Properties

Label 1512.2.cx.a.89.15
Level $1512$
Weight $2$
Character 1512.89
Analytic conductor $12.073$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(17,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.cx (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 89.15
Character \(\chi\) \(=\) 1512.89
Dual form 1512.2.cx.a.17.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.05582 q^{5} +(1.79851 - 1.94045i) q^{7} -6.24489i q^{11} +(-0.872074 + 0.503492i) q^{13} +(-3.26821 - 5.66070i) q^{17} +(1.73329 + 1.00071i) q^{19} +4.40135i q^{23} -3.88524 q^{25} +(-6.12821 - 3.53813i) q^{29} +(-2.07210 - 1.19633i) q^{31} +(1.89890 - 2.04877i) q^{35} +(-3.64197 + 6.30808i) q^{37} +(-1.80119 - 3.11974i) q^{41} +(1.60595 - 2.78159i) q^{43} +(1.87024 + 3.23934i) q^{47} +(-0.530720 - 6.97985i) q^{49} +(6.02455 - 3.47827i) q^{53} -6.59348i q^{55} +(-6.67084 + 11.5542i) q^{59} +(7.10733 - 4.10342i) q^{61} +(-0.920753 + 0.531597i) q^{65} +(-0.0613962 + 0.106341i) q^{67} +5.37678i q^{71} +(14.4429 - 8.33860i) q^{73} +(-12.1179 - 11.2315i) q^{77} +(4.43136 + 7.67534i) q^{79} +(1.07668 - 1.86486i) q^{83} +(-3.45064 - 5.97668i) q^{85} +(2.23201 - 3.86595i) q^{89} +(-0.591431 + 2.59775i) q^{91} +(1.83004 + 1.05657i) q^{95} +(0.960756 + 0.554693i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{25} - 18 q^{29} + 18 q^{31} + 6 q^{41} - 6 q^{43} - 18 q^{47} - 12 q^{49} + 12 q^{53} + 18 q^{61} + 36 q^{65} + 12 q^{77} + 6 q^{79} + 18 q^{89} + 6 q^{91} + 54 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.05582 0.472177 0.236089 0.971732i \(-0.424134\pi\)
0.236089 + 0.971732i \(0.424134\pi\)
\(6\) 0 0
\(7\) 1.79851 1.94045i 0.679773 0.733422i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.24489i 1.88291i −0.337143 0.941453i \(-0.609461\pi\)
0.337143 0.941453i \(-0.390539\pi\)
\(12\) 0 0
\(13\) −0.872074 + 0.503492i −0.241870 + 0.139644i −0.616036 0.787718i \(-0.711262\pi\)
0.374166 + 0.927362i \(0.377929\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.26821 5.66070i −0.792656 1.37292i −0.924317 0.381626i \(-0.875364\pi\)
0.131660 0.991295i \(-0.457969\pi\)
\(18\) 0 0
\(19\) 1.73329 + 1.00071i 0.397643 + 0.229579i 0.685466 0.728104i \(-0.259598\pi\)
−0.287823 + 0.957683i \(0.592932\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.40135i 0.917744i 0.888502 + 0.458872i \(0.151746\pi\)
−0.888502 + 0.458872i \(0.848254\pi\)
\(24\) 0 0
\(25\) −3.88524 −0.777049
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.12821 3.53813i −1.13798 0.657014i −0.192051 0.981385i \(-0.561514\pi\)
−0.945930 + 0.324371i \(0.894847\pi\)
\(30\) 0 0
\(31\) −2.07210 1.19633i −0.372160 0.214867i 0.302242 0.953231i \(-0.402265\pi\)
−0.674402 + 0.738365i \(0.735598\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.89890 2.04877i 0.320973 0.346305i
\(36\) 0 0
\(37\) −3.64197 + 6.30808i −0.598737 + 1.03704i 0.394271 + 0.918994i \(0.370997\pi\)
−0.993008 + 0.118048i \(0.962336\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.80119 3.11974i −0.281298 0.487222i 0.690407 0.723421i \(-0.257432\pi\)
−0.971705 + 0.236199i \(0.924098\pi\)
\(42\) 0 0
\(43\) 1.60595 2.78159i 0.244906 0.424189i −0.717199 0.696868i \(-0.754576\pi\)
0.962105 + 0.272679i \(0.0879097\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.87024 + 3.23934i 0.272802 + 0.472507i 0.969578 0.244782i \(-0.0787163\pi\)
−0.696776 + 0.717289i \(0.745383\pi\)
\(48\) 0 0
\(49\) −0.530720 6.97985i −0.0758171 0.997122i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.02455 3.47827i 0.827535 0.477778i −0.0254729 0.999676i \(-0.508109\pi\)
0.853008 + 0.521898i \(0.174776\pi\)
\(54\) 0 0
\(55\) 6.59348i 0.889065i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.67084 + 11.5542i −0.868469 + 1.50423i −0.00490776 + 0.999988i \(0.501562\pi\)
−0.863561 + 0.504244i \(0.831771\pi\)
\(60\) 0 0
\(61\) 7.10733 4.10342i 0.910000 0.525389i 0.0295688 0.999563i \(-0.490587\pi\)
0.880431 + 0.474174i \(0.157253\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.920753 + 0.531597i −0.114205 + 0.0659365i
\(66\) 0 0
\(67\) −0.0613962 + 0.106341i −0.00750074 + 0.0129917i −0.869751 0.493490i \(-0.835721\pi\)
0.862251 + 0.506482i \(0.169054\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.37678i 0.638107i 0.947737 + 0.319053i \(0.103365\pi\)
−0.947737 + 0.319053i \(0.896635\pi\)
\(72\) 0 0
\(73\) 14.4429 8.33860i 1.69041 0.975959i 0.736228 0.676734i \(-0.236605\pi\)
0.954182 0.299225i \(-0.0967282\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.1179 11.2315i −1.38097 1.27995i
\(78\) 0 0
\(79\) 4.43136 + 7.67534i 0.498567 + 0.863544i 0.999999 0.00165372i \(-0.000526397\pi\)
−0.501431 + 0.865197i \(0.667193\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.07668 1.86486i 0.118181 0.204695i −0.800866 0.598844i \(-0.795627\pi\)
0.919047 + 0.394149i \(0.128960\pi\)
\(84\) 0 0
\(85\) −3.45064 5.97668i −0.374274 0.648262i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.23201 3.86595i 0.236592 0.409790i −0.723142 0.690699i \(-0.757303\pi\)
0.959734 + 0.280910i \(0.0906361\pi\)
\(90\) 0 0
\(91\) −0.591431 + 2.59775i −0.0619988 + 0.272319i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.83004 + 1.05657i 0.187758 + 0.108402i
\(96\) 0 0
\(97\) 0.960756 + 0.554693i 0.0975500 + 0.0563205i 0.547981 0.836491i \(-0.315396\pi\)
−0.450431 + 0.892811i \(0.648730\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.78892 −0.576019 −0.288009 0.957628i \(-0.592993\pi\)
−0.288009 + 0.957628i \(0.592993\pi\)
\(102\) 0 0
\(103\) 19.7693i 1.94793i −0.226696 0.973966i \(-0.572792\pi\)
0.226696 0.973966i \(-0.427208\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.50275 3.17701i −0.531971 0.307133i 0.209848 0.977734i \(-0.432703\pi\)
−0.741819 + 0.670601i \(0.766036\pi\)
\(108\) 0 0
\(109\) −1.03951 1.80048i −0.0995669 0.172455i 0.811939 0.583743i \(-0.198412\pi\)
−0.911505 + 0.411288i \(0.865079\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.9040 7.45015i 1.21391 0.700851i 0.250301 0.968168i \(-0.419470\pi\)
0.963609 + 0.267317i \(0.0861371\pi\)
\(114\) 0 0
\(115\) 4.64703i 0.433338i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −16.8622 3.83903i −1.54576 0.351923i
\(120\) 0 0
\(121\) −27.9987 −2.54534
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.38122 −0.839082
\(126\) 0 0
\(127\) 18.6841 1.65794 0.828971 0.559292i \(-0.188927\pi\)
0.828971 + 0.559292i \(0.188927\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.54126 0.746253 0.373126 0.927780i \(-0.378286\pi\)
0.373126 + 0.927780i \(0.378286\pi\)
\(132\) 0 0
\(133\) 5.05917 1.56357i 0.438686 0.135578i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.3980i 1.05923i 0.848238 + 0.529616i \(0.177664\pi\)
−0.848238 + 0.529616i \(0.822336\pi\)
\(138\) 0 0
\(139\) 15.4789 8.93676i 1.31291 0.758006i 0.330329 0.943866i \(-0.392840\pi\)
0.982576 + 0.185860i \(0.0595070\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.14425 + 5.44601i 0.262936 + 0.455418i
\(144\) 0 0
\(145\) −6.47029 3.73562i −0.537328 0.310227i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.38513i 0.605014i −0.953147 0.302507i \(-0.902176\pi\)
0.953147 0.302507i \(-0.0978235\pi\)
\(150\) 0 0
\(151\) 10.2797 0.836548 0.418274 0.908321i \(-0.362635\pi\)
0.418274 + 0.908321i \(0.362635\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.18776 1.26311i −0.175725 0.101455i
\(156\) 0 0
\(157\) −13.4562 7.76894i −1.07392 0.620029i −0.144672 0.989480i \(-0.546213\pi\)
−0.929250 + 0.369451i \(0.879546\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.54061 + 7.91587i 0.673094 + 0.623858i
\(162\) 0 0
\(163\) 1.98761 3.44264i 0.155682 0.269649i −0.777625 0.628728i \(-0.783576\pi\)
0.933307 + 0.359079i \(0.116909\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.65088 + 6.32351i 0.282513 + 0.489328i 0.972003 0.234968i \(-0.0754985\pi\)
−0.689490 + 0.724295i \(0.742165\pi\)
\(168\) 0 0
\(169\) −5.99299 + 10.3802i −0.460999 + 0.798474i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.22713 + 7.32160i 0.321383 + 0.556651i 0.980774 0.195149i \(-0.0625191\pi\)
−0.659391 + 0.751800i \(0.729186\pi\)
\(174\) 0 0
\(175\) −6.98765 + 7.53914i −0.528217 + 0.569905i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.0439783 0.0253909i 0.00328709 0.00189780i −0.498356 0.866973i \(-0.666063\pi\)
0.501643 + 0.865075i \(0.332729\pi\)
\(180\) 0 0
\(181\) 2.64284i 0.196440i −0.995165 0.0982202i \(-0.968685\pi\)
0.995165 0.0982202i \(-0.0313149\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.84527 + 6.66020i −0.282710 + 0.489668i
\(186\) 0 0
\(187\) −35.3505 + 20.4096i −2.58508 + 1.49250i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 21.0319 12.1428i 1.52181 0.878619i 0.522145 0.852857i \(-0.325132\pi\)
0.999668 0.0257624i \(-0.00820132\pi\)
\(192\) 0 0
\(193\) 2.98935 5.17771i 0.215178 0.372699i −0.738150 0.674637i \(-0.764300\pi\)
0.953328 + 0.301938i \(0.0976335\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.110985i 0.00790737i 0.999992 + 0.00395369i \(0.00125850\pi\)
−0.999992 + 0.00395369i \(0.998741\pi\)
\(198\) 0 0
\(199\) 7.95580 4.59329i 0.563972 0.325609i −0.190766 0.981636i \(-0.561097\pi\)
0.754738 + 0.656026i \(0.227764\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −17.8872 + 5.52816i −1.25544 + 0.388001i
\(204\) 0 0
\(205\) −1.90173 3.29389i −0.132822 0.230055i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.24935 10.8242i 0.432276 0.748725i
\(210\) 0 0
\(211\) 7.95208 + 13.7734i 0.547443 + 0.948200i 0.998449 + 0.0556786i \(0.0177322\pi\)
−0.451005 + 0.892521i \(0.648934\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.69560 2.93686i 0.115639 0.200292i
\(216\) 0 0
\(217\) −6.04811 + 1.86921i −0.410573 + 0.126890i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.70023 + 3.29103i 0.383439 + 0.221379i
\(222\) 0 0
\(223\) 2.79336 + 1.61275i 0.187057 + 0.107998i 0.590604 0.806961i \(-0.298889\pi\)
−0.403547 + 0.914959i \(0.632223\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.19265 0.411021 0.205510 0.978655i \(-0.434115\pi\)
0.205510 + 0.978655i \(0.434115\pi\)
\(228\) 0 0
\(229\) 19.1873i 1.26793i 0.773361 + 0.633965i \(0.218574\pi\)
−0.773361 + 0.633965i \(0.781426\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.45069 1.99225i −0.226062 0.130517i 0.382692 0.923876i \(-0.374997\pi\)
−0.608754 + 0.793359i \(0.708330\pi\)
\(234\) 0 0
\(235\) 1.97463 + 3.42016i 0.128811 + 0.223107i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 13.2139 7.62905i 0.854736 0.493482i −0.00750987 0.999972i \(-0.502390\pi\)
0.862246 + 0.506490i \(0.169057\pi\)
\(240\) 0 0
\(241\) 8.79681i 0.566653i 0.959024 + 0.283326i \(0.0914379\pi\)
−0.959024 + 0.283326i \(0.908562\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.560344 7.36947i −0.0357991 0.470818i
\(246\) 0 0
\(247\) −2.01540 −0.128237
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −9.38549 −0.592407 −0.296204 0.955125i \(-0.595721\pi\)
−0.296204 + 0.955125i \(0.595721\pi\)
\(252\) 0 0
\(253\) 27.4860 1.72803
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.65183 −0.290173 −0.145087 0.989419i \(-0.546346\pi\)
−0.145087 + 0.989419i \(0.546346\pi\)
\(258\) 0 0
\(259\) 5.69042 + 18.4122i 0.353585 + 1.14408i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 21.1175i 1.30216i 0.759010 + 0.651079i \(0.225683\pi\)
−0.759010 + 0.651079i \(0.774317\pi\)
\(264\) 0 0
\(265\) 6.36084 3.67243i 0.390743 0.225596i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.87450 + 10.1749i 0.358175 + 0.620377i 0.987656 0.156639i \(-0.0500659\pi\)
−0.629481 + 0.777016i \(0.716733\pi\)
\(270\) 0 0
\(271\) 6.24601 + 3.60613i 0.379418 + 0.219057i 0.677565 0.735463i \(-0.263035\pi\)
−0.298147 + 0.954520i \(0.596369\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 24.2629i 1.46311i
\(276\) 0 0
\(277\) 0.275860 0.0165749 0.00828743 0.999966i \(-0.497362\pi\)
0.00828743 + 0.999966i \(0.497362\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.7254 + 8.50170i 0.878442 + 0.507169i 0.870144 0.492797i \(-0.164025\pi\)
0.00829763 + 0.999966i \(0.497359\pi\)
\(282\) 0 0
\(283\) −4.14236 2.39159i −0.246238 0.142165i 0.371803 0.928312i \(-0.378740\pi\)
−0.618040 + 0.786146i \(0.712073\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.29317 2.11578i −0.548558 0.124890i
\(288\) 0 0
\(289\) −12.8623 + 22.2782i −0.756608 + 1.31048i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −11.8580 20.5386i −0.692750 1.19988i −0.970933 0.239350i \(-0.923066\pi\)
0.278184 0.960528i \(-0.410268\pi\)
\(294\) 0 0
\(295\) −7.04320 + 12.1992i −0.410071 + 0.710264i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.21604 3.83830i −0.128157 0.221975i
\(300\) 0 0
\(301\) −2.50923 8.11901i −0.144630 0.467972i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 7.50406 4.33247i 0.429681 0.248076i
\(306\) 0 0
\(307\) 8.38070i 0.478312i −0.970981 0.239156i \(-0.923129\pi\)
0.970981 0.239156i \(-0.0768707\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8.39585 14.5420i 0.476085 0.824603i −0.523540 0.852001i \(-0.675389\pi\)
0.999625 + 0.0273979i \(0.00872212\pi\)
\(312\) 0 0
\(313\) −10.8945 + 6.28994i −0.615793 + 0.355528i −0.775229 0.631680i \(-0.782366\pi\)
0.159436 + 0.987208i \(0.449032\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.61807 + 5.55300i −0.540205 + 0.311887i −0.745162 0.666884i \(-0.767628\pi\)
0.204957 + 0.978771i \(0.434294\pi\)
\(318\) 0 0
\(319\) −22.0952 + 38.2701i −1.23710 + 2.14271i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 13.0821i 0.727910i
\(324\) 0 0
\(325\) 3.38822 1.95619i 0.187945 0.108510i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 9.64943 + 2.19689i 0.531991 + 0.121118i
\(330\) 0 0
\(331\) 2.07127 + 3.58754i 0.113847 + 0.197189i 0.917318 0.398154i \(-0.130349\pi\)
−0.803471 + 0.595344i \(0.797016\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.0648233 + 0.112277i −0.00354168 + 0.00613437i
\(336\) 0 0
\(337\) 14.7897 + 25.6166i 0.805649 + 1.39542i 0.915852 + 0.401515i \(0.131516\pi\)
−0.110204 + 0.993909i \(0.535150\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −7.47094 + 12.9400i −0.404574 + 0.700743i
\(342\) 0 0
\(343\) −14.4986 11.5235i −0.782850 0.622211i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.42191 + 0.820940i 0.0763321 + 0.0440704i 0.537680 0.843149i \(-0.319301\pi\)
−0.461348 + 0.887219i \(0.652634\pi\)
\(348\) 0 0
\(349\) −17.5869 10.1538i −0.941405 0.543520i −0.0510046 0.998698i \(-0.516242\pi\)
−0.890400 + 0.455178i \(0.849576\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −17.7337 −0.943872 −0.471936 0.881633i \(-0.656445\pi\)
−0.471936 + 0.881633i \(0.656445\pi\)
\(354\) 0 0
\(355\) 5.67691i 0.301299i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 23.6573 + 13.6585i 1.24858 + 0.720871i 0.970827 0.239781i \(-0.0770755\pi\)
0.277757 + 0.960651i \(0.410409\pi\)
\(360\) 0 0
\(361\) −7.49715 12.9854i −0.394587 0.683444i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.2491 8.80406i 0.798173 0.460825i
\(366\) 0 0
\(367\) 1.88999i 0.0986565i 0.998783 + 0.0493283i \(0.0157080\pi\)
−0.998783 + 0.0493283i \(0.984292\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.08578 17.9461i 0.212123 0.931713i
\(372\) 0 0
\(373\) 18.1173 0.938080 0.469040 0.883177i \(-0.344600\pi\)
0.469040 + 0.883177i \(0.344600\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7.12567 0.366991
\(378\) 0 0
\(379\) −3.05133 −0.156736 −0.0783682 0.996924i \(-0.524971\pi\)
−0.0783682 + 0.996924i \(0.524971\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 17.7393 0.906438 0.453219 0.891399i \(-0.350275\pi\)
0.453219 + 0.891399i \(0.350275\pi\)
\(384\) 0 0
\(385\) −12.7943 11.8585i −0.652060 0.604363i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 21.0907i 1.06934i 0.845061 + 0.534670i \(0.179564\pi\)
−0.845061 + 0.534670i \(0.820436\pi\)
\(390\) 0 0
\(391\) 24.9147 14.3845i 1.25999 0.727456i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.67872 + 8.10378i 0.235412 + 0.407745i
\(396\) 0 0
\(397\) 19.7684 + 11.4133i 0.992147 + 0.572816i 0.905915 0.423459i \(-0.139184\pi\)
0.0862315 + 0.996275i \(0.472518\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.61190i 0.0804944i 0.999190 + 0.0402472i \(0.0128145\pi\)
−0.999190 + 0.0402472i \(0.987185\pi\)
\(402\) 0 0
\(403\) 2.40937 0.120019
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 39.3933 + 22.7437i 1.95265 + 1.12737i
\(408\) 0 0
\(409\) −19.9023 11.4906i −0.984103 0.568172i −0.0805967 0.996747i \(-0.525683\pi\)
−0.903506 + 0.428575i \(0.859016\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10.4229 + 33.7248i 0.512876 + 1.65949i
\(414\) 0 0
\(415\) 1.13678 1.96896i 0.0558022 0.0966522i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −9.46660 16.3966i −0.462474 0.801028i 0.536610 0.843830i \(-0.319705\pi\)
−0.999084 + 0.0428027i \(0.986371\pi\)
\(420\) 0 0
\(421\) −9.69784 + 16.7971i −0.472644 + 0.818643i −0.999510 0.0313053i \(-0.990034\pi\)
0.526866 + 0.849948i \(0.323367\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 12.6978 + 21.9932i 0.615933 + 1.06683i
\(426\) 0 0
\(427\) 4.82011 21.1715i 0.233262 1.02456i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −21.5507 + 12.4423i −1.03806 + 0.599323i −0.919283 0.393598i \(-0.871230\pi\)
−0.118776 + 0.992921i \(0.537897\pi\)
\(432\) 0 0
\(433\) 26.4665i 1.27190i −0.771731 0.635949i \(-0.780609\pi\)
0.771731 0.635949i \(-0.219391\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.40449 + 7.62879i −0.210695 + 0.364935i
\(438\) 0 0
\(439\) 23.7117 13.6900i 1.13170 0.653386i 0.187336 0.982296i \(-0.440015\pi\)
0.944361 + 0.328910i \(0.106681\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −25.6713 + 14.8213i −1.21968 + 0.704183i −0.964850 0.262802i \(-0.915353\pi\)
−0.254831 + 0.966985i \(0.582020\pi\)
\(444\) 0 0
\(445\) 2.35660 4.08175i 0.111713 0.193493i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.2726i 0.862339i −0.902271 0.431170i \(-0.858101\pi\)
0.902271 0.431170i \(-0.141899\pi\)
\(450\) 0 0
\(451\) −19.4825 + 11.2482i −0.917394 + 0.529658i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.624445 + 2.74276i −0.0292744 + 0.128583i
\(456\) 0 0
\(457\) 8.98232 + 15.5578i 0.420175 + 0.727765i 0.995956 0.0898389i \(-0.0286352\pi\)
−0.575781 + 0.817604i \(0.695302\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.51625 11.2865i 0.303492 0.525664i −0.673432 0.739249i \(-0.735181\pi\)
0.976924 + 0.213585i \(0.0685140\pi\)
\(462\) 0 0
\(463\) −4.24422 7.35121i −0.197246 0.341640i 0.750389 0.660997i \(-0.229866\pi\)
−0.947634 + 0.319357i \(0.896533\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −0.895025 + 1.55023i −0.0414168 + 0.0717360i −0.885991 0.463703i \(-0.846520\pi\)
0.844574 + 0.535439i \(0.179854\pi\)
\(468\) 0 0
\(469\) 0.0959287 + 0.310393i 0.00442958 + 0.0143326i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −17.3708 10.0290i −0.798709 0.461135i
\(474\) 0 0
\(475\) −6.73424 3.88801i −0.308988 0.178394i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 24.6379 1.12573 0.562867 0.826547i \(-0.309698\pi\)
0.562867 + 0.826547i \(0.309698\pi\)
\(480\) 0 0
\(481\) 7.33482i 0.334439i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.01439 + 0.585656i 0.0460609 + 0.0265933i
\(486\) 0 0
\(487\) 13.1846 + 22.8364i 0.597450 + 1.03481i 0.993196 + 0.116454i \(0.0371528\pi\)
−0.395746 + 0.918360i \(0.629514\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −21.0365 + 12.1454i −0.949365 + 0.548116i −0.892884 0.450288i \(-0.851321\pi\)
−0.0564812 + 0.998404i \(0.517988\pi\)
\(492\) 0 0
\(493\) 46.2533i 2.08314i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.4334 + 9.67020i 0.468002 + 0.433768i
\(498\) 0 0
\(499\) −33.0439 −1.47925 −0.739625 0.673020i \(-0.764997\pi\)
−0.739625 + 0.673020i \(0.764997\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −31.5400 −1.40630 −0.703149 0.711043i \(-0.748223\pi\)
−0.703149 + 0.711043i \(0.748223\pi\)
\(504\) 0 0
\(505\) −6.11205 −0.271983
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10.7247 0.475365 0.237683 0.971343i \(-0.423612\pi\)
0.237683 + 0.971343i \(0.423612\pi\)
\(510\) 0 0
\(511\) 9.79500 43.0228i 0.433305 1.90322i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 20.8729i 0.919768i
\(516\) 0 0
\(517\) 20.2294 11.6794i 0.889686 0.513661i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.64350 13.2389i −0.334868 0.580008i 0.648591 0.761137i \(-0.275358\pi\)
−0.983459 + 0.181128i \(0.942025\pi\)
\(522\) 0 0
\(523\) −28.6654 16.5500i −1.25345 0.723681i −0.281659 0.959515i \(-0.590885\pi\)
−0.971793 + 0.235834i \(0.924218\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 15.6394i 0.681262i
\(528\) 0 0
\(529\) 3.62814 0.157745
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.14153 + 1.81376i 0.136075 + 0.0785629i
\(534\) 0 0
\(535\) −5.80991 3.35435i −0.251184 0.145021i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −43.5884 + 3.31429i −1.87749 + 0.142756i
\(540\) 0 0
\(541\) −16.2012 + 28.0613i −0.696543 + 1.20645i 0.273115 + 0.961981i \(0.411946\pi\)
−0.969658 + 0.244466i \(0.921387\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.09753 1.90099i −0.0470132 0.0814293i
\(546\) 0 0
\(547\) −4.77988 + 8.27900i −0.204373 + 0.353984i −0.949933 0.312454i \(-0.898849\pi\)
0.745560 + 0.666439i \(0.232182\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.08130 12.2652i −0.301673 0.522514i
\(552\) 0 0
\(553\) 22.8635 + 5.20534i 0.972255 + 0.221353i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16.6963 9.63963i 0.707446 0.408444i −0.102669 0.994716i \(-0.532738\pi\)
0.810115 + 0.586271i \(0.199405\pi\)
\(558\) 0 0
\(559\) 3.23434i 0.136798i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.71960 + 2.97844i −0.0724725 + 0.125526i −0.899984 0.435922i \(-0.856422\pi\)
0.827512 + 0.561448i \(0.189756\pi\)
\(564\) 0 0
\(565\) 13.6243 7.86602i 0.573180 0.330926i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −29.9406 + 17.2862i −1.25518 + 0.724677i −0.972133 0.234430i \(-0.924678\pi\)
−0.283044 + 0.959107i \(0.591344\pi\)
\(570\) 0 0
\(571\) −23.7474 + 41.1317i −0.993797 + 1.72131i −0.400592 + 0.916256i \(0.631196\pi\)
−0.593205 + 0.805051i \(0.702138\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 17.1003i 0.713132i
\(576\) 0 0
\(577\) 16.6404 9.60732i 0.692748 0.399958i −0.111893 0.993720i \(-0.535691\pi\)
0.804641 + 0.593762i \(0.202358\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.68226 5.44321i −0.0697918 0.225822i
\(582\) 0 0
\(583\) −21.7215 37.6227i −0.899611 1.55817i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.1279 21.0061i 0.500570 0.867013i −0.499429 0.866355i \(-0.666457\pi\)
1.00000 0.000658772i \(-0.000209694\pi\)
\(588\) 0 0
\(589\) −2.39436 4.14716i −0.0986579 0.170881i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.31832 2.28340i 0.0541371 0.0937681i −0.837687 0.546151i \(-0.816093\pi\)
0.891824 + 0.452383i \(0.149426\pi\)
\(594\) 0 0
\(595\) −17.8035 4.05332i −0.729871 0.166170i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 32.8545 + 18.9686i 1.34240 + 0.775034i 0.987159 0.159741i \(-0.0510659\pi\)
0.355240 + 0.934775i \(0.384399\pi\)
\(600\) 0 0
\(601\) 26.3440 + 15.2097i 1.07459 + 0.620417i 0.929433 0.368991i \(-0.120297\pi\)
0.145161 + 0.989408i \(0.453630\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −29.5616 −1.20185
\(606\) 0 0
\(607\) 44.4970i 1.80608i −0.429557 0.903040i \(-0.641330\pi\)
0.429557 0.903040i \(-0.358670\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.26197 1.88330i −0.131965 0.0761901i
\(612\) 0 0
\(613\) −23.2533 40.2759i −0.939192 1.62673i −0.766982 0.641668i \(-0.778243\pi\)
−0.172210 0.985060i \(-0.555091\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18.9058 + 10.9153i −0.761118 + 0.439432i −0.829697 0.558214i \(-0.811487\pi\)
0.0685792 + 0.997646i \(0.478153\pi\)
\(618\) 0 0
\(619\) 7.27326i 0.292337i −0.989260 0.146169i \(-0.953306\pi\)
0.989260 0.146169i \(-0.0466942\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.48741 11.2841i −0.139720 0.452086i
\(624\) 0 0
\(625\) 9.52135 0.380854
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 47.6109 1.89837
\(630\) 0 0
\(631\) 39.2496 1.56250 0.781252 0.624216i \(-0.214582\pi\)
0.781252 + 0.624216i \(0.214582\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 19.7270 0.782842
\(636\) 0 0
\(637\) 3.97713 + 5.81973i 0.157579 + 0.230586i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 34.5008i 1.36270i −0.731957 0.681351i \(-0.761393\pi\)
0.731957 0.681351i \(-0.238607\pi\)
\(642\) 0 0
\(643\) −5.08992 + 2.93867i −0.200727 + 0.115890i −0.596994 0.802245i \(-0.703639\pi\)
0.396268 + 0.918135i \(0.370305\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −14.6539 25.3814i −0.576106 0.997844i −0.995921 0.0902346i \(-0.971238\pi\)
0.419815 0.907610i \(-0.362095\pi\)
\(648\) 0 0
\(649\) 72.1549 + 41.6587i 2.83233 + 1.63525i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 42.6083i 1.66739i 0.552224 + 0.833696i \(0.313779\pi\)
−0.552224 + 0.833696i \(0.686221\pi\)
\(654\) 0 0
\(655\) 9.01803 0.352363
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 19.0891 + 11.0211i 0.743608 + 0.429322i 0.823380 0.567491i \(-0.192086\pi\)
−0.0797719 + 0.996813i \(0.525419\pi\)
\(660\) 0 0
\(661\) 12.7181 + 7.34280i 0.494677 + 0.285602i 0.726513 0.687153i \(-0.241140\pi\)
−0.231836 + 0.972755i \(0.574473\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.34157 1.65085i 0.207137 0.0640170i
\(666\) 0 0
\(667\) 15.5725 26.9724i 0.602971 1.04438i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −25.6254 44.3845i −0.989258 1.71344i
\(672\) 0 0
\(673\) 18.8645 32.6743i 0.727173 1.25950i −0.230900 0.972978i \(-0.574167\pi\)
0.958073 0.286524i \(-0.0924997\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10.7985 18.7036i −0.415021 0.718838i 0.580410 0.814325i \(-0.302892\pi\)
−0.995431 + 0.0954871i \(0.969559\pi\)
\(678\) 0 0
\(679\) 2.80429 0.866682i 0.107619 0.0332602i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 15.8213 9.13444i 0.605386 0.349520i −0.165772 0.986164i \(-0.553011\pi\)
0.771157 + 0.636645i \(0.219678\pi\)
\(684\) 0 0
\(685\) 13.0900i 0.500145i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.50257 + 6.06662i −0.133437 + 0.231120i
\(690\) 0 0
\(691\) −8.58995 + 4.95941i −0.326777 + 0.188665i −0.654409 0.756140i \(-0.727083\pi\)
0.327632 + 0.944805i \(0.393749\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 16.3430 9.43561i 0.619924 0.357913i
\(696\) 0 0
\(697\) −11.7733 + 20.3919i −0.445945 + 0.772400i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 4.41270i 0.166665i −0.996522 0.0833327i \(-0.973444\pi\)
0.996522 0.0833327i \(-0.0265564\pi\)
\(702\) 0 0
\(703\) −12.6252 + 7.28914i −0.476167 + 0.274915i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10.4114 + 11.2331i −0.391562 + 0.422465i
\(708\) 0 0
\(709\) −16.7513 29.0141i −0.629108 1.08965i −0.987731 0.156165i \(-0.950087\pi\)
0.358623 0.933482i \(-0.383246\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 5.26545 9.12003i 0.197193 0.341548i
\(714\) 0 0
\(715\) 3.31977 + 5.75000i 0.124152 + 0.215038i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −3.57296 + 6.18855i −0.133249 + 0.230794i −0.924927 0.380144i \(-0.875874\pi\)
0.791678 + 0.610938i \(0.209208\pi\)
\(720\) 0 0
\(721\) −38.3615 35.5554i −1.42866 1.32415i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 23.8096 + 13.7465i 0.884267 + 0.510532i
\(726\) 0 0
\(727\) −8.71161 5.02965i −0.323096 0.186539i 0.329676 0.944094i \(-0.393061\pi\)
−0.652772 + 0.757555i \(0.726394\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −20.9944 −0.776504
\(732\) 0 0
\(733\) 25.2511i 0.932671i 0.884608 + 0.466335i \(0.154426\pi\)
−0.884608 + 0.466335i \(0.845574\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.664091 + 0.383413i 0.0244621 + 0.0141232i
\(738\) 0 0
\(739\) 7.29244 + 12.6309i 0.268257 + 0.464634i 0.968412 0.249357i \(-0.0802191\pi\)
−0.700155 + 0.713991i \(0.746886\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 26.0383 15.0332i 0.955251 0.551515i 0.0605431 0.998166i \(-0.480717\pi\)
0.894708 + 0.446651i \(0.147383\pi\)
\(744\) 0 0
\(745\) 7.79737i 0.285674i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −16.0616 + 4.96394i −0.586878 + 0.181378i
\(750\) 0 0
\(751\) 5.52772 0.201709 0.100855 0.994901i \(-0.467842\pi\)
0.100855 + 0.994901i \(0.467842\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 10.8535 0.394999
\(756\) 0 0
\(757\) −22.2176 −0.807512 −0.403756 0.914867i \(-0.632296\pi\)
−0.403756 + 0.914867i \(0.632296\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −39.5470 −1.43358 −0.716789 0.697290i \(-0.754389\pi\)
−0.716789 + 0.697290i \(0.754389\pi\)
\(762\) 0 0
\(763\) −5.36332 1.22107i −0.194165 0.0442056i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 13.4348i 0.485104i
\(768\) 0 0
\(769\) 27.1448 15.6720i 0.978865 0.565148i 0.0769379 0.997036i \(-0.475486\pi\)
0.901927 + 0.431888i \(0.142152\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5.11009 + 8.85093i 0.183797 + 0.318346i 0.943171 0.332309i \(-0.107828\pi\)
−0.759373 + 0.650655i \(0.774494\pi\)
\(774\) 0 0
\(775\) 8.05062 + 4.64803i 0.289187 + 0.166962i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 7.20988i 0.258321i
\(780\) 0 0
\(781\) 33.5774 1.20150
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −14.2073 8.20260i −0.507081 0.292763i
\(786\) 0 0
\(787\) −41.4304 23.9198i −1.47683 0.852650i −0.477176 0.878808i \(-0.658339\pi\)
−0.999658 + 0.0261578i \(0.991673\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 8.75138 38.4389i 0.311163 1.36673i
\(792\) 0 0
\(793\) −4.13207 + 7.15696i −0.146734 + 0.254151i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −18.7811 32.5297i −0.665259 1.15226i −0.979215 0.202825i \(-0.934988\pi\)
0.313956 0.949438i \(-0.398346\pi\)
\(798\) 0 0
\(799\) 12.2246 21.1737i 0.432476 0.749071i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −52.0737 90.1942i −1.83764 3.18289i
\(804\) 0 0
\(805\) 9.01735 + 8.35773i 0.317820 + 0.294571i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −4.88303 + 2.81922i −0.171678 + 0.0991184i −0.583377 0.812202i \(-0.698269\pi\)
0.411699 + 0.911320i \(0.364936\pi\)
\(810\) 0 0
\(811\) 29.2693i 1.02778i 0.857855 + 0.513892i \(0.171797\pi\)
−0.857855 + 0.513892i \(0.828203\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.09856 3.63481i 0.0735093 0.127322i
\(816\) 0 0
\(817\) 5.56716 3.21420i 0.194770 0.112451i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −41.3052 + 23.8476i −1.44156 + 0.832286i −0.997954 0.0639351i \(-0.979635\pi\)
−0.443608 + 0.896221i \(0.646302\pi\)
\(822\) 0 0
\(823\) 19.7712 34.2447i 0.689180 1.19369i −0.282924 0.959142i \(-0.591304\pi\)
0.972104 0.234552i \(-0.0753622\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 27.9149i 0.970696i −0.874321 0.485348i \(-0.838693\pi\)
0.874321 0.485348i \(-0.161307\pi\)
\(828\) 0 0
\(829\) −19.5489 + 11.2866i −0.678962 + 0.391999i −0.799464 0.600714i \(-0.794883\pi\)
0.120502 + 0.992713i \(0.461550\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −37.7763 + 25.8158i −1.30887 + 0.894466i
\(834\) 0 0
\(835\) 3.85467 + 6.67648i 0.133396 + 0.231049i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −25.2760 + 43.7794i −0.872625 + 1.51143i −0.0133541 + 0.999911i \(0.504251\pi\)
−0.859271 + 0.511520i \(0.829082\pi\)
\(840\) 0 0
\(841\) 10.5367 + 18.2501i 0.363334 + 0.629312i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −6.32752 + 10.9596i −0.217673 + 0.377021i
\(846\) 0 0
\(847\) −50.3560 + 54.3302i −1.73025 + 1.86681i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −27.7641 16.0296i −0.951740 0.549487i
\(852\) 0 0
\(853\) −31.0102 17.9037i −1.06177 0.613013i −0.135848 0.990730i \(-0.543376\pi\)
−0.925921 + 0.377717i \(0.876709\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 27.6398 0.944157 0.472079 0.881556i \(-0.343504\pi\)
0.472079 + 0.881556i \(0.343504\pi\)
\(858\) 0 0
\(859\) 32.3990i 1.10544i 0.833367 + 0.552721i \(0.186410\pi\)
−0.833367 + 0.552721i \(0.813590\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 14.5080 + 8.37622i 0.493859 + 0.285130i 0.726174 0.687511i \(-0.241297\pi\)
−0.232315 + 0.972641i \(0.574630\pi\)
\(864\) 0 0
\(865\) 4.46309 + 7.73029i 0.151749 + 0.262838i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 47.9317 27.6734i 1.62597 0.938755i
\(870\) 0 0
\(871\) 0.123650i 0.00418972i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −16.8722 + 18.2038i −0.570385 + 0.615401i
\(876\) 0 0
\(877\) −26.0180 −0.878565 −0.439282 0.898349i \(-0.644767\pi\)
−0.439282 + 0.898349i \(0.644767\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 8.83562 0.297680 0.148840 0.988861i \(-0.452446\pi\)
0.148840 + 0.988861i \(0.452446\pi\)
\(882\) 0 0
\(883\) −12.1308 −0.408234 −0.204117 0.978946i \(-0.565432\pi\)
−0.204117 + 0.978946i \(0.565432\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −20.5105 −0.688676 −0.344338 0.938846i \(-0.611897\pi\)
−0.344338 + 0.938846i \(0.611897\pi\)
\(888\) 0 0
\(889\) 33.6035 36.2555i 1.12702 1.21597i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.48628i 0.250519i
\(894\) 0 0
\(895\) 0.0464332 0.0268082i 0.00155209 0.000896100i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 8.46552 + 14.6627i 0.282341 + 0.489029i
\(900\) 0 0
\(901\) −39.3789 22.7354i −1.31190 0.757427i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.79036i 0.0927546i
\(906\) 0 0
\(907\) 42.4131 1.40830 0.704152 0.710049i \(-0.251327\pi\)
0.704152 + 0.710049i \(0.251327\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6.19281 + 3.57542i 0.205177 + 0.118459i 0.599068 0.800698i \(-0.295538\pi\)
−0.393891 + 0.919157i \(0.628871\pi\)
\(912\) 0 0
\(913\) −11.6459 6.72373i −0.385421 0.222523i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15.3615 16.5739i 0.507283 0.547319i
\(918\) 0 0
\(919\) 3.31427 5.74049i 0.109328 0.189361i −0.806170 0.591683i \(-0.798464\pi\)
0.915498 + 0.402322i \(0.131797\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −2.70717 4.68895i −0.0891075 0.154339i
\(924\) 0 0
\(925\) 14.1500 24.5084i 0.465248 0.805833i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 6.48279 + 11.2285i 0.212693 + 0.368396i 0.952557 0.304362i \(-0.0984431\pi\)
−0.739863 + 0.672757i \(0.765110\pi\)
\(930\) 0 0
\(931\) 6.06494 12.6292i 0.198770 0.413905i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −37.3237 + 21.5489i −1.22062 + 0.704723i
\(936\) 0 0
\(937\) 29.9409i 0.978127i 0.872248 + 0.489063i \(0.162661\pi\)
−0.872248 + 0.489063i \(0.837339\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 27.4460 47.5379i 0.894715 1.54969i 0.0605579 0.998165i \(-0.480712\pi\)
0.834157 0.551527i \(-0.185955\pi\)
\(942\) 0 0
\(943\) 13.7311 7.92764i 0.447145 0.258160i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.56505 1.48093i 0.0833530 0.0481239i −0.457744 0.889084i \(-0.651342\pi\)
0.541097 + 0.840960i \(0.318009\pi\)
\(948\) 0 0
\(949\) −8.39683 + 14.5437i −0.272573 + 0.472110i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 25.3530i 0.821264i 0.911801 + 0.410632i \(0.134692\pi\)
−0.911801 + 0.410632i \(0.865308\pi\)
\(954\) 0 0
\(955\) 22.2059 12.8206i 0.718565 0.414864i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 24.0577 + 22.2979i 0.776864 + 0.720037i
\(960\) 0 0
\(961\) −12.6376 21.8890i −0.407665 0.706096i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3.15621 5.46672i 0.101602 0.175980i
\(966\) 0 0
\(967\) 10.3196 + 17.8741i 0.331857 + 0.574794i 0.982876 0.184268i \(-0.0589914\pi\)
−0.651019 + 0.759062i \(0.725658\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 15.1851 26.3013i 0.487312 0.844050i −0.512581 0.858639i \(-0.671311\pi\)
0.999894 + 0.0145888i \(0.00464393\pi\)
\(972\) 0 0
\(973\) 10.4976 46.1090i 0.336539 1.47819i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.43133 + 2.55843i 0.141771 + 0.0818514i 0.569208 0.822194i \(-0.307250\pi\)
−0.427437 + 0.904045i \(0.640583\pi\)
\(978\) 0 0
\(979\) −24.1425 13.9387i −0.771596 0.445481i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −3.89768 −0.124317 −0.0621584 0.998066i \(-0.519798\pi\)
−0.0621584 + 0.998066i \(0.519798\pi\)
\(984\) 0 0
\(985\) 0.117180i 0.00373368i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12.2428 + 7.06836i 0.389297 + 0.224761i
\(990\) 0 0
\(991\) −7.39964 12.8166i −0.235057 0.407131i 0.724232 0.689556i \(-0.242194\pi\)
−0.959289 + 0.282425i \(0.908861\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 8.39990 4.84968i 0.266295 0.153745i
\(996\) 0 0
\(997\) 31.4855i 0.997156i −0.866845 0.498578i \(-0.833856\pi\)
0.866845 0.498578i \(-0.166144\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.cx.a.89.15 48
3.2 odd 2 504.2.cx.a.425.15 yes 48
4.3 odd 2 3024.2.df.e.1601.15 48
7.3 odd 6 1512.2.bs.a.521.15 48
9.4 even 3 504.2.bs.a.257.7 48
9.5 odd 6 1512.2.bs.a.1097.15 48
12.11 even 2 1008.2.df.e.929.10 48
21.17 even 6 504.2.bs.a.353.7 yes 48
28.3 even 6 3024.2.ca.e.2033.15 48
36.23 even 6 3024.2.ca.e.2609.15 48
36.31 odd 6 1008.2.ca.e.257.18 48
63.31 odd 6 504.2.cx.a.185.15 yes 48
63.59 even 6 inner 1512.2.cx.a.17.15 48
84.59 odd 6 1008.2.ca.e.353.18 48
252.31 even 6 1008.2.df.e.689.10 48
252.59 odd 6 3024.2.df.e.17.15 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.7 48 9.4 even 3
504.2.bs.a.353.7 yes 48 21.17 even 6
504.2.cx.a.185.15 yes 48 63.31 odd 6
504.2.cx.a.425.15 yes 48 3.2 odd 2
1008.2.ca.e.257.18 48 36.31 odd 6
1008.2.ca.e.353.18 48 84.59 odd 6
1008.2.df.e.689.10 48 252.31 even 6
1008.2.df.e.929.10 48 12.11 even 2
1512.2.bs.a.521.15 48 7.3 odd 6
1512.2.bs.a.1097.15 48 9.5 odd 6
1512.2.cx.a.17.15 48 63.59 even 6 inner
1512.2.cx.a.89.15 48 1.1 even 1 trivial
3024.2.ca.e.2033.15 48 28.3 even 6
3024.2.ca.e.2609.15 48 36.23 even 6
3024.2.df.e.17.15 48 252.59 odd 6
3024.2.df.e.1601.15 48 4.3 odd 2