1.56073 0.0773625
\(408\) 0 0
\(409\) 16.0228 0.792278 0.396139 0.918191i \(-0.370350\pi\)
0.396139 + 0.918191i \(0.370350\pi\)
\(410\) 0 0
\(411\) − 9.36470i − 0.461926i
\(412\) 0 0
\(413\) − 0.149776i − 0.00737002i
\(414\) 0 0
\(415\) −5.60949 −0.275359
\(416\) 0 0
\(417\) 19.8283 0.970998
\(418\) 0 0
\(419\) 12.7496i 0.622858i 0.950269 + 0.311429i \(0.100808\pi\)
−0.950269 + 0.311429i \(0.899192\pi\)
\(420\) 0 0
\(421\) − 1.89293i − 0.0922560i −0.998936 0.0461280i \(-0.985312\pi\)
0.998936 0.0461280i \(-0.0146882\pi\)
\(422\) 0 0
\(423\) −8.76796 −0.426313
\(424\) 0 0
\(425\) −3.25482 −0.157882
\(426\) 0 0
\(427\) 8.53999i 0.413279i
\(428\) 0 0
\(429\) 9.84374i 0.475260i
\(430\) 0 0
\(431\) −37.2166 −1.79266 −0.896331 0.443386i \(-0.853777\pi\)
−0.896331 + 0.443386i \(0.853777\pi\)
\(432\) 0 0
\(433\) −36.0314 −1.73156 −0.865780 0.500425i \(-0.833177\pi\)
−0.865780 + 0.500425i \(0.833177\pi\)
\(434\) 0 0
\(435\) 3.75201i 0.179895i
\(436\) 0 0
\(437\) − 5.85527i − 0.280095i
\(438\) 0 0
\(439\) 18.6188 0.888629 0.444315 0.895871i \(-0.353447\pi\)
0.444315 + 0.895871i \(0.353447\pi\)
\(440\) 0 0
\(441\) 4.54453 0.216406
\(442\) 0 0
\(443\) 2.26887i 0.107797i 0.998546 + 0.0538987i \(0.0171648\pi\)
−0.998546 + 0.0538987i \(0.982835\pi\)
\(444\) 0 0
\(445\) 12.6633i 0.600296i
\(446\) 0 0
\(447\) 16.0287 0.758130
\(448\) 0 0
\(449\) 0.248909 0.0117467 0.00587337 0.999983i \(-0.498130\pi\)
0.00587337 + 0.999983i \(0.498130\pi\)
\(450\) 0 0
\(451\) 11.9222i 0.561395i
\(452\) 0 0
\(453\) − 11.2242i − 0.527358i
\(454\) 0 0
\(455\) 3.41787 0.160232
\(456\) 0 0
\(457\) −6.98767 −0.326869 −0.163435 0.986554i \(-0.552257\pi\)
−0.163435 + 0.986554i \(0.552257\pi\)
\(458\) 0 0
\(459\) 5.34379i 0.249427i
\(460\) 0 0
\(461\) 34.1624i 1.59110i 0.605888 + 0.795550i \(0.292818\pi\)
−0.605888 + 0.795550i \(0.707182\pi\)
\(462\) 0 0
\(463\) −34.5311 −1.60480 −0.802399 0.596788i \(-0.796444\pi\)
−0.802399 + 0.596788i \(0.796444\pi\)
\(464\) 0 0
\(465\) 8.60875 0.399221
\(466\) 0 0
\(467\) 39.6496i 1.83476i 0.398008 + 0.917382i \(0.369702\pi\)
−0.398008 + 0.917382i \(0.630298\pi\)
\(468\) 0 0
\(469\) 5.53987i 0.255808i
\(470\) 0 0
\(471\) 0.693945 0.0319753
\(472\) 0 0
\(473\) 11.0555 0.508332
\(474\) 0 0
\(475\) 2.70913i 0.124304i
\(476\) 0 0
\(477\) − 2.09503i − 0.0959247i
\(478\) 0 0
\(479\) 24.8669 1.13620 0.568098 0.822961i \(-0.307679\pi\)
0.568098 + 0.822961i \(0.307679\pi\)
\(480\) 0 0
\(481\) 4.60917 0.210160
\(482\) 0 0
\(483\) − 6.51836i − 0.296596i
\(484\) 0 0
\(485\) − 25.7974i − 1.17140i
\(486\) 0 0
\(487\) 39.7320 1.80043 0.900214 0.435448i \(-0.143410\pi\)
0.900214 + 0.435448i \(0.143410\pi\)
\(488\) 0 0
\(489\) 0.280209 0.0126715
\(490\) 0 0
\(491\) − 3.45561i − 0.155949i −0.996955 0.0779747i \(-0.975155\pi\)
0.996955 0.0779747i \(-0.0248453\pi\)
\(492\) 0 0
\(493\) 1.55209i 0.0699027i
\(494\) 0 0
\(495\) 1.36052 0.0611506
\(496\) 0 0
\(497\) −4.02457 −0.180527
\(498\) 0 0
\(499\) 17.5837i 0.787156i 0.919291 + 0.393578i \(0.128763\pi\)
−0.919291 + 0.393578i \(0.871237\pi\)
\(500\) 0 0
\(501\) 0.780212i 0.0348573i
\(502\) 0 0
\(503\) −2.72712 −0.121596 −0.0607981 0.998150i \(-0.519365\pi\)
−0.0607981 + 0.998150i \(0.519365\pi\)
\(504\) 0 0
\(505\) 2.99262 0.133170
\(506\) 0 0
\(507\) 4.12553i 0.183221i
\(508\) 0 0
\(509\) 6.73123i 0.298356i 0.988810 + 0.149178i \(0.0476628\pi\)
−0.988810 + 0.149178i \(0.952337\pi\)
\(510\) 0 0
\(511\) −8.87264 −0.392503
\(512\) 0 0
\(513\) 4.44789 0.196379
\(514\) 0 0
\(515\) − 3.49410i − 0.153968i
\(516\) 0 0
\(517\) − 16.9441i − 0.745198i
\(518\) 0 0
\(519\) −24.2671 −1.06521
\(520\) 0 0
\(521\) 38.2190 1.67440 0.837202 0.546894i \(-0.184190\pi\)
0.837202 + 0.546894i \(0.184190\pi\)
\(522\) 0 0
\(523\) − 5.37182i − 0.234893i −0.993079 0.117447i \(-0.962529\pi\)
0.993079 0.117447i \(-0.0374709\pi\)
\(524\) 0 0
\(525\) 3.01594i 0.131626i
\(526\) 0 0
\(527\) 3.56118 0.155127
\(528\) 0 0
\(529\) 11.2842 0.490616
\(530\) 0 0
\(531\) − 0.176071i − 0.00764081i
\(532\) 0 0
\(533\) 35.2089i 1.52506i
\(534\) 0 0
\(535\) −22.7633 −0.984143
\(536\) 0 0
\(537\) −10.6611 −0.460062
\(538\) 0 0
\(539\) 8.78229i 0.378280i
\(540\) 0 0
\(541\) − 34.3497i − 1.47681i −0.674359 0.738404i \(-0.735580\pi\)
0.674359 0.738404i \(-0.264420\pi\)
\(542\) 0 0
\(543\) 17.5269 0.752150
\(544\) 0 0
\(545\) 20.2820 0.868786
\(546\) 0 0
\(547\) − 2.58358i − 0.110466i −0.998473 0.0552330i \(-0.982410\pi\)
0.998473 0.0552330i \(-0.0175902\pi\)
\(548\) 0 0
\(549\) 10.0392i 0.428464i
\(550\) 0 0
\(551\) 1.29188 0.0550358
\(552\) 0 0
\(553\) −7.61936 −0.324008
\(554\) 0 0
\(555\) − 3.43921i − 0.145986i
\(556\) 0 0
\(557\) 0.498941i 0.0211408i 0.999944 + 0.0105704i \(0.00336472\pi\)
−0.999944 + 0.0105704i \(0.996635\pi\)
\(558\) 0 0
\(559\) 32.6492 1.38092
\(560\) 0 0
\(561\) 3.03843 0.128283
\(562\) 0 0
\(563\) 32.5553i 1.37204i 0.727581 + 0.686021i \(0.240644\pi\)
−0.727581 + 0.686021i \(0.759356\pi\)
\(564\) 0 0
\(565\) − 7.41216i − 0.311832i
\(566\) 0 0
\(567\) 6.13863 0.257798
\(568\) 0 0
\(569\) 13.6834 0.573636 0.286818 0.957985i \(-0.407402\pi\)
0.286818 + 0.957985i \(0.407402\pi\)
\(570\) 0 0
\(571\) 12.2520i 0.512732i 0.966580 + 0.256366i \(0.0825253\pi\)
−0.966580 + 0.256366i \(0.917475\pi\)
\(572\) 0 0
\(573\) 10.5064i 0.438909i
\(574\) 0 0
\(575\) −15.8627 −0.661521
\(576\) 0 0
\(577\) 14.6672 0.610605 0.305302 0.952255i \(-0.401242\pi\)
0.305302 + 0.952255i \(0.401242\pi\)
\(578\) 0 0
\(579\) − 32.5624i − 1.35325i
\(580\) 0 0
\(581\) 2.15017i 0.0892040i
\(582\) 0 0
\(583\) 4.04864 0.167677
\(584\) 0 0
\(585\) 4.01789 0.166119
\(586\) 0 0
\(587\) − 5.53206i − 0.228333i −0.993462 0.114166i \(-0.963580\pi\)
0.993462 0.114166i \(-0.0364197\pi\)
\(588\) 0 0
\(589\) − 2.96413i − 0.122135i
\(590\) 0 0
\(591\) 45.6165 1.87641
\(592\) 0 0
\(593\) 21.5870 0.886470 0.443235 0.896405i \(-0.353831\pi\)
0.443235 + 0.896405i \(0.353831\pi\)
\(594\) 0 0
\(595\) − 1.05498i − 0.0432500i
\(596\) 0 0
\(597\) − 33.7233i − 1.38020i
\(598\) 0 0
\(599\) 28.3513 1.15840 0.579202 0.815184i \(-0.303364\pi\)
0.579202 + 0.815184i \(0.303364\pi\)
\(600\) 0 0
\(601\) −21.9758 −0.896410 −0.448205 0.893931i \(-0.647936\pi\)
−0.448205 + 0.893931i \(0.647936\pi\)
\(602\) 0 0
\(603\) 6.51243i 0.265207i
\(604\) 0 0
\(605\) − 14.0200i − 0.569993i
\(606\) 0 0
\(607\) 7.89484 0.320441 0.160221 0.987081i \(-0.448779\pi\)
0.160221 + 0.987081i \(0.448779\pi\)
\(608\) 0 0
\(609\) 1.43818 0.0582780
\(610\) 0 0
\(611\) − 50.0394i − 2.02438i
\(612\) 0 0
\(613\) 29.5174i 1.19220i 0.802912 + 0.596098i \(0.203283\pi\)
−0.802912 + 0.596098i \(0.796717\pi\)
\(614\) 0 0
\(615\) 26.2717 1.05938
\(616\) 0 0
\(617\) 3.08379 0.124149 0.0620744 0.998072i \(-0.480228\pi\)
0.0620744 + 0.998072i \(0.480228\pi\)
\(618\) 0 0
\(619\) 10.9487i 0.440066i 0.975492 + 0.220033i \(0.0706164\pi\)
−0.975492 + 0.220033i \(0.929384\pi\)
\(620\) 0 0
\(621\) 26.0436i 1.04509i
\(622\) 0 0
\(623\) 4.85394 0.194469
\(624\) 0 0
\(625\) −4.11492 −0.164597
\(626\) 0 0
\(627\) − 2.52903i − 0.101000i
\(628\) 0 0
\(629\) − 1.42270i − 0.0567267i
\(630\) 0 0
\(631\) 20.7432 0.825773 0.412886 0.910783i \(-0.364521\pi\)
0.412886 + 0.910783i \(0.364521\pi\)
\(632\) 0 0
\(633\) 33.1586 1.31794
\(634\) 0 0
\(635\) − 3.95986i − 0.157142i
\(636\) 0 0
\(637\) 25.9360i 1.02762i
\(638\) 0 0
\(639\) −4.73110 −0.187160
\(640\) 0 0
\(641\) −34.5310 −1.36389 −0.681946 0.731403i \(-0.738866\pi\)
−0.681946 + 0.731403i \(0.738866\pi\)
\(642\) 0 0
\(643\) − 21.5300i − 0.849062i −0.905413 0.424531i \(-0.860439\pi\)
0.905413 0.424531i \(-0.139561\pi\)
\(644\) 0 0
\(645\) − 24.3618i − 0.959245i
\(646\) 0 0
\(647\) −22.7527 −0.894502 −0.447251 0.894409i \(-0.647597\pi\)
−0.447251 + 0.894409i \(0.647597\pi\)
\(648\) 0 0
\(649\) 0.340256 0.0133562
\(650\) 0 0
\(651\) − 3.29981i − 0.129330i
\(652\) 0 0
\(653\) − 35.6805i − 1.39629i −0.715958 0.698143i \(-0.754010\pi\)
0.715958 0.698143i \(-0.245990\pi\)
\(654\) 0 0
\(655\) 4.00334 0.156423
\(656\) 0 0
\(657\) −10.4303 −0.406924
\(658\) 0 0
\(659\) 35.8589i 1.39686i 0.715676 + 0.698432i \(0.246119\pi\)
−0.715676 + 0.698432i \(0.753881\pi\)
\(660\) 0 0
\(661\) − 25.4409i − 0.989537i −0.869025 0.494769i \(-0.835253\pi\)
0.869025 0.494769i \(-0.164747\pi\)
\(662\) 0 0
\(663\) 8.97315 0.348488
\(664\) 0 0
\(665\) −0.878110 −0.0340516
\(666\) 0 0
\(667\) 7.56429i 0.292890i
\(668\) 0 0
\(669\) 22.2639i 0.860772i
\(670\) 0 0
\(671\) −19.4008 −0.748959
\(672\) 0 0
\(673\) 34.2142 1.31886 0.659431 0.751765i \(-0.270797\pi\)
0.659431 + 0.751765i \(0.270797\pi\)
\(674\) 0 0
\(675\) − 12.0499i − 0.463802i
\(676\) 0 0
\(677\) 37.9103i 1.45701i 0.685040 + 0.728505i \(0.259785\pi\)
−0.685040 + 0.728505i \(0.740215\pi\)
\(678\) 0 0
\(679\) −9.88837 −0.379481
\(680\) 0 0
\(681\) −52.6696 −2.01830
\(682\) 0 0
\(683\) − 30.3542i − 1.16147i −0.814092 0.580736i \(-0.802765\pi\)
0.814092 0.580736i \(-0.197235\pi\)
\(684\) 0 0
\(685\) − 7.38671i − 0.282232i
\(686\) 0 0
\(687\) 41.9616 1.60094
\(688\) 0 0
\(689\) 11.9565 0.455506
\(690\) 0 0
\(691\) − 3.50694i − 0.133410i −0.997773 0.0667052i \(-0.978751\pi\)
0.997773 0.0667052i \(-0.0212487\pi\)
\(692\) 0 0
\(693\) − 0.521498i − 0.0198101i
\(694\) 0 0
\(695\) 15.6402 0.593268
\(696\) 0 0
\(697\) 10.8678 0.411647
\(698\) 0 0
\(699\) 42.5938i 1.61105i
\(700\) 0 0
\(701\) 13.2168i 0.499190i 0.968350 + 0.249595i \(0.0802975\pi\)
−0.968350 + 0.249595i \(0.919703\pi\)
\(702\) 0 0
\(703\) −1.18418 −0.0446621
\(704\) 0 0
\(705\) −37.3378 −1.40622
\(706\) 0 0
\(707\) − 1.14710i − 0.0431411i
\(708\) 0 0
\(709\) − 23.2882i − 0.874605i −0.899314 0.437302i \(-0.855934\pi\)
0.899314 0.437302i \(-0.144066\pi\)
\(710\) 0 0
\(711\) −8.95699 −0.335913
\(712\) 0 0
\(713\) 17.3558 0.649979
\(714\) 0 0
\(715\) 7.76457i 0.290378i
\(716\) 0 0
\(717\) 40.5551i 1.51456i
\(718\) 0 0
\(719\) −0.192843 −0.00719184 −0.00359592 0.999994i \(-0.501145\pi\)
−0.00359592 + 0.999994i \(0.501145\pi\)
\(720\) 0 0
\(721\) −1.33932 −0.0498789
\(722\) 0 0
\(723\) 33.0882i 1.23056i
\(724\) 0 0
\(725\) − 3.49987i − 0.129982i
\(726\) 0 0
\(727\) −14.5604 −0.540014 −0.270007 0.962858i \(-0.587026\pi\)
−0.270007 + 0.962858i \(0.587026\pi\)
\(728\) 0 0
\(729\) −18.3883 −0.681047
\(730\) 0 0
\(731\) − 10.0777i − 0.372739i
\(732\) 0 0
\(733\) 29.0856i 1.07430i 0.843487 + 0.537150i \(0.180499\pi\)
−0.843487 + 0.537150i \(0.819501\pi\)
\(734\) 0 0
\(735\) 19.3526 0.713831
\(736\) 0 0
\(737\) −12.5853 −0.463584
\(738\) 0 0
\(739\) 28.8090i 1.05975i 0.848074 + 0.529877i \(0.177762\pi\)
−0.848074 + 0.529877i \(0.822238\pi\)
\(740\) 0 0
\(741\) − 7.46877i − 0.274372i
\(742\) 0 0
\(743\) −42.2025 −1.54826 −0.774129 0.633027i \(-0.781812\pi\)
−0.774129 + 0.633027i \(0.781812\pi\)
\(744\) 0 0
\(745\) 12.6431 0.463208
\(746\) 0 0
\(747\) 2.52764i 0.0924816i
\(748\) 0 0
\(749\) 8.72538i 0.318818i
\(750\) 0 0
\(751\) −2.64036 −0.0963483 −0.0481741 0.998839i \(-0.515340\pi\)
−0.0481741 + 0.998839i \(0.515340\pi\)
\(752\) 0 0
\(753\) −11.6830 −0.425751
\(754\) 0 0
\(755\) − 8.85344i − 0.322210i
\(756\) 0 0
\(757\) − 4.51764i − 0.164197i −0.996624 0.0820983i \(-0.973838\pi\)
0.996624 0.0820983i \(-0.0261621\pi\)
\(758\) 0 0
\(759\) 14.8081 0.537502
\(760\) 0 0
\(761\) −23.5124 −0.852323 −0.426162 0.904647i \(-0.640134\pi\)
−0.426162 + 0.904647i \(0.640134\pi\)
\(762\) 0 0
\(763\) − 7.77428i − 0.281448i
\(764\) 0 0
\(765\) − 1.24019i − 0.0448392i
\(766\) 0 0
\(767\) 1.00485 0.0362830
\(768\) 0 0
\(769\) −29.6727 −1.07002 −0.535012 0.844845i \(-0.679693\pi\)
−0.535012 + 0.844845i \(0.679693\pi\)
\(770\) 0 0
\(771\) − 19.5227i − 0.703091i
\(772\) 0 0
\(773\) 10.1647i 0.365598i 0.983150 + 0.182799i \(0.0585158\pi\)
−0.983150 + 0.182799i \(0.941484\pi\)
\(774\) 0 0
\(775\) −8.03023 −0.288454
\(776\) 0 0
\(777\) −1.31828 −0.0472931
\(778\) 0 0
\(779\) − 9.04577i − 0.324098i
\(780\) 0 0
\(781\) − 9.14285i − 0.327157i
\(782\) 0 0
\(783\) −5.74612 −0.205350
\(784\) 0 0
\(785\) 0.547372 0.0195365
\(786\) 0 0
\(787\) 18.8481i 0.671863i 0.941886 + 0.335931i \(0.109051\pi\)
−0.941886 + 0.335931i \(0.890949\pi\)
\(788\) 0 0
\(789\) − 30.3974i − 1.08217i
\(790\) 0 0
\(791\) −2.84115 −0.101020
\(792\) 0 0
\(793\) −57.2947 −2.03459
\(794\) 0 0
\(795\) − 8.92154i − 0.316414i
\(796\) 0 0
\(797\) 13.9098i 0.492709i 0.969180 + 0.246355i \(0.0792328\pi\)
−0.969180 + 0.246355i \(0.920767\pi\)
\(798\) 0 0
\(799\) −15.4455 −0.546423
\(800\) 0 0
\(801\) 5.70608 0.201614
\(802\) 0 0
\(803\) − 20.1565i − 0.711308i
\(804\) 0 0
\(805\) − 5.14157i − 0.181217i
\(806\) 0 0
\(807\) −43.8522 −1.54367
\(808\) 0 0
\(809\) 19.7630 0.694831 0.347415 0.937711i \(-0.387059\pi\)
0.347415 + 0.937711i \(0.387059\pi\)
\(810\) 0 0
\(811\) − 30.1099i − 1.05730i −0.848839 0.528651i \(-0.822698\pi\)
0.848839 0.528651i \(-0.177302\pi\)
\(812\) 0 0
\(813\) 23.5694i 0.826615i
\(814\) 0 0
\(815\) 0.221024 0.00774213
\(816\) 0 0
\(817\) −8.38816 −0.293465
\(818\) 0 0
\(819\) − 1.54010i − 0.0538153i
\(820\) 0 0
\(821\) 26.1788i 0.913645i 0.889558 + 0.456823i \(0.151013\pi\)
−0.889558 + 0.456823i \(0.848987\pi\)
\(822\) 0 0
\(823\) −41.9817 −1.46339 −0.731696 0.681631i \(-0.761271\pi\)
−0.731696 + 0.681631i \(0.761271\pi\)
\(824\) 0 0
\(825\) −6.85148 −0.238538
\(826\) 0 0
\(827\) 20.6394i 0.717703i 0.933395 + 0.358851i \(0.116832\pi\)
−0.933395 + 0.358851i \(0.883168\pi\)
\(828\) 0 0
\(829\) − 36.6292i − 1.27218i −0.771613 0.636092i \(-0.780550\pi\)
0.771613 0.636092i \(-0.219450\pi\)
\(830\) 0 0
\(831\) −1.23531 −0.0428526
\(832\) 0 0
\(833\) 8.00558 0.277377
\(834\) 0 0
\(835\) 0.615418i 0.0212974i
\(836\) 0 0
\(837\) 13.1841i 0.455710i
\(838\) 0 0
\(839\) −3.71855 −0.128379 −0.0641893 0.997938i \(-0.520446\pi\)
−0.0641893 + 0.997938i \(0.520446\pi\)
\(840\) 0 0
\(841\) 27.3311 0.942450
\(842\) 0 0
\(843\) 17.1359i 0.590192i
\(844\) 0 0
\(845\) 3.25414i 0.111946i
\(846\) 0 0
\(847\) −5.37399 −0.184652
\(848\) 0 0
\(849\) 28.2835 0.970686
\(850\) 0 0
\(851\) − 6.93367i − 0.237683i
\(852\) 0 0
\(853\) − 49.7965i − 1.70500i −0.522726 0.852501i \(-0.675085\pi\)
0.522726 0.852501i \(-0.324915\pi\)
\(854\) 0 0
\(855\) −1.03227 −0.0353028
\(856\) 0 0
\(857\) 35.6409 1.21747 0.608735 0.793374i \(-0.291677\pi\)
0.608735 + 0.793374i \(0.291677\pi\)
\(858\) 0 0
\(859\) − 43.5752i − 1.48677i −0.668866 0.743383i \(-0.733220\pi\)
0.668866 0.743383i \(-0.266780\pi\)
\(860\) 0 0
\(861\) − 10.0702i − 0.343191i
\(862\) 0 0
\(863\) 43.6579 1.48613 0.743067 0.669217i \(-0.233370\pi\)
0.743067 + 0.669217i \(0.233370\pi\)
\(864\) 0 0
\(865\) −19.1415 −0.650829
\(866\) 0 0
\(867\) 29.8509i 1.01379i
\(868\) 0 0
\(869\) − 17.3093i − 0.587179i
\(870\) 0 0
\(871\) −37.1669 −1.25935
\(872\) 0 0
\(873\) −11.6243 −0.393424
\(874\) 0 0
\(875\) 6.76947i 0.228850i
\(876\) 0 0
\(877\) 5.23078i 0.176631i 0.996093 + 0.0883154i \(0.0281483\pi\)
−0.996093 + 0.0883154i \(0.971852\pi\)
\(878\) 0 0
\(879\) −46.0172 −1.55212
\(880\) 0 0
\(881\) −22.0358 −0.742405 −0.371203 0.928552i \(-0.621054\pi\)
−0.371203 + 0.928552i \(0.621054\pi\)
\(882\) 0 0
\(883\) − 56.9658i − 1.91705i −0.285008 0.958525i \(-0.591996\pi\)
0.285008 0.958525i \(-0.408004\pi\)
\(884\) 0 0
\(885\) − 0.749785i − 0.0252038i
\(886\) 0 0
\(887\) −3.28694 −0.110365 −0.0551823 0.998476i \(-0.517574\pi\)
−0.0551823 + 0.998476i \(0.517574\pi\)
\(888\) 0 0
\(889\) −1.51785 −0.0509071
\(890\) 0 0
\(891\) 13.9455i 0.467191i
\(892\) 0 0
\(893\) 12.8560i 0.430210i
\(894\) 0 0
\(895\) −8.40932 −0.281092
\(896\) 0 0
\(897\) 43.7316 1.46016
\(898\) 0 0
\(899\) 3.82929i 0.127714i
\(900\) 0 0
\(901\) − 3.69057i − 0.122951i
\(902\) 0 0
\(903\) −9.33810 −0.310753
\(904\) 0 0
\(905\) 13.8249 0.459555
\(906\) 0 0
\(907\) 0.0491571i 0.00163223i 1.00000 0.000816117i \(0.000259778\pi\)
−1.00000 0.000816117i \(0.999740\pi\)
\(908\) 0 0
\(909\) − 1.34848i − 0.0447263i
\(910\) 0 0
\(911\) −32.4990 −1.07674 −0.538370 0.842708i \(-0.680960\pi\)
−0.538370 + 0.842708i \(0.680960\pi\)
\(912\) 0 0
\(913\) −4.88466 −0.161659
\(914\) 0 0
\(915\) 42.7514i 1.41332i
\(916\) 0 0
\(917\) − 1.53452i − 0.0506742i
\(918\) 0 0
\(919\) 19.8145 0.653619 0.326810 0.945090i \(-0.394026\pi\)
0.326810 + 0.945090i \(0.394026\pi\)
\(920\) 0 0
\(921\) −3.49485 −0.115159
\(922\) 0 0
\(923\) − 27.0008i − 0.888742i
\(924\) 0 0
\(925\) 3.20809i 0.105481i
\(926\) 0 0
\(927\) −1.57445 −0.0517116
\(928\) 0 0
\(929\) 43.9293 1.44127 0.720637 0.693313i \(-0.243850\pi\)
0.720637 + 0.693313i \(0.243850\pi\)
\(930\) 0 0
\(931\) − 6.66341i − 0.218385i
\(932\) 0 0
\(933\) − 8.69822i − 0.284767i
\(934\) 0 0
\(935\) 2.39666 0.0783793
\(936\) 0 0
\(937\) −23.9026 −0.780863 −0.390431 0.920632i \(-0.627674\pi\)
−0.390431 + 0.920632i \(0.627674\pi\)
\(938\) 0 0
\(939\) − 23.8224i − 0.777413i
\(940\) 0 0
\(941\) − 20.4109i − 0.665375i −0.943037 0.332688i \(-0.892045\pi\)
0.943037 0.332688i \(-0.107955\pi\)
\(942\) 0 0
\(943\) 52.9654 1.72479
\(944\) 0 0
\(945\) 3.90573 0.127054
\(946\) 0 0
\(947\) 2.72706i 0.0886176i 0.999018 + 0.0443088i \(0.0141085\pi\)
−0.999018 + 0.0443088i \(0.985891\pi\)
\(948\) 0 0
\(949\) − 59.5265i − 1.93231i
\(950\) 0 0
\(951\) −44.3157 −1.43703
\(952\) 0 0
\(953\) −32.7679 −1.06146 −0.530729 0.847542i \(-0.678082\pi\)
−0.530729 + 0.847542i \(0.678082\pi\)
\(954\) 0 0
\(955\) 8.28723i 0.268168i
\(956\) 0 0
\(957\) 3.26720i 0.105613i
\(958\) 0 0
\(959\) −2.83139 −0.0914305
\(960\) 0 0
\(961\) −22.2139 −0.716578
\(962\) 0 0
\(963\) 10.2572i 0.330533i
\(964\) 0 0
\(965\) − 25.6847i − 0.826818i
\(966\) 0 0
\(967\) −36.4163 −1.17107 −0.585535 0.810647i \(-0.699115\pi\)
−0.585535 + 0.810647i \(0.699115\pi\)
\(968\) 0 0
\(969\) −2.30536 −0.0740588
\(970\) 0 0
\(971\) 6.40329i 0.205491i 0.994708 + 0.102746i \(0.0327628\pi\)
−0.994708 + 0.102746i \(0.967237\pi\)
\(972\) 0 0
\(973\) − 5.99505i − 0.192192i
\(974\) 0 0
\(975\) −20.2339 −0.648003
\(976\) 0 0
\(977\) 11.6473 0.372629 0.186315 0.982490i \(-0.440346\pi\)
0.186315 + 0.982490i \(0.440346\pi\)
\(978\) 0 0
\(979\) 11.0270i 0.352424i
\(980\) 0 0
\(981\) − 9.13910i − 0.291789i
\(982\) 0 0
\(983\) 34.7061 1.10695 0.553477 0.832864i \(-0.313301\pi\)
0.553477 + 0.832864i \(0.313301\pi\)
\(984\) 0 0
\(985\) 35.9815 1.14646
\(986\) 0 0
\(987\) 14.3119i 0.455553i
\(988\) 0 0
\(989\) − 49.1150i − 1.56176i
\(990\) 0 0
\(991\) −3.30503 −0.104988 −0.0524939 0.998621i \(-0.516717\pi\)
−0.0524939 + 0.998621i \(0.516717\pi\)
\(992\) 0 0
\(993\) −50.6085 −1.60601
\(994\) 0 0
\(995\) − 26.6003i − 0.843288i
\(996\) 0 0
\(997\) − 15.9009i − 0.503586i −0.967781 0.251793i \(-0.918980\pi\)
0.967781 0.251793i \(-0.0810203\pi\)
\(998\) 0 0
\(999\) 5.26708 0.166643
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 608.2.c.b.305.5 16
3.2 odd 2 5472.2.g.b.2737.10 16
4.3 odd 2 152.2.c.b.77.12 yes 16
8.3 odd 2 152.2.c.b.77.11 16
8.5 even 2 inner 608.2.c.b.305.12 16
12.11 even 2 1368.2.g.b.685.5 16
16.3 odd 4 4864.2.a.bq.1.3 8
16.5 even 4 4864.2.a.bn.1.3 8
16.11 odd 4 4864.2.a.bo.1.6 8
16.13 even 4 4864.2.a.bp.1.6 8
24.5 odd 2 5472.2.g.b.2737.7 16
24.11 even 2 1368.2.g.b.685.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.c.b.77.11 16 8.3 odd 2
152.2.c.b.77.12 yes 16 4.3 odd 2
608.2.c.b.305.5 16 1.1 even 1 trivial
608.2.c.b.305.12 16 8.5 even 2 inner
1368.2.g.b.685.5 16 12.11 even 2
1368.2.g.b.685.6 16 24.11 even 2
4864.2.a.bn.1.3 8 16.5 even 4
4864.2.a.bo.1.6 8 16.11 odd 4
4864.2.a.bp.1.6 8 16.13 even 4
4864.2.a.bq.1.3 8 16.3 odd 4
5472.2.g.b.2737.7 16 24.5 odd 2
5472.2.g.b.2737.10 16 3.2 odd 2