L(s) = 1 | + (0.855 − 1.12i)2-s − 1.91i·3-s + (−0.537 − 1.92i)4-s + 1.51i·5-s + (−2.16 − 1.64i)6-s + 0.580·7-s + (−2.62 − 1.04i)8-s − 0.682·9-s + (1.70 + 1.29i)10-s − 1.31i·11-s + (−3.69 + 1.03i)12-s + 3.89i·13-s + (0.496 − 0.653i)14-s + 2.90·15-s + (−3.42 + 2.06i)16-s − 1.20·17-s + ⋯ |
L(s) = 1 | + (0.604 − 0.796i)2-s − 1.10i·3-s + (−0.268 − 0.963i)4-s + 0.676i·5-s + (−0.882 − 0.669i)6-s + 0.219·7-s + (−0.929 − 0.368i)8-s − 0.227·9-s + (0.539 + 0.409i)10-s − 0.397i·11-s + (−1.06 + 0.297i)12-s + 1.07i·13-s + (0.132 − 0.174i)14-s + 0.749·15-s + (−0.855 + 0.517i)16-s − 0.291·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.368 + 0.929i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.368 + 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.819876 - 1.20718i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.819876 - 1.20718i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.855 + 1.12i)T \) |
| 19 | \( 1 - iT \) |
good | 3 | \( 1 + 1.91iT - 3T^{2} \) |
| 5 | \( 1 - 1.51iT - 5T^{2} \) |
| 7 | \( 1 - 0.580T + 7T^{2} \) |
| 11 | \( 1 + 1.31iT - 11T^{2} \) |
| 13 | \( 1 - 3.89iT - 13T^{2} \) |
| 17 | \( 1 + 1.20T + 17T^{2} \) |
| 23 | \( 1 - 5.85T + 23T^{2} \) |
| 29 | \( 1 - 1.29iT - 29T^{2} \) |
| 31 | \( 1 - 2.96T + 31T^{2} \) |
| 37 | \( 1 + 1.18iT - 37T^{2} \) |
| 41 | \( 1 + 9.04T + 41T^{2} \) |
| 43 | \( 1 - 8.38iT - 43T^{2} \) |
| 47 | \( 1 + 12.8T + 47T^{2} \) |
| 53 | \( 1 + 3.07iT - 53T^{2} \) |
| 59 | \( 1 - 0.258iT - 59T^{2} \) |
| 61 | \( 1 - 14.7iT - 61T^{2} \) |
| 67 | \( 1 + 9.54iT - 67T^{2} \) |
| 71 | \( 1 + 6.93T + 71T^{2} \) |
| 73 | \( 1 - 15.2T + 73T^{2} \) |
| 79 | \( 1 + 13.1T + 79T^{2} \) |
| 83 | \( 1 + 3.70iT - 83T^{2} \) |
| 89 | \( 1 + 8.36T + 89T^{2} \) |
| 97 | \( 1 - 17.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.75915253881800427355772532776, −11.69045175924940252783127253942, −11.07256084154977814575904898777, −9.862598675065378977331527345522, −8.558782441290038564401617202960, −7.01176865624889350463757666770, −6.33129805548508752256126747356, −4.71189742193659149692690123252, −3.05861702195791530640353808453, −1.60403985319325714110510460330,
3.32584049335855546582369680780, 4.71025330746753895339818483651, 5.20412546503842471816839530962, 6.81447355956201950353178523102, 8.157031532893760402104650310929, 9.055250655979522731405699597908, 10.13802841636823581645461935280, 11.36064670049293941520783317423, 12.63418030241473118596297711905, 13.25374501341806000599354656880