Defining parameters
Level: | \( N \) | = | \( 608 = 2^{5} \cdot 19 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 18 \) | ||
Newform subspaces: | \( 41 \) | ||
Sturm bound: | \(46080\) | ||
Trace bound: | \(9\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(608))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 12096 | 6614 | 5482 |
Cusp forms | 10945 | 6274 | 4671 |
Eisenstein series | 1151 | 340 | 811 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(608))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(608))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(608)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(76))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(152))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(304))\)\(^{\oplus 2}\)