Properties

Label 1512.2.bs.a.1097.15
Level $1512$
Weight $2$
Character 1512.1097
Analytic conductor $12.073$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(521,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.bs (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1097.15
Character \(\chi\) \(=\) 1512.1097
Dual form 1512.2.bs.a.521.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.527910 + 0.914367i) q^{5} +(0.781227 + 2.52778i) q^{7} +(-5.40824 - 3.12245i) q^{11} +(0.872074 + 0.503492i) q^{13} +(3.26821 + 5.66070i) q^{17} +(1.73329 + 1.00071i) q^{19} +(-3.81168 + 2.20067i) q^{23} +(1.94262 - 3.36472i) q^{25} +(-6.12821 + 3.53813i) q^{29} +2.39266i q^{31} +(-1.89890 + 2.04877i) q^{35} +(-3.64197 + 6.30808i) q^{37} +(1.80119 - 3.11974i) q^{41} +(1.60595 + 2.78159i) q^{43} +3.74047 q^{47} +(-5.77937 + 3.94954i) q^{49} +(-6.02455 + 3.47827i) q^{53} -6.59348i q^{55} -13.3417 q^{59} +8.20683i q^{61} +1.06319i q^{65} +0.122792 q^{67} -5.37678i q^{71} +(14.4429 - 8.33860i) q^{73} +(3.66781 - 16.1102i) q^{77} -8.86272 q^{79} +(-1.07668 - 1.86486i) q^{83} +(-3.45064 + 5.97668i) q^{85} +(-2.23201 + 3.86595i) q^{89} +(-0.591431 + 2.59775i) q^{91} +2.11315i q^{95} +(-0.960756 + 0.554693i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 12 q^{23} - 24 q^{25} - 18 q^{29} - 6 q^{41} - 6 q^{43} - 36 q^{47} + 6 q^{49} - 12 q^{53} + 36 q^{77} - 12 q^{79} - 18 q^{89} + 6 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.527910 + 0.914367i 0.236089 + 0.408917i 0.959588 0.281407i \(-0.0908011\pi\)
−0.723500 + 0.690324i \(0.757468\pi\)
\(6\) 0 0
\(7\) 0.781227 + 2.52778i 0.295276 + 0.955412i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.40824 3.12245i −1.63065 0.941453i −0.983894 0.178752i \(-0.942794\pi\)
−0.646751 0.762701i \(-0.723873\pi\)
\(12\) 0 0
\(13\) 0.872074 + 0.503492i 0.241870 + 0.139644i 0.616036 0.787718i \(-0.288738\pi\)
−0.374166 + 0.927362i \(0.622071\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.26821 + 5.66070i 0.792656 + 1.37292i 0.924317 + 0.381626i \(0.124636\pi\)
−0.131660 + 0.991295i \(0.542031\pi\)
\(18\) 0 0
\(19\) 1.73329 + 1.00071i 0.397643 + 0.229579i 0.685466 0.728104i \(-0.259598\pi\)
−0.287823 + 0.957683i \(0.592932\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.81168 + 2.20067i −0.794790 + 0.458872i −0.841646 0.540029i \(-0.818413\pi\)
0.0468562 + 0.998902i \(0.485080\pi\)
\(24\) 0 0
\(25\) 1.94262 3.36472i 0.388524 0.672944i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.12821 + 3.53813i −1.13798 + 0.657014i −0.945930 0.324371i \(-0.894847\pi\)
−0.192051 + 0.981385i \(0.561514\pi\)
\(30\) 0 0
\(31\) 2.39266i 0.429734i 0.976643 + 0.214867i \(0.0689317\pi\)
−0.976643 + 0.214867i \(0.931068\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.89890 + 2.04877i −0.320973 + 0.346305i
\(36\) 0 0
\(37\) −3.64197 + 6.30808i −0.598737 + 1.03704i 0.394271 + 0.918994i \(0.370997\pi\)
−0.993008 + 0.118048i \(0.962336\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.80119 3.11974i 0.281298 0.487222i −0.690407 0.723421i \(-0.742568\pi\)
0.971705 + 0.236199i \(0.0759018\pi\)
\(42\) 0 0
\(43\) 1.60595 + 2.78159i 0.244906 + 0.424189i 0.962105 0.272679i \(-0.0879097\pi\)
−0.717199 + 0.696868i \(0.754576\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.74047 0.545604 0.272802 0.962070i \(-0.412050\pi\)
0.272802 + 0.962070i \(0.412050\pi\)
\(48\) 0 0
\(49\) −5.77937 + 3.94954i −0.825624 + 0.564220i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.02455 + 3.47827i −0.827535 + 0.477778i −0.853008 0.521898i \(-0.825224\pi\)
0.0254729 + 0.999676i \(0.491891\pi\)
\(54\) 0 0
\(55\) 6.59348i 0.889065i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −13.3417 −1.73694 −0.868469 0.495744i \(-0.834896\pi\)
−0.868469 + 0.495744i \(0.834896\pi\)
\(60\) 0 0
\(61\) 8.20683i 1.05078i 0.850862 + 0.525389i \(0.176080\pi\)
−0.850862 + 0.525389i \(0.823920\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.06319i 0.131873i
\(66\) 0 0
\(67\) 0.122792 0.0150015 0.00750074 0.999972i \(-0.497612\pi\)
0.00750074 + 0.999972i \(0.497612\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.37678i 0.638107i −0.947737 0.319053i \(-0.896635\pi\)
0.947737 0.319053i \(-0.103365\pi\)
\(72\) 0 0
\(73\) 14.4429 8.33860i 1.69041 0.975959i 0.736228 0.676734i \(-0.236605\pi\)
0.954182 0.299225i \(-0.0967282\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.66781 16.1102i 0.417986 1.83593i
\(78\) 0 0
\(79\) −8.86272 −0.997134 −0.498567 0.866851i \(-0.666140\pi\)
−0.498567 + 0.866851i \(0.666140\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.07668 1.86486i −0.118181 0.204695i 0.800866 0.598844i \(-0.204373\pi\)
−0.919047 + 0.394149i \(0.871040\pi\)
\(84\) 0 0
\(85\) −3.45064 + 5.97668i −0.374274 + 0.648262i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.23201 + 3.86595i −0.236592 + 0.409790i −0.959734 0.280910i \(-0.909364\pi\)
0.723142 + 0.690699i \(0.242697\pi\)
\(90\) 0 0
\(91\) −0.591431 + 2.59775i −0.0619988 + 0.272319i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.11315i 0.216804i
\(96\) 0 0
\(97\) −0.960756 + 0.554693i −0.0975500 + 0.0563205i −0.547981 0.836491i \(-0.684604\pi\)
0.450431 + 0.892811i \(0.351270\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.89446 + 5.01335i −0.288009 + 0.498847i −0.973335 0.229390i \(-0.926327\pi\)
0.685325 + 0.728237i \(0.259660\pi\)
\(102\) 0 0
\(103\) −17.1208 + 9.88467i −1.68696 + 0.973966i −0.730131 + 0.683307i \(0.760541\pi\)
−0.956827 + 0.290658i \(0.906126\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.50275 + 3.17701i 0.531971 + 0.307133i 0.741819 0.670601i \(-0.233964\pi\)
−0.209848 + 0.977734i \(0.567297\pi\)
\(108\) 0 0
\(109\) −1.03951 1.80048i −0.0995669 0.172455i 0.811939 0.583743i \(-0.198412\pi\)
−0.911505 + 0.411288i \(0.865079\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.9040 + 7.45015i 1.21391 + 0.700851i 0.963609 0.267317i \(-0.0861371\pi\)
0.250301 + 0.968168i \(0.419470\pi\)
\(114\) 0 0
\(115\) −4.02445 2.32352i −0.375282 0.216669i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −11.7558 + 12.6836i −1.07765 + 1.16270i
\(120\) 0 0
\(121\) 13.9994 + 24.2476i 1.27267 + 2.20433i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.38122 0.839082
\(126\) 0 0
\(127\) 18.6841 1.65794 0.828971 0.559292i \(-0.188927\pi\)
0.828971 + 0.559292i \(0.188927\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.27063 + 7.39694i 0.373126 + 0.646274i 0.990045 0.140753i \(-0.0449524\pi\)
−0.616918 + 0.787027i \(0.711619\pi\)
\(132\) 0 0
\(133\) −1.17550 + 5.16315i −0.101928 + 0.447702i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.7370 + 6.19899i 0.917321 + 0.529616i 0.882779 0.469788i \(-0.155670\pi\)
0.0345416 + 0.999403i \(0.489003\pi\)
\(138\) 0 0
\(139\) −15.4789 8.93676i −1.31291 0.758006i −0.330329 0.943866i \(-0.607160\pi\)
−0.982576 + 0.185860i \(0.940493\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.14425 5.44601i −0.262936 0.455418i
\(144\) 0 0
\(145\) −6.47029 3.73562i −0.537328 0.310227i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.39571 3.69257i 0.523957 0.302507i −0.214595 0.976703i \(-0.568843\pi\)
0.738552 + 0.674196i \(0.235510\pi\)
\(150\) 0 0
\(151\) −5.13984 + 8.90246i −0.418274 + 0.724472i −0.995766 0.0919243i \(-0.970698\pi\)
0.577492 + 0.816397i \(0.304032\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.18776 + 1.26311i −0.175725 + 0.101455i
\(156\) 0 0
\(157\) 15.5379i 1.24006i 0.784579 + 0.620029i \(0.212879\pi\)
−0.784579 + 0.620029i \(0.787121\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −8.54061 7.91587i −0.673094 0.623858i
\(162\) 0 0
\(163\) 1.98761 3.44264i 0.155682 0.269649i −0.777625 0.628728i \(-0.783576\pi\)
0.933307 + 0.359079i \(0.116909\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.65088 + 6.32351i −0.282513 + 0.489328i −0.972003 0.234968i \(-0.924502\pi\)
0.689490 + 0.724295i \(0.257835\pi\)
\(168\) 0 0
\(169\) −5.99299 10.3802i −0.460999 0.798474i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.45426 0.642765 0.321383 0.946949i \(-0.395852\pi\)
0.321383 + 0.946949i \(0.395852\pi\)
\(174\) 0 0
\(175\) 10.0229 + 2.28192i 0.757661 + 0.172497i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.0439783 + 0.0253909i −0.00328709 + 0.00189780i −0.501643 0.865075i \(-0.667271\pi\)
0.498356 + 0.866973i \(0.333937\pi\)
\(180\) 0 0
\(181\) 2.64284i 0.196440i −0.995165 0.0982202i \(-0.968685\pi\)
0.995165 0.0982202i \(-0.0313149\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −7.69054 −0.565420
\(186\) 0 0
\(187\) 40.8192i 2.98500i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 24.2855i 1.75724i −0.477523 0.878619i \(-0.658465\pi\)
0.477523 0.878619i \(-0.341535\pi\)
\(192\) 0 0
\(193\) −5.97870 −0.430356 −0.215178 0.976575i \(-0.569033\pi\)
−0.215178 + 0.976575i \(0.569033\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.110985i 0.00790737i −0.999992 0.00395369i \(-0.998741\pi\)
0.999992 0.00395369i \(-0.00125850\pi\)
\(198\) 0 0
\(199\) 7.95580 4.59329i 0.563972 0.325609i −0.190766 0.981636i \(-0.561097\pi\)
0.754738 + 0.656026i \(0.227764\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −13.7311 12.7267i −0.963737 0.893240i
\(204\) 0 0
\(205\) 3.80345 0.265645
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.24935 10.8242i −0.432276 0.748725i
\(210\) 0 0
\(211\) 7.95208 13.7734i 0.547443 0.948200i −0.451005 0.892521i \(-0.648934\pi\)
0.998449 0.0556786i \(-0.0177322\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.69560 + 2.93686i −0.115639 + 0.200292i
\(216\) 0 0
\(217\) −6.04811 + 1.86921i −0.410573 + 0.126890i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.58206i 0.442757i
\(222\) 0 0
\(223\) −2.79336 + 1.61275i −0.187057 + 0.107998i −0.590604 0.806961i \(-0.701111\pi\)
0.403547 + 0.914959i \(0.367777\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.09633 5.36299i 0.205510 0.355954i −0.744785 0.667305i \(-0.767448\pi\)
0.950295 + 0.311350i \(0.100781\pi\)
\(228\) 0 0
\(229\) 16.6167 9.59364i 1.09806 0.633965i 0.162349 0.986733i \(-0.448093\pi\)
0.935711 + 0.352768i \(0.114760\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.45069 + 1.99225i 0.226062 + 0.130517i 0.608754 0.793359i \(-0.291670\pi\)
−0.382692 + 0.923876i \(0.625003\pi\)
\(234\) 0 0
\(235\) 1.97463 + 3.42016i 0.128811 + 0.223107i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 13.2139 + 7.62905i 0.854736 + 0.493482i 0.862246 0.506490i \(-0.169057\pi\)
−0.00750987 + 0.999972i \(0.502390\pi\)
\(240\) 0 0
\(241\) −7.61826 4.39841i −0.490735 0.283326i 0.234144 0.972202i \(-0.424771\pi\)
−0.724880 + 0.688876i \(0.758105\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.66232 3.19946i −0.425640 0.204406i
\(246\) 0 0
\(247\) 1.00770 + 1.74539i 0.0641185 + 0.111057i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.38549 0.592407 0.296204 0.955125i \(-0.404279\pi\)
0.296204 + 0.955125i \(0.404279\pi\)
\(252\) 0 0
\(253\) 27.4860 1.72803
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.32591 4.02860i −0.145087 0.251297i 0.784319 0.620358i \(-0.213013\pi\)
−0.929405 + 0.369061i \(0.879679\pi\)
\(258\) 0 0
\(259\) −18.7907 4.27807i −1.16760 0.265827i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 18.2883 + 10.5587i 1.12770 + 0.651079i 0.943356 0.331782i \(-0.107650\pi\)
0.184346 + 0.982861i \(0.440983\pi\)
\(264\) 0 0
\(265\) −6.36084 3.67243i −0.390743 0.225596i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5.87450 10.1749i −0.358175 0.620377i 0.629481 0.777016i \(-0.283267\pi\)
−0.987656 + 0.156639i \(0.949934\pi\)
\(270\) 0 0
\(271\) 6.24601 + 3.60613i 0.379418 + 0.219057i 0.677565 0.735463i \(-0.263035\pi\)
−0.298147 + 0.954520i \(0.596369\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −21.0123 + 12.1315i −1.26709 + 0.731555i
\(276\) 0 0
\(277\) −0.137930 + 0.238902i −0.00828743 + 0.0143542i −0.870139 0.492806i \(-0.835971\pi\)
0.861852 + 0.507160i \(0.169305\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.7254 8.50170i 0.878442 0.507169i 0.00829763 0.999966i \(-0.497359\pi\)
0.870144 + 0.492797i \(0.164025\pi\)
\(282\) 0 0
\(283\) 4.78319i 0.284331i 0.989843 + 0.142165i \(0.0454065\pi\)
−0.989843 + 0.142165i \(0.954594\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.29317 + 2.11578i 0.548558 + 0.124890i
\(288\) 0 0
\(289\) −12.8623 + 22.2782i −0.756608 + 1.31048i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 11.8580 20.5386i 0.692750 1.19988i −0.278184 0.960528i \(-0.589732\pi\)
0.970933 0.239350i \(-0.0769343\pi\)
\(294\) 0 0
\(295\) −7.04320 12.1992i −0.410071 0.710264i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.43209 −0.256314
\(300\) 0 0
\(301\) −5.77665 + 6.23256i −0.332961 + 0.359239i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −7.50406 + 4.33247i −0.429681 + 0.248076i
\(306\) 0 0
\(307\) 8.38070i 0.478312i −0.970981 0.239156i \(-0.923129\pi\)
0.970981 0.239156i \(-0.0768707\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 16.7917 0.952170 0.476085 0.879399i \(-0.342055\pi\)
0.476085 + 0.879399i \(0.342055\pi\)
\(312\) 0 0
\(313\) 12.5799i 0.711057i −0.934665 0.355528i \(-0.884301\pi\)
0.934665 0.355528i \(-0.115699\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.1060i 0.623775i 0.950119 + 0.311887i \(0.100961\pi\)
−0.950119 + 0.311887i \(0.899039\pi\)
\(318\) 0 0
\(319\) 44.1905 2.47419
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 13.0821i 0.727910i
\(324\) 0 0
\(325\) 3.38822 1.95619i 0.187945 0.108510i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.92216 + 9.45510i 0.161104 + 0.521277i
\(330\) 0 0
\(331\) −4.14254 −0.227695 −0.113847 0.993498i \(-0.536317\pi\)
−0.113847 + 0.993498i \(0.536317\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.0648233 + 0.112277i 0.00354168 + 0.00613437i
\(336\) 0 0
\(337\) 14.7897 25.6166i 0.805649 1.39542i −0.110204 0.993909i \(-0.535150\pi\)
0.915852 0.401515i \(-0.131516\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.47094 12.9400i 0.404574 0.700743i
\(342\) 0 0
\(343\) −14.4986 11.5235i −0.782850 0.622211i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.64188i 0.0881407i 0.999028 + 0.0440704i \(0.0140326\pi\)
−0.999028 + 0.0440704i \(0.985967\pi\)
\(348\) 0 0
\(349\) 17.5869 10.1538i 0.941405 0.543520i 0.0510046 0.998698i \(-0.483758\pi\)
0.890400 + 0.455178i \(0.150424\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8.86687 + 15.3579i −0.471936 + 0.817417i −0.999484 0.0321077i \(-0.989778\pi\)
0.527548 + 0.849525i \(0.323111\pi\)
\(354\) 0 0
\(355\) 4.91635 2.83846i 0.260933 0.150650i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −23.6573 13.6585i −1.24858 0.720871i −0.277757 0.960651i \(-0.589591\pi\)
−0.970827 + 0.239781i \(0.922924\pi\)
\(360\) 0 0
\(361\) −7.49715 12.9854i −0.394587 0.683444i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.2491 + 8.80406i 0.798173 + 0.460825i
\(366\) 0 0
\(367\) −1.63678 0.944994i −0.0854391 0.0493283i 0.456672 0.889635i \(-0.349041\pi\)
−0.542111 + 0.840307i \(0.682375\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −13.4989 12.5114i −0.700826 0.649561i
\(372\) 0 0
\(373\) −9.05866 15.6901i −0.469040 0.812401i 0.530334 0.847789i \(-0.322067\pi\)
−0.999374 + 0.0353881i \(0.988733\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −7.12567 −0.366991
\(378\) 0 0
\(379\) −3.05133 −0.156736 −0.0783682 0.996924i \(-0.524971\pi\)
−0.0783682 + 0.996924i \(0.524971\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8.86967 + 15.3627i 0.453219 + 0.784999i 0.998584 0.0532002i \(-0.0169422\pi\)
−0.545365 + 0.838199i \(0.683609\pi\)
\(384\) 0 0
\(385\) 16.6669 5.15101i 0.849424 0.262520i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 18.2651 + 10.5453i 0.926076 + 0.534670i 0.885568 0.464509i \(-0.153769\pi\)
0.0405073 + 0.999179i \(0.487103\pi\)
\(390\) 0 0
\(391\) −24.9147 14.3845i −1.25999 0.727456i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4.67872 8.10378i −0.235412 0.407745i
\(396\) 0 0
\(397\) 19.7684 + 11.4133i 0.992147 + 0.572816i 0.905915 0.423459i \(-0.139184\pi\)
0.0862315 + 0.996275i \(0.472518\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.39595 + 0.805949i −0.0697102 + 0.0402472i −0.534450 0.845200i \(-0.679481\pi\)
0.464740 + 0.885447i \(0.346148\pi\)
\(402\) 0 0
\(403\) −1.20468 + 2.08657i −0.0600095 + 0.103940i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 39.3933 22.7437i 1.95265 1.12737i
\(408\) 0 0
\(409\) 22.9811i 1.13634i 0.822910 + 0.568172i \(0.192349\pi\)
−0.822910 + 0.568172i \(0.807651\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −10.4229 33.7248i −0.512876 1.65949i
\(414\) 0 0
\(415\) 1.13678 1.96896i 0.0558022 0.0966522i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 9.46660 16.3966i 0.462474 0.801028i −0.536610 0.843830i \(-0.680295\pi\)
0.999084 + 0.0428027i \(0.0136287\pi\)
\(420\) 0 0
\(421\) −9.69784 16.7971i −0.472644 0.818643i 0.526866 0.849948i \(-0.323367\pi\)
−0.999510 + 0.0313053i \(0.990034\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 25.3956 1.23187
\(426\) 0 0
\(427\) −20.7451 + 6.41140i −1.00393 + 0.310269i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 21.5507 12.4423i 1.03806 0.599323i 0.118776 0.992921i \(-0.462103\pi\)
0.919283 + 0.393598i \(0.128770\pi\)
\(432\) 0 0
\(433\) 26.4665i 1.27190i −0.771731 0.635949i \(-0.780609\pi\)
0.771731 0.635949i \(-0.219391\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8.80897 −0.421390
\(438\) 0 0
\(439\) 27.3799i 1.30677i 0.757025 + 0.653386i \(0.226652\pi\)
−0.757025 + 0.653386i \(0.773348\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 29.6427i 1.40837i 0.710018 + 0.704183i \(0.248687\pi\)
−0.710018 + 0.704183i \(0.751313\pi\)
\(444\) 0 0
\(445\) −4.71320 −0.223427
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.2726i 0.862339i 0.902271 + 0.431170i \(0.141899\pi\)
−0.902271 + 0.431170i \(0.858101\pi\)
\(450\) 0 0
\(451\) −19.4825 + 11.2482i −0.917394 + 0.529658i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.68752 + 0.830595i −0.125993 + 0.0389389i
\(456\) 0 0
\(457\) −17.9646 −0.840351 −0.420175 0.907443i \(-0.638031\pi\)
−0.420175 + 0.907443i \(0.638031\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −6.51625 11.2865i −0.303492 0.525664i 0.673432 0.739249i \(-0.264819\pi\)
−0.976924 + 0.213585i \(0.931486\pi\)
\(462\) 0 0
\(463\) −4.24422 + 7.35121i −0.197246 + 0.341640i −0.947634 0.319357i \(-0.896533\pi\)
0.750389 + 0.660997i \(0.229866\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0.895025 1.55023i 0.0414168 0.0717360i −0.844574 0.535439i \(-0.820146\pi\)
0.885991 + 0.463703i \(0.153480\pi\)
\(468\) 0 0
\(469\) 0.0959287 + 0.310393i 0.00442958 + 0.0143326i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 20.0580i 0.922269i
\(474\) 0 0
\(475\) 6.73424 3.88801i 0.308988 0.178394i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.3189 21.3370i 0.562867 0.974914i −0.434378 0.900731i \(-0.643032\pi\)
0.997245 0.0741834i \(-0.0236350\pi\)
\(480\) 0 0
\(481\) −6.35214 + 3.66741i −0.289633 + 0.167219i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.01439 0.585656i −0.0460609 0.0265933i
\(486\) 0 0
\(487\) 13.1846 + 22.8364i 0.597450 + 1.03481i 0.993196 + 0.116454i \(0.0371528\pi\)
−0.395746 + 0.918360i \(0.629514\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −21.0365 12.1454i −0.949365 0.548116i −0.0564812 0.998404i \(-0.517988\pi\)
−0.892884 + 0.450288i \(0.851321\pi\)
\(492\) 0 0
\(493\) −40.0565 23.1267i −1.80406 1.04157i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 13.5913 4.20049i 0.609655 0.188418i
\(498\) 0 0
\(499\) 16.5220 + 28.6169i 0.739625 + 1.28107i 0.952664 + 0.304024i \(0.0983303\pi\)
−0.213040 + 0.977044i \(0.568336\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 31.5400 1.40630 0.703149 0.711043i \(-0.251777\pi\)
0.703149 + 0.711043i \(0.251777\pi\)
\(504\) 0 0
\(505\) −6.11205 −0.271983
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5.36236 + 9.28789i 0.237683 + 0.411678i 0.960049 0.279832i \(-0.0902788\pi\)
−0.722366 + 0.691511i \(0.756946\pi\)
\(510\) 0 0
\(511\) 32.3613 + 29.9941i 1.43158 + 1.32686i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −18.0764 10.4364i −0.796543 0.459884i
\(516\) 0 0
\(517\) −20.2294 11.6794i −0.889686 0.513661i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7.64350 + 13.2389i 0.334868 + 0.580008i 0.983459 0.181128i \(-0.0579749\pi\)
−0.648591 + 0.761137i \(0.724642\pi\)
\(522\) 0 0
\(523\) −28.6654 16.5500i −1.25345 0.723681i −0.281659 0.959515i \(-0.590885\pi\)
−0.971793 + 0.235834i \(0.924218\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −13.5441 + 7.81969i −0.589990 + 0.340631i
\(528\) 0 0
\(529\) −1.81407 + 3.14206i −0.0788726 + 0.136611i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.14153 1.81376i 0.136075 0.0785629i
\(534\) 0 0
\(535\) 6.70871i 0.290043i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 43.5884 3.31429i 1.87749 0.142756i
\(540\) 0 0
\(541\) −16.2012 + 28.0613i −0.696543 + 1.20645i 0.273115 + 0.961981i \(0.411946\pi\)
−0.969658 + 0.244466i \(0.921387\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.09753 1.90099i 0.0470132 0.0814293i
\(546\) 0 0
\(547\) −4.77988 8.27900i −0.204373 0.353984i 0.745560 0.666439i \(-0.232182\pi\)
−0.949933 + 0.312454i \(0.898849\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −14.1626 −0.603347
\(552\) 0 0
\(553\) −6.92380 22.4030i −0.294430 0.952674i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −16.6963 + 9.63963i −0.707446 + 0.408444i −0.810115 0.586271i \(-0.800595\pi\)
0.102669 + 0.994716i \(0.467262\pi\)
\(558\) 0 0
\(559\) 3.23434i 0.136798i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3.43920 −0.144945 −0.0724725 0.997370i \(-0.523089\pi\)
−0.0724725 + 0.997370i \(0.523089\pi\)
\(564\) 0 0
\(565\) 15.7320i 0.661852i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 34.5725i 1.44935i 0.689089 + 0.724677i \(0.258011\pi\)
−0.689089 + 0.724677i \(0.741989\pi\)
\(570\) 0 0
\(571\) 47.4948 1.98759 0.993797 0.111205i \(-0.0354710\pi\)
0.993797 + 0.111205i \(0.0354710\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 17.1003i 0.713132i
\(576\) 0 0
\(577\) 16.6404 9.60732i 0.692748 0.399958i −0.111893 0.993720i \(-0.535691\pi\)
0.804641 + 0.593762i \(0.202358\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.87283 4.17848i 0.160672 0.173353i
\(582\) 0 0
\(583\) 43.4429 1.79922
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12.1279 21.0061i −0.500570 0.867013i −1.00000 0.000658772i \(-0.999790\pi\)
0.499429 0.866355i \(-0.333543\pi\)
\(588\) 0 0
\(589\) −2.39436 + 4.14716i −0.0986579 + 0.170881i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.31832 + 2.28340i −0.0541371 + 0.0937681i −0.891824 0.452383i \(-0.850574\pi\)
0.837687 + 0.546151i \(0.183907\pi\)
\(594\) 0 0
\(595\) −17.8035 4.05332i −0.729871 0.166170i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 37.9371i 1.55007i 0.631919 + 0.775034i \(0.282267\pi\)
−0.631919 + 0.775034i \(0.717733\pi\)
\(600\) 0 0
\(601\) −26.3440 + 15.2097i −1.07459 + 0.620417i −0.929433 0.368991i \(-0.879703\pi\)
−0.145161 + 0.989408i \(0.546370\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −14.7808 + 25.6011i −0.600925 + 1.04083i
\(606\) 0 0
\(607\) −38.5356 + 22.2485i −1.56411 + 0.903040i −0.567277 + 0.823527i \(0.692003\pi\)
−0.996834 + 0.0795126i \(0.974664\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.26197 + 1.88330i 0.131965 + 0.0761901i
\(612\) 0 0
\(613\) −23.2533 40.2759i −0.939192 1.62673i −0.766982 0.641668i \(-0.778243\pi\)
−0.172210 0.985060i \(-0.555091\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18.9058 10.9153i −0.761118 0.439432i 0.0685792 0.997646i \(-0.478153\pi\)
−0.829697 + 0.558214i \(0.811487\pi\)
\(618\) 0 0
\(619\) 6.29883 + 3.63663i 0.253171 + 0.146169i 0.621216 0.783640i \(-0.286639\pi\)
−0.368044 + 0.929808i \(0.619972\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −11.5160 2.62185i −0.461378 0.105042i
\(624\) 0 0
\(625\) −4.76067 8.24573i −0.190427 0.329829i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −47.6109 −1.89837
\(630\) 0 0
\(631\) 39.2496 1.56250 0.781252 0.624216i \(-0.214582\pi\)
0.781252 + 0.624216i \(0.214582\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9.86350 + 17.0841i 0.391421 + 0.677961i
\(636\) 0 0
\(637\) −7.02860 + 0.534426i −0.278483 + 0.0211747i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −29.8786 17.2504i −1.18013 0.681351i −0.224088 0.974569i \(-0.571940\pi\)
−0.956046 + 0.293218i \(0.905274\pi\)
\(642\) 0 0
\(643\) 5.08992 + 2.93867i 0.200727 + 0.115890i 0.596994 0.802245i \(-0.296361\pi\)
−0.396268 + 0.918135i \(0.629695\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14.6539 + 25.3814i 0.576106 + 0.997844i 0.995921 + 0.0902346i \(0.0287617\pi\)
−0.419815 + 0.907610i \(0.637905\pi\)
\(648\) 0 0
\(649\) 72.1549 + 41.6587i 2.83233 + 1.63525i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −36.8999 + 21.3042i −1.44400 + 0.833696i −0.998114 0.0613917i \(-0.980446\pi\)
−0.445890 + 0.895088i \(0.647113\pi\)
\(654\) 0 0
\(655\) −4.50901 + 7.80984i −0.176182 + 0.305156i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 19.0891 11.0211i 0.743608 0.429322i −0.0797719 0.996813i \(-0.525419\pi\)
0.823380 + 0.567491i \(0.192086\pi\)
\(660\) 0 0
\(661\) 14.6856i 0.571204i −0.958348 0.285602i \(-0.907806\pi\)
0.958348 0.285602i \(-0.0921935\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.34157 + 1.65085i −0.207137 + 0.0640170i
\(666\) 0 0
\(667\) 15.5725 26.9724i 0.602971 1.04438i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 25.6254 44.3845i 0.989258 1.71344i
\(672\) 0 0
\(673\) 18.8645 + 32.6743i 0.727173 + 1.25950i 0.958073 + 0.286524i \(0.0924997\pi\)
−0.230900 + 0.972978i \(0.574167\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −21.5971 −0.830042 −0.415021 0.909812i \(-0.636226\pi\)
−0.415021 + 0.909812i \(0.636226\pi\)
\(678\) 0 0
\(679\) −2.15271 1.99524i −0.0826135 0.0765704i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −15.8213 + 9.13444i −0.605386 + 0.349520i −0.771157 0.636645i \(-0.780322\pi\)
0.165772 + 0.986164i \(0.446989\pi\)
\(684\) 0 0
\(685\) 13.0900i 0.500145i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −7.00513 −0.266874
\(690\) 0 0
\(691\) 9.91882i 0.377330i −0.982042 0.188665i \(-0.939584\pi\)
0.982042 0.188665i \(-0.0604160\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 18.8712i 0.715826i
\(696\) 0 0
\(697\) 23.5466 0.891890
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 4.41270i 0.166665i 0.996522 + 0.0833327i \(0.0265564\pi\)
−0.996522 + 0.0833327i \(0.973444\pi\)
\(702\) 0 0
\(703\) −12.6252 + 7.28914i −0.476167 + 0.274915i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −14.9339 3.40000i −0.561647 0.127870i
\(708\) 0 0
\(709\) 33.5026 1.25822 0.629108 0.777318i \(-0.283420\pi\)
0.629108 + 0.777318i \(0.283420\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −5.26545 9.12003i −0.197193 0.341548i
\(714\) 0 0
\(715\) 3.31977 5.75000i 0.124152 0.215038i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.57296 6.18855i 0.133249 0.230794i −0.791678 0.610938i \(-0.790792\pi\)
0.924927 + 0.380144i \(0.124126\pi\)
\(720\) 0 0
\(721\) −38.3615 35.5554i −1.42866 1.32415i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 27.4930i 1.02106i
\(726\) 0 0
\(727\) 8.71161 5.02965i 0.323096 0.186539i −0.329676 0.944094i \(-0.606939\pi\)
0.652772 + 0.757555i \(0.273606\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −10.4972 + 18.1816i −0.388252 + 0.672473i
\(732\) 0 0
\(733\) 21.8681 12.6256i 0.807717 0.466335i −0.0384457 0.999261i \(-0.512241\pi\)
0.846162 + 0.532925i \(0.178907\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.664091 0.383413i −0.0244621 0.0141232i
\(738\) 0 0
\(739\) 7.29244 + 12.6309i 0.268257 + 0.464634i 0.968412 0.249357i \(-0.0802191\pi\)
−0.700155 + 0.713991i \(0.746886\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 26.0383 + 15.0332i 0.955251 + 0.551515i 0.894708 0.446651i \(-0.147383\pi\)
0.0605431 + 0.998166i \(0.480717\pi\)
\(744\) 0 0
\(745\) 6.75272 + 3.89869i 0.247401 + 0.142837i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3.73190 + 16.3917i −0.136361 + 0.598940i
\(750\) 0 0
\(751\) −2.76386 4.78715i −0.100855 0.174686i 0.811182 0.584793i \(-0.198824\pi\)
−0.912037 + 0.410108i \(0.865491\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −10.8535 −0.394999
\(756\) 0 0
\(757\) −22.2176 −0.807512 −0.403756 0.914867i \(-0.632296\pi\)
−0.403756 + 0.914867i \(0.632296\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −19.7735 34.2487i −0.716789 1.24151i −0.962265 0.272112i \(-0.912278\pi\)
0.245476 0.969403i \(-0.421056\pi\)
\(762\) 0 0
\(763\) 3.73914 4.03424i 0.135366 0.146049i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −11.6349 6.71742i −0.420113 0.242552i
\(768\) 0 0
\(769\) −27.1448 15.6720i −0.978865 0.565148i −0.0769379 0.997036i \(-0.524514\pi\)
−0.901927 + 0.431888i \(0.857848\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −5.11009 8.85093i −0.183797 0.318346i 0.759373 0.650655i \(-0.225506\pi\)
−0.943171 + 0.332309i \(0.892172\pi\)
\(774\) 0 0
\(775\) 8.05062 + 4.64803i 0.289187 + 0.166962i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.24394 3.60494i 0.223712 0.129160i
\(780\) 0 0
\(781\) −16.7887 + 29.0789i −0.600748 + 1.04053i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −14.2073 + 8.20260i −0.507081 + 0.292763i
\(786\) 0 0
\(787\) 47.8397i 1.70530i 0.522482 + 0.852650i \(0.325006\pi\)
−0.522482 + 0.852650i \(0.674994\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8.75138 + 38.4389i −0.311163 + 1.36673i
\(792\) 0 0
\(793\) −4.13207 + 7.15696i −0.146734 + 0.254151i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 18.7811 32.5297i 0.665259 1.15226i −0.313956 0.949438i \(-0.601654\pi\)
0.979215 0.202825i \(-0.0650123\pi\)
\(798\) 0 0
\(799\) 12.2246 + 21.1737i 0.432476 + 0.749071i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −104.147 −3.67528
\(804\) 0 0
\(805\) 2.72934 11.9881i 0.0961965 0.422526i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 4.88303 2.81922i 0.171678 0.0991184i −0.411699 0.911320i \(-0.635064\pi\)
0.583377 + 0.812202i \(0.301731\pi\)
\(810\) 0 0
\(811\) 29.2693i 1.02778i 0.857855 + 0.513892i \(0.171797\pi\)
−0.857855 + 0.513892i \(0.828203\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.19712 0.147019
\(816\) 0 0
\(817\) 6.42840i 0.224901i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 47.6951i 1.66457i 0.554346 + 0.832286i \(0.312968\pi\)
−0.554346 + 0.832286i \(0.687032\pi\)
\(822\) 0 0
\(823\) −39.5423 −1.37836 −0.689180 0.724591i \(-0.742029\pi\)
−0.689180 + 0.724591i \(0.742029\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 27.9149i 0.970696i 0.874321 + 0.485348i \(0.161307\pi\)
−0.874321 + 0.485348i \(0.838693\pi\)
\(828\) 0 0
\(829\) −19.5489 + 11.2866i −0.678962 + 0.391999i −0.799464 0.600714i \(-0.794883\pi\)
0.120502 + 0.992713i \(0.461550\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −41.2453 19.8074i −1.42907 0.686284i
\(834\) 0 0
\(835\) −7.70934 −0.266793
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 25.2760 + 43.7794i 0.872625 + 1.51143i 0.859271 + 0.511520i \(0.170918\pi\)
0.0133541 + 0.999911i \(0.495749\pi\)
\(840\) 0 0
\(841\) 10.5367 18.2501i 0.363334 0.629312i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 6.32752 10.9596i 0.217673 0.377021i
\(846\) 0 0
\(847\) −50.3560 + 54.3302i −1.73025 + 1.86681i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 32.0592i 1.09897i
\(852\) 0 0
\(853\) 31.0102 17.9037i 1.06177 0.613013i 0.135848 0.990730i \(-0.456624\pi\)
0.925921 + 0.377717i \(0.123291\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 13.8199 23.9368i 0.472079 0.817664i −0.527411 0.849610i \(-0.676837\pi\)
0.999490 + 0.0319461i \(0.0101705\pi\)
\(858\) 0 0
\(859\) 28.0584 16.1995i 0.957340 0.552721i 0.0619868 0.998077i \(-0.480256\pi\)
0.895353 + 0.445356i \(0.146923\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −14.5080 8.37622i −0.493859 0.285130i 0.232315 0.972641i \(-0.425370\pi\)
−0.726174 + 0.687511i \(0.758703\pi\)
\(864\) 0 0
\(865\) 4.46309 + 7.73029i 0.151749 + 0.262838i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 47.9317 + 27.6734i 1.62597 + 0.938755i
\(870\) 0 0
\(871\) 0.107084 + 0.0618250i 0.00362840 + 0.00209486i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 7.32886 + 23.7137i 0.247761 + 0.801669i
\(876\) 0 0
\(877\) 13.0090 + 22.5322i 0.439282 + 0.760859i 0.997634 0.0687448i \(-0.0218994\pi\)
−0.558352 + 0.829604i \(0.688566\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −8.83562 −0.297680 −0.148840 0.988861i \(-0.547554\pi\)
−0.148840 + 0.988861i \(0.547554\pi\)
\(882\) 0 0
\(883\) −12.1308 −0.408234 −0.204117 0.978946i \(-0.565432\pi\)
−0.204117 + 0.978946i \(0.565432\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −10.2553 17.7626i −0.344338 0.596411i 0.640895 0.767628i \(-0.278563\pi\)
−0.985233 + 0.171218i \(0.945230\pi\)
\(888\) 0 0
\(889\) 14.5965 + 47.2292i 0.489550 + 1.58402i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.48331 + 3.74314i 0.216956 + 0.125259i
\(894\) 0 0
\(895\) −0.0464332 0.0268082i −0.00155209 0.000896100i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −8.46552 14.6627i −0.282341 0.489029i
\(900\) 0 0
\(901\) −39.3789 22.7354i −1.31190 0.757427i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.41652 1.39518i 0.0803279 0.0463773i
\(906\) 0 0
\(907\) −21.2066 + 36.7308i −0.704152 + 1.21963i 0.262845 + 0.964838i \(0.415339\pi\)
−0.966997 + 0.254789i \(0.917994\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6.19281 3.57542i 0.205177 0.118459i −0.393891 0.919157i \(-0.628871\pi\)
0.599068 + 0.800698i \(0.295538\pi\)
\(912\) 0 0
\(913\) 13.4475i 0.445046i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15.3615 + 16.5739i −0.507283 + 0.547319i
\(918\) 0 0
\(919\) 3.31427 5.74049i 0.109328 0.189361i −0.806170 0.591683i \(-0.798464\pi\)
0.915498 + 0.402322i \(0.131797\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.70717 4.68895i 0.0891075 0.154339i
\(924\) 0 0
\(925\) 14.1500 + 24.5084i 0.465248 + 0.805833i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12.9656 0.425387 0.212693 0.977119i \(-0.431776\pi\)
0.212693 + 0.977119i \(0.431776\pi\)
\(930\) 0 0
\(931\) −13.9697 + 1.06220i −0.457837 + 0.0348121i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 37.3237 21.5489i 1.22062 0.704723i
\(936\) 0 0
\(937\) 29.9409i 0.978127i 0.872248 + 0.489063i \(0.162661\pi\)
−0.872248 + 0.489063i \(0.837339\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 54.8921 1.78943 0.894715 0.446638i \(-0.147379\pi\)
0.894715 + 0.446638i \(0.147379\pi\)
\(942\) 0 0
\(943\) 15.8553i 0.516319i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.96187i 0.0962478i −0.998841 0.0481239i \(-0.984676\pi\)
0.998841 0.0481239i \(-0.0153242\pi\)
\(948\) 0 0
\(949\) 16.7937 0.545145
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 25.3530i 0.821264i −0.911801 0.410632i \(-0.865308\pi\)
0.911801 0.410632i \(-0.134692\pi\)
\(954\) 0 0
\(955\) 22.2059 12.8206i 0.718565 0.414864i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −7.28170 + 31.9835i −0.235138 + 1.03280i
\(960\) 0 0
\(961\) 25.2752 0.815329
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −3.15621 5.46672i −0.101602 0.175980i
\(966\) 0 0
\(967\) 10.3196 17.8741i 0.331857 0.574794i −0.651019 0.759062i \(-0.725658\pi\)
0.982876 + 0.184268i \(0.0589914\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −15.1851 + 26.3013i −0.487312 + 0.844050i −0.999894 0.0145888i \(-0.995356\pi\)
0.512581 + 0.858639i \(0.328689\pi\)
\(972\) 0 0
\(973\) 10.4976 46.1090i 0.336539 1.47819i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5.11686i 0.163703i 0.996645 + 0.0818514i \(0.0260833\pi\)
−0.996645 + 0.0818514i \(0.973917\pi\)
\(978\) 0 0
\(979\) 24.1425 13.9387i 0.771596 0.445481i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1.94884 + 3.37549i −0.0621584 + 0.107661i −0.895430 0.445202i \(-0.853132\pi\)
0.833272 + 0.552864i \(0.186465\pi\)
\(984\) 0 0
\(985\) 0.101481 0.0585902i 0.00323346 0.00186684i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.2428 7.06836i −0.389297 0.224761i
\(990\) 0 0
\(991\) −7.39964 12.8166i −0.235057 0.407131i 0.724232 0.689556i \(-0.242194\pi\)
−0.959289 + 0.282425i \(0.908861\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 8.39990 + 4.84968i 0.266295 + 0.153745i
\(996\) 0 0
\(997\) 27.2673 + 15.7428i 0.863563 + 0.498578i 0.865204 0.501420i \(-0.167189\pi\)
−0.00164102 + 0.999999i \(0.500522\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.bs.a.1097.15 48
3.2 odd 2 504.2.bs.a.257.7 48
4.3 odd 2 3024.2.ca.e.2609.15 48
7.3 odd 6 1512.2.cx.a.17.15 48
9.2 odd 6 1512.2.cx.a.89.15 48
9.7 even 3 504.2.cx.a.425.15 yes 48
12.11 even 2 1008.2.ca.e.257.18 48
21.17 even 6 504.2.cx.a.185.15 yes 48
28.3 even 6 3024.2.df.e.17.15 48
36.7 odd 6 1008.2.df.e.929.10 48
36.11 even 6 3024.2.df.e.1601.15 48
63.38 even 6 inner 1512.2.bs.a.521.15 48
63.52 odd 6 504.2.bs.a.353.7 yes 48
84.59 odd 6 1008.2.df.e.689.10 48
252.115 even 6 1008.2.ca.e.353.18 48
252.227 odd 6 3024.2.ca.e.2033.15 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.7 48 3.2 odd 2
504.2.bs.a.353.7 yes 48 63.52 odd 6
504.2.cx.a.185.15 yes 48 21.17 even 6
504.2.cx.a.425.15 yes 48 9.7 even 3
1008.2.ca.e.257.18 48 12.11 even 2
1008.2.ca.e.353.18 48 252.115 even 6
1008.2.df.e.689.10 48 84.59 odd 6
1008.2.df.e.929.10 48 36.7 odd 6
1512.2.bs.a.521.15 48 63.38 even 6 inner
1512.2.bs.a.1097.15 48 1.1 even 1 trivial
1512.2.cx.a.17.15 48 7.3 odd 6
1512.2.cx.a.89.15 48 9.2 odd 6
3024.2.ca.e.2033.15 48 252.227 odd 6
3024.2.ca.e.2609.15 48 4.3 odd 2
3024.2.df.e.17.15 48 28.3 even 6
3024.2.df.e.1601.15 48 36.11 even 6