Properties

Label 3024.2.df.e.17.15
Level $3024$
Weight $2$
Character 3024.17
Analytic conductor $24.147$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(17,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.15
Character \(\chi\) \(=\) 3024.17
Dual form 3024.2.df.e.1601.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.05582 q^{5} +(-1.79851 - 1.94045i) q^{7} -6.24489i q^{11} +(-0.872074 - 0.503492i) q^{13} +(-3.26821 + 5.66070i) q^{17} +(-1.73329 + 1.00071i) q^{19} +4.40135i q^{23} -3.88524 q^{25} +(-6.12821 + 3.53813i) q^{29} +(2.07210 - 1.19633i) q^{31} +(-1.89890 - 2.04877i) q^{35} +(-3.64197 - 6.30808i) q^{37} +(-1.80119 + 3.11974i) q^{41} +(-1.60595 - 2.78159i) q^{43} +(-1.87024 + 3.23934i) q^{47} +(-0.530720 + 6.97985i) q^{49} +(6.02455 + 3.47827i) q^{53} -6.59348i q^{55} +(6.67084 + 11.5542i) q^{59} +(7.10733 + 4.10342i) q^{61} +(-0.920753 - 0.531597i) q^{65} +(0.0613962 + 0.106341i) q^{67} +5.37678i q^{71} +(14.4429 + 8.33860i) q^{73} +(-12.1179 + 11.2315i) q^{77} +(-4.43136 + 7.67534i) q^{79} +(-1.07668 - 1.86486i) q^{83} +(-3.45064 + 5.97668i) q^{85} +(2.23201 + 3.86595i) q^{89} +(0.591431 + 2.59775i) q^{91} +(-1.83004 + 1.05657i) q^{95} +(0.960756 - 0.554693i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{25} - 18 q^{29} - 18 q^{31} + 6 q^{41} + 6 q^{43} + 18 q^{47} - 12 q^{49} + 12 q^{53} + 18 q^{61} + 36 q^{65} + 12 q^{77} - 6 q^{79} + 18 q^{89} - 6 q^{91} - 54 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.05582 0.472177 0.236089 0.971732i \(-0.424134\pi\)
0.236089 + 0.971732i \(0.424134\pi\)
\(6\) 0 0
\(7\) −1.79851 1.94045i −0.679773 0.733422i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.24489i 1.88291i −0.337143 0.941453i \(-0.609461\pi\)
0.337143 0.941453i \(-0.390539\pi\)
\(12\) 0 0
\(13\) −0.872074 0.503492i −0.241870 0.139644i 0.374166 0.927362i \(-0.377929\pi\)
−0.616036 + 0.787718i \(0.711262\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.26821 + 5.66070i −0.792656 + 1.37292i 0.131660 + 0.991295i \(0.457969\pi\)
−0.924317 + 0.381626i \(0.875364\pi\)
\(18\) 0 0
\(19\) −1.73329 + 1.00071i −0.397643 + 0.229579i −0.685466 0.728104i \(-0.740402\pi\)
0.287823 + 0.957683i \(0.407068\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.40135i 0.917744i 0.888502 + 0.458872i \(0.151746\pi\)
−0.888502 + 0.458872i \(0.848254\pi\)
\(24\) 0 0
\(25\) −3.88524 −0.777049
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.12821 + 3.53813i −1.13798 + 0.657014i −0.945930 0.324371i \(-0.894847\pi\)
−0.192051 + 0.981385i \(0.561514\pi\)
\(30\) 0 0
\(31\) 2.07210 1.19633i 0.372160 0.214867i −0.302242 0.953231i \(-0.597735\pi\)
0.674402 + 0.738365i \(0.264402\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.89890 2.04877i −0.320973 0.346305i
\(36\) 0 0
\(37\) −3.64197 6.30808i −0.598737 1.03704i −0.993008 0.118048i \(-0.962336\pi\)
0.394271 0.918994i \(-0.370997\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.80119 + 3.11974i −0.281298 + 0.487222i −0.971705 0.236199i \(-0.924098\pi\)
0.690407 + 0.723421i \(0.257432\pi\)
\(42\) 0 0
\(43\) −1.60595 2.78159i −0.244906 0.424189i 0.717199 0.696868i \(-0.245424\pi\)
−0.962105 + 0.272679i \(0.912090\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.87024 + 3.23934i −0.272802 + 0.472507i −0.969578 0.244782i \(-0.921284\pi\)
0.696776 + 0.717289i \(0.254617\pi\)
\(48\) 0 0
\(49\) −0.530720 + 6.97985i −0.0758171 + 0.997122i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.02455 + 3.47827i 0.827535 + 0.477778i 0.853008 0.521898i \(-0.174776\pi\)
−0.0254729 + 0.999676i \(0.508109\pi\)
\(54\) 0 0
\(55\) 6.59348i 0.889065i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.67084 + 11.5542i 0.868469 + 1.50423i 0.863561 + 0.504244i \(0.168229\pi\)
0.00490776 + 0.999988i \(0.498438\pi\)
\(60\) 0 0
\(61\) 7.10733 + 4.10342i 0.910000 + 0.525389i 0.880431 0.474174i \(-0.157253\pi\)
0.0295688 + 0.999563i \(0.490587\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.920753 0.531597i −0.114205 0.0659365i
\(66\) 0 0
\(67\) 0.0613962 + 0.106341i 0.00750074 + 0.0129917i 0.869751 0.493490i \(-0.164279\pi\)
−0.862251 + 0.506482i \(0.830946\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.37678i 0.638107i 0.947737 + 0.319053i \(0.103365\pi\)
−0.947737 + 0.319053i \(0.896635\pi\)
\(72\) 0 0
\(73\) 14.4429 + 8.33860i 1.69041 + 0.975959i 0.954182 + 0.299225i \(0.0967282\pi\)
0.736228 + 0.676734i \(0.236605\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.1179 + 11.2315i −1.38097 + 1.27995i
\(78\) 0 0
\(79\) −4.43136 + 7.67534i −0.498567 + 0.863544i −0.999999 0.00165372i \(-0.999474\pi\)
0.501431 + 0.865197i \(0.332807\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.07668 1.86486i −0.118181 0.204695i 0.800866 0.598844i \(-0.204373\pi\)
−0.919047 + 0.394149i \(0.871040\pi\)
\(84\) 0 0
\(85\) −3.45064 + 5.97668i −0.374274 + 0.648262i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.23201 + 3.86595i 0.236592 + 0.409790i 0.959734 0.280910i \(-0.0906361\pi\)
−0.723142 + 0.690699i \(0.757303\pi\)
\(90\) 0 0
\(91\) 0.591431 + 2.59775i 0.0619988 + 0.272319i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.83004 + 1.05657i −0.187758 + 0.108402i
\(96\) 0 0
\(97\) 0.960756 0.554693i 0.0975500 0.0563205i −0.450431 0.892811i \(-0.648730\pi\)
0.547981 + 0.836491i \(0.315396\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.78892 −0.576019 −0.288009 0.957628i \(-0.592993\pi\)
−0.288009 + 0.957628i \(0.592993\pi\)
\(102\) 0 0
\(103\) 19.7693i 1.94793i −0.226696 0.973966i \(-0.572792\pi\)
0.226696 0.973966i \(-0.427208\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.50275 3.17701i 0.531971 0.307133i −0.209848 0.977734i \(-0.567297\pi\)
0.741819 + 0.670601i \(0.233964\pi\)
\(108\) 0 0
\(109\) −1.03951 + 1.80048i −0.0995669 + 0.172455i −0.911505 0.411288i \(-0.865079\pi\)
0.811939 + 0.583743i \(0.198412\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.9040 + 7.45015i 1.21391 + 0.700851i 0.963609 0.267317i \(-0.0861371\pi\)
0.250301 + 0.968168i \(0.419470\pi\)
\(114\) 0 0
\(115\) 4.64703i 0.433338i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 16.8622 3.83903i 1.54576 0.351923i
\(120\) 0 0
\(121\) −27.9987 −2.54534
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.38122 −0.839082
\(126\) 0 0
\(127\) −18.6841 −1.65794 −0.828971 0.559292i \(-0.811073\pi\)
−0.828971 + 0.559292i \(0.811073\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.54126 −0.746253 −0.373126 0.927780i \(-0.621714\pi\)
−0.373126 + 0.927780i \(0.621714\pi\)
\(132\) 0 0
\(133\) 5.05917 + 1.56357i 0.438686 + 0.135578i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.3980i 1.05923i −0.848238 0.529616i \(-0.822336\pi\)
0.848238 0.529616i \(-0.177664\pi\)
\(138\) 0 0
\(139\) −15.4789 8.93676i −1.31291 0.758006i −0.330329 0.943866i \(-0.607160\pi\)
−0.982576 + 0.185860i \(0.940493\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.14425 + 5.44601i −0.262936 + 0.455418i
\(144\) 0 0
\(145\) −6.47029 + 3.73562i −0.537328 + 0.310227i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.38513i 0.605014i 0.953147 + 0.302507i \(0.0978235\pi\)
−0.953147 + 0.302507i \(0.902176\pi\)
\(150\) 0 0
\(151\) −10.2797 −0.836548 −0.418274 0.908321i \(-0.637365\pi\)
−0.418274 + 0.908321i \(0.637365\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.18776 1.26311i 0.175725 0.101455i
\(156\) 0 0
\(157\) −13.4562 + 7.76894i −1.07392 + 0.620029i −0.929250 0.369451i \(-0.879546\pi\)
−0.144672 + 0.989480i \(0.546213\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.54061 7.91587i 0.673094 0.623858i
\(162\) 0 0
\(163\) −1.98761 3.44264i −0.155682 0.269649i 0.777625 0.628728i \(-0.216424\pi\)
−0.933307 + 0.359079i \(0.883091\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.65088 + 6.32351i −0.282513 + 0.489328i −0.972003 0.234968i \(-0.924502\pi\)
0.689490 + 0.724295i \(0.257835\pi\)
\(168\) 0 0
\(169\) −5.99299 10.3802i −0.460999 0.798474i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.22713 7.32160i 0.321383 0.556651i −0.659391 0.751800i \(-0.729186\pi\)
0.980774 + 0.195149i \(0.0625191\pi\)
\(174\) 0 0
\(175\) 6.98765 + 7.53914i 0.528217 + 0.569905i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.0439783 0.0253909i −0.00328709 0.00189780i 0.498356 0.866973i \(-0.333937\pi\)
−0.501643 + 0.865075i \(0.667271\pi\)
\(180\) 0 0
\(181\) 2.64284i 0.196440i 0.995165 + 0.0982202i \(0.0313149\pi\)
−0.995165 + 0.0982202i \(0.968685\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.84527 6.66020i −0.282710 0.489668i
\(186\) 0 0
\(187\) 35.3505 + 20.4096i 2.58508 + 1.49250i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −21.0319 12.1428i −1.52181 0.878619i −0.999668 0.0257624i \(-0.991799\pi\)
−0.522145 0.852857i \(-0.674868\pi\)
\(192\) 0 0
\(193\) 2.98935 + 5.17771i 0.215178 + 0.372699i 0.953328 0.301938i \(-0.0976335\pi\)
−0.738150 + 0.674637i \(0.764300\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.110985i 0.00790737i −0.999992 0.00395369i \(-0.998741\pi\)
0.999992 0.00395369i \(-0.00125850\pi\)
\(198\) 0 0
\(199\) −7.95580 4.59329i −0.563972 0.325609i 0.190766 0.981636i \(-0.438903\pi\)
−0.754738 + 0.656026i \(0.772236\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 17.8872 + 5.52816i 1.25544 + 0.388001i
\(204\) 0 0
\(205\) −1.90173 + 3.29389i −0.132822 + 0.230055i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.24935 + 10.8242i 0.432276 + 0.748725i
\(210\) 0 0
\(211\) −7.95208 + 13.7734i −0.547443 + 0.948200i 0.451005 + 0.892521i \(0.351066\pi\)
−0.998449 + 0.0556786i \(0.982268\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.69560 2.93686i −0.115639 0.200292i
\(216\) 0 0
\(217\) −6.04811 1.86921i −0.410573 0.126890i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.70023 3.29103i 0.383439 0.221379i
\(222\) 0 0
\(223\) −2.79336 + 1.61275i −0.187057 + 0.107998i −0.590604 0.806961i \(-0.701111\pi\)
0.403547 + 0.914959i \(0.367777\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6.19265 −0.411021 −0.205510 0.978655i \(-0.565885\pi\)
−0.205510 + 0.978655i \(0.565885\pi\)
\(228\) 0 0
\(229\) 19.1873i 1.26793i −0.773361 0.633965i \(-0.781426\pi\)
0.773361 0.633965i \(-0.218574\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.45069 + 1.99225i −0.226062 + 0.130517i −0.608754 0.793359i \(-0.708330\pi\)
0.382692 + 0.923876i \(0.374997\pi\)
\(234\) 0 0
\(235\) −1.97463 + 3.42016i −0.128811 + 0.223107i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −13.2139 7.62905i −0.854736 0.493482i 0.00750987 0.999972i \(-0.497610\pi\)
−0.862246 + 0.506490i \(0.830943\pi\)
\(240\) 0 0
\(241\) 8.79681i 0.566653i −0.959024 0.283326i \(-0.908562\pi\)
0.959024 0.283326i \(-0.0914379\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.560344 + 7.36947i −0.0357991 + 0.470818i
\(246\) 0 0
\(247\) 2.01540 0.128237
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.38549 0.592407 0.296204 0.955125i \(-0.404279\pi\)
0.296204 + 0.955125i \(0.404279\pi\)
\(252\) 0 0
\(253\) 27.4860 1.72803
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.65183 −0.290173 −0.145087 0.989419i \(-0.546346\pi\)
−0.145087 + 0.989419i \(0.546346\pi\)
\(258\) 0 0
\(259\) −5.69042 + 18.4122i −0.353585 + 1.14408i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 21.1175i 1.30216i 0.759010 + 0.651079i \(0.225683\pi\)
−0.759010 + 0.651079i \(0.774317\pi\)
\(264\) 0 0
\(265\) 6.36084 + 3.67243i 0.390743 + 0.225596i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.87450 10.1749i 0.358175 0.620377i −0.629481 0.777016i \(-0.716733\pi\)
0.987656 + 0.156639i \(0.0500659\pi\)
\(270\) 0 0
\(271\) −6.24601 + 3.60613i −0.379418 + 0.219057i −0.677565 0.735463i \(-0.736965\pi\)
0.298147 + 0.954520i \(0.403631\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 24.2629i 1.46311i
\(276\) 0 0
\(277\) 0.275860 0.0165749 0.00828743 0.999966i \(-0.497362\pi\)
0.00828743 + 0.999966i \(0.497362\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.7254 8.50170i 0.878442 0.507169i 0.00829763 0.999966i \(-0.497359\pi\)
0.870144 + 0.492797i \(0.164025\pi\)
\(282\) 0 0
\(283\) 4.14236 2.39159i 0.246238 0.142165i −0.371803 0.928312i \(-0.621260\pi\)
0.618040 + 0.786146i \(0.287927\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.29317 2.11578i 0.548558 0.124890i
\(288\) 0 0
\(289\) −12.8623 22.2782i −0.756608 1.31048i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −11.8580 + 20.5386i −0.692750 + 1.19988i 0.278184 + 0.960528i \(0.410268\pi\)
−0.970933 + 0.239350i \(0.923066\pi\)
\(294\) 0 0
\(295\) 7.04320 + 12.1992i 0.410071 + 0.710264i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.21604 3.83830i 0.128157 0.221975i
\(300\) 0 0
\(301\) −2.50923 + 8.11901i −0.144630 + 0.467972i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 7.50406 + 4.33247i 0.429681 + 0.248076i
\(306\) 0 0
\(307\) 8.38070i 0.478312i −0.970981 0.239156i \(-0.923129\pi\)
0.970981 0.239156i \(-0.0768707\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.39585 14.5420i −0.476085 0.824603i 0.523540 0.852001i \(-0.324611\pi\)
−0.999625 + 0.0273979i \(0.991278\pi\)
\(312\) 0 0
\(313\) −10.8945 6.28994i −0.615793 0.355528i 0.159436 0.987208i \(-0.449032\pi\)
−0.775229 + 0.631680i \(0.782366\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.61807 5.55300i −0.540205 0.311887i 0.204957 0.978771i \(-0.434294\pi\)
−0.745162 + 0.666884i \(0.767628\pi\)
\(318\) 0 0
\(319\) 22.0952 + 38.2701i 1.23710 + 2.14271i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 13.0821i 0.727910i
\(324\) 0 0
\(325\) 3.38822 + 1.95619i 0.187945 + 0.108510i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 9.64943 2.19689i 0.531991 0.121118i
\(330\) 0 0
\(331\) −2.07127 + 3.58754i −0.113847 + 0.197189i −0.917318 0.398154i \(-0.869651\pi\)
0.803471 + 0.595344i \(0.202984\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.0648233 + 0.112277i 0.00354168 + 0.00613437i
\(336\) 0 0
\(337\) 14.7897 25.6166i 0.805649 1.39542i −0.110204 0.993909i \(-0.535150\pi\)
0.915852 0.401515i \(-0.131516\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −7.47094 12.9400i −0.404574 0.700743i
\(342\) 0 0
\(343\) 14.4986 11.5235i 0.782850 0.622211i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.42191 + 0.820940i −0.0763321 + 0.0440704i −0.537680 0.843149i \(-0.680699\pi\)
0.461348 + 0.887219i \(0.347366\pi\)
\(348\) 0 0
\(349\) −17.5869 + 10.1538i −0.941405 + 0.543520i −0.890400 0.455178i \(-0.849576\pi\)
−0.0510046 + 0.998698i \(0.516242\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −17.7337 −0.943872 −0.471936 0.881633i \(-0.656445\pi\)
−0.471936 + 0.881633i \(0.656445\pi\)
\(354\) 0 0
\(355\) 5.67691i 0.301299i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −23.6573 + 13.6585i −1.24858 + 0.720871i −0.970827 0.239781i \(-0.922924\pi\)
−0.277757 + 0.960651i \(0.589591\pi\)
\(360\) 0 0
\(361\) −7.49715 + 12.9854i −0.394587 + 0.683444i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.2491 + 8.80406i 0.798173 + 0.460825i
\(366\) 0 0
\(367\) 1.88999i 0.0986565i 0.998783 + 0.0493283i \(0.0157080\pi\)
−0.998783 + 0.0493283i \(0.984292\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.08578 17.9461i −0.212123 0.931713i
\(372\) 0 0
\(373\) 18.1173 0.938080 0.469040 0.883177i \(-0.344600\pi\)
0.469040 + 0.883177i \(0.344600\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7.12567 0.366991
\(378\) 0 0
\(379\) 3.05133 0.156736 0.0783682 0.996924i \(-0.475029\pi\)
0.0783682 + 0.996924i \(0.475029\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −17.7393 −0.906438 −0.453219 0.891399i \(-0.649725\pi\)
−0.453219 + 0.891399i \(0.649725\pi\)
\(384\) 0 0
\(385\) −12.7943 + 11.8585i −0.652060 + 0.604363i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 21.0907i 1.06934i −0.845061 0.534670i \(-0.820436\pi\)
0.845061 0.534670i \(-0.179564\pi\)
\(390\) 0 0
\(391\) −24.9147 14.3845i −1.25999 0.727456i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4.67872 + 8.10378i −0.235412 + 0.407745i
\(396\) 0 0
\(397\) 19.7684 11.4133i 0.992147 0.572816i 0.0862315 0.996275i \(-0.472518\pi\)
0.905915 + 0.423459i \(0.139184\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.61190i 0.0804944i −0.999190 0.0402472i \(-0.987185\pi\)
0.999190 0.0402472i \(-0.0128145\pi\)
\(402\) 0 0
\(403\) −2.40937 −0.120019
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −39.3933 + 22.7437i −1.95265 + 1.12737i
\(408\) 0 0
\(409\) −19.9023 + 11.4906i −0.984103 + 0.568172i −0.903506 0.428575i \(-0.859016\pi\)
−0.0805967 + 0.996747i \(0.525683\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10.4229 33.7248i 0.512876 1.65949i
\(414\) 0 0
\(415\) −1.13678 1.96896i −0.0558022 0.0966522i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 9.46660 16.3966i 0.462474 0.801028i −0.536610 0.843830i \(-0.680295\pi\)
0.999084 + 0.0428027i \(0.0136287\pi\)
\(420\) 0 0
\(421\) −9.69784 16.7971i −0.472644 0.818643i 0.526866 0.849948i \(-0.323367\pi\)
−0.999510 + 0.0313053i \(0.990034\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 12.6978 21.9932i 0.615933 1.06683i
\(426\) 0 0
\(427\) −4.82011 21.1715i −0.233262 1.02456i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 21.5507 + 12.4423i 1.03806 + 0.599323i 0.919283 0.393598i \(-0.128770\pi\)
0.118776 + 0.992921i \(0.462103\pi\)
\(432\) 0 0
\(433\) 26.4665i 1.27190i 0.771731 + 0.635949i \(0.219391\pi\)
−0.771731 + 0.635949i \(0.780609\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.40449 7.62879i −0.210695 0.364935i
\(438\) 0 0
\(439\) −23.7117 13.6900i −1.13170 0.653386i −0.187336 0.982296i \(-0.559985\pi\)
−0.944361 + 0.328910i \(0.893319\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 25.6713 + 14.8213i 1.21968 + 0.704183i 0.964850 0.262802i \(-0.0846467\pi\)
0.254831 + 0.966985i \(0.417980\pi\)
\(444\) 0 0
\(445\) 2.35660 + 4.08175i 0.111713 + 0.193493i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.2726i 0.862339i 0.902271 + 0.431170i \(0.141899\pi\)
−0.902271 + 0.431170i \(0.858101\pi\)
\(450\) 0 0
\(451\) 19.4825 + 11.2482i 0.917394 + 0.529658i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.624445 + 2.74276i 0.0292744 + 0.128583i
\(456\) 0 0
\(457\) 8.98232 15.5578i 0.420175 0.727765i −0.575781 0.817604i \(-0.695302\pi\)
0.995956 + 0.0898389i \(0.0286352\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.51625 + 11.2865i 0.303492 + 0.525664i 0.976924 0.213585i \(-0.0685140\pi\)
−0.673432 + 0.739249i \(0.735181\pi\)
\(462\) 0 0
\(463\) 4.24422 7.35121i 0.197246 0.341640i −0.750389 0.660997i \(-0.770134\pi\)
0.947634 + 0.319357i \(0.103467\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0.895025 + 1.55023i 0.0414168 + 0.0717360i 0.885991 0.463703i \(-0.153480\pi\)
−0.844574 + 0.535439i \(0.820146\pi\)
\(468\) 0 0
\(469\) 0.0959287 0.310393i 0.00442958 0.0143326i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −17.3708 + 10.0290i −0.798709 + 0.461135i
\(474\) 0 0
\(475\) 6.73424 3.88801i 0.308988 0.178394i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −24.6379 −1.12573 −0.562867 0.826547i \(-0.690302\pi\)
−0.562867 + 0.826547i \(0.690302\pi\)
\(480\) 0 0
\(481\) 7.33482i 0.334439i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.01439 0.585656i 0.0460609 0.0265933i
\(486\) 0 0
\(487\) −13.1846 + 22.8364i −0.597450 + 1.03481i 0.395746 + 0.918360i \(0.370486\pi\)
−0.993196 + 0.116454i \(0.962847\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 21.0365 + 12.1454i 0.949365 + 0.548116i 0.892884 0.450288i \(-0.148679\pi\)
0.0564812 + 0.998404i \(0.482012\pi\)
\(492\) 0 0
\(493\) 46.2533i 2.08314i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.4334 9.67020i 0.468002 0.433768i
\(498\) 0 0
\(499\) 33.0439 1.47925 0.739625 0.673020i \(-0.235003\pi\)
0.739625 + 0.673020i \(0.235003\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 31.5400 1.40630 0.703149 0.711043i \(-0.251777\pi\)
0.703149 + 0.711043i \(0.251777\pi\)
\(504\) 0 0
\(505\) −6.11205 −0.271983
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10.7247 0.475365 0.237683 0.971343i \(-0.423612\pi\)
0.237683 + 0.971343i \(0.423612\pi\)
\(510\) 0 0
\(511\) −9.79500 43.0228i −0.433305 1.90322i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 20.8729i 0.919768i
\(516\) 0 0
\(517\) 20.2294 + 11.6794i 0.889686 + 0.513661i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.64350 + 13.2389i −0.334868 + 0.580008i −0.983459 0.181128i \(-0.942025\pi\)
0.648591 + 0.761137i \(0.275358\pi\)
\(522\) 0 0
\(523\) 28.6654 16.5500i 1.25345 0.723681i 0.281659 0.959515i \(-0.409115\pi\)
0.971793 + 0.235834i \(0.0757820\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 15.6394i 0.681262i
\(528\) 0 0
\(529\) 3.62814 0.157745
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.14153 1.81376i 0.136075 0.0785629i
\(534\) 0 0
\(535\) 5.80991 3.35435i 0.251184 0.145021i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 43.5884 + 3.31429i 1.87749 + 0.142756i
\(540\) 0 0
\(541\) −16.2012 28.0613i −0.696543 1.20645i −0.969658 0.244466i \(-0.921387\pi\)
0.273115 0.961981i \(-0.411946\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.09753 + 1.90099i −0.0470132 + 0.0814293i
\(546\) 0 0
\(547\) 4.77988 + 8.27900i 0.204373 + 0.353984i 0.949933 0.312454i \(-0.101151\pi\)
−0.745560 + 0.666439i \(0.767818\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.08130 12.2652i 0.301673 0.522514i
\(552\) 0 0
\(553\) 22.8635 5.20534i 0.972255 0.221353i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16.6963 + 9.63963i 0.707446 + 0.408444i 0.810115 0.586271i \(-0.199405\pi\)
−0.102669 + 0.994716i \(0.532738\pi\)
\(558\) 0 0
\(559\) 3.23434i 0.136798i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.71960 + 2.97844i 0.0724725 + 0.125526i 0.899984 0.435922i \(-0.143578\pi\)
−0.827512 + 0.561448i \(0.810244\pi\)
\(564\) 0 0
\(565\) 13.6243 + 7.86602i 0.573180 + 0.330926i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −29.9406 17.2862i −1.25518 0.724677i −0.283044 0.959107i \(-0.591344\pi\)
−0.972133 + 0.234430i \(0.924678\pi\)
\(570\) 0 0
\(571\) 23.7474 + 41.1317i 0.993797 + 1.72131i 0.593205 + 0.805051i \(0.297862\pi\)
0.400592 + 0.916256i \(0.368804\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 17.1003i 0.713132i
\(576\) 0 0
\(577\) 16.6404 + 9.60732i 0.692748 + 0.399958i 0.804641 0.593762i \(-0.202358\pi\)
−0.111893 + 0.993720i \(0.535691\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.68226 + 5.44321i −0.0697918 + 0.225822i
\(582\) 0 0
\(583\) 21.7215 37.6227i 0.899611 1.55817i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12.1279 21.0061i −0.500570 0.867013i −1.00000 0.000658772i \(-0.999790\pi\)
0.499429 0.866355i \(-0.333543\pi\)
\(588\) 0 0
\(589\) −2.39436 + 4.14716i −0.0986579 + 0.170881i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.31832 + 2.28340i 0.0541371 + 0.0937681i 0.891824 0.452383i \(-0.149426\pi\)
−0.837687 + 0.546151i \(0.816093\pi\)
\(594\) 0 0
\(595\) 17.8035 4.05332i 0.729871 0.166170i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −32.8545 + 18.9686i −1.34240 + 0.775034i −0.987159 0.159741i \(-0.948934\pi\)
−0.355240 + 0.934775i \(0.615601\pi\)
\(600\) 0 0
\(601\) 26.3440 15.2097i 1.07459 0.620417i 0.145161 0.989408i \(-0.453630\pi\)
0.929433 + 0.368991i \(0.120297\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −29.5616 −1.20185
\(606\) 0 0
\(607\) 44.4970i 1.80608i −0.429557 0.903040i \(-0.641330\pi\)
0.429557 0.903040i \(-0.358670\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.26197 1.88330i 0.131965 0.0761901i
\(612\) 0 0
\(613\) −23.2533 + 40.2759i −0.939192 + 1.62673i −0.172210 + 0.985060i \(0.555091\pi\)
−0.766982 + 0.641668i \(0.778243\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18.9058 10.9153i −0.761118 0.439432i 0.0685792 0.997646i \(-0.478153\pi\)
−0.829697 + 0.558214i \(0.811487\pi\)
\(618\) 0 0
\(619\) 7.27326i 0.292337i −0.989260 0.146169i \(-0.953306\pi\)
0.989260 0.146169i \(-0.0466942\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.48741 11.2841i 0.139720 0.452086i
\(624\) 0 0
\(625\) 9.52135 0.380854
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 47.6109 1.89837
\(630\) 0 0
\(631\) −39.2496 −1.56250 −0.781252 0.624216i \(-0.785418\pi\)
−0.781252 + 0.624216i \(0.785418\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −19.7270 −0.782842
\(636\) 0 0
\(637\) 3.97713 5.81973i 0.157579 0.230586i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 34.5008i 1.36270i 0.731957 + 0.681351i \(0.238607\pi\)
−0.731957 + 0.681351i \(0.761393\pi\)
\(642\) 0 0
\(643\) 5.08992 + 2.93867i 0.200727 + 0.115890i 0.596994 0.802245i \(-0.296361\pi\)
−0.396268 + 0.918135i \(0.629695\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14.6539 25.3814i 0.576106 0.997844i −0.419815 0.907610i \(-0.637905\pi\)
0.995921 0.0902346i \(-0.0287617\pi\)
\(648\) 0 0
\(649\) 72.1549 41.6587i 2.83233 1.63525i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 42.6083i 1.66739i −0.552224 0.833696i \(-0.686221\pi\)
0.552224 0.833696i \(-0.313779\pi\)
\(654\) 0 0
\(655\) −9.01803 −0.352363
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −19.0891 + 11.0211i −0.743608 + 0.429322i −0.823380 0.567491i \(-0.807914\pi\)
0.0797719 + 0.996813i \(0.474581\pi\)
\(660\) 0 0
\(661\) 12.7181 7.34280i 0.494677 0.285602i −0.231836 0.972755i \(-0.574473\pi\)
0.726513 + 0.687153i \(0.241140\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.34157 + 1.65085i 0.207137 + 0.0640170i
\(666\) 0 0
\(667\) −15.5725 26.9724i −0.602971 1.04438i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 25.6254 44.3845i 0.989258 1.71344i
\(672\) 0 0
\(673\) 18.8645 + 32.6743i 0.727173 + 1.25950i 0.958073 + 0.286524i \(0.0924997\pi\)
−0.230900 + 0.972978i \(0.574167\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10.7985 + 18.7036i −0.415021 + 0.718838i −0.995431 0.0954871i \(-0.969559\pi\)
0.580410 + 0.814325i \(0.302892\pi\)
\(678\) 0 0
\(679\) −2.80429 0.866682i −0.107619 0.0332602i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −15.8213 9.13444i −0.605386 0.349520i 0.165772 0.986164i \(-0.446989\pi\)
−0.771157 + 0.636645i \(0.780322\pi\)
\(684\) 0 0
\(685\) 13.0900i 0.500145i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.50257 6.06662i −0.133437 0.231120i
\(690\) 0 0
\(691\) 8.58995 + 4.95941i 0.326777 + 0.188665i 0.654409 0.756140i \(-0.272917\pi\)
−0.327632 + 0.944805i \(0.606251\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −16.3430 9.43561i −0.619924 0.357913i
\(696\) 0 0
\(697\) −11.7733 20.3919i −0.445945 0.772400i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 4.41270i 0.166665i 0.996522 + 0.0833327i \(0.0265564\pi\)
−0.996522 + 0.0833327i \(0.973444\pi\)
\(702\) 0 0
\(703\) 12.6252 + 7.28914i 0.476167 + 0.274915i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 10.4114 + 11.2331i 0.391562 + 0.422465i
\(708\) 0 0
\(709\) −16.7513 + 29.0141i −0.629108 + 1.08965i 0.358623 + 0.933482i \(0.383246\pi\)
−0.987731 + 0.156165i \(0.950087\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 5.26545 + 9.12003i 0.197193 + 0.341548i
\(714\) 0 0
\(715\) −3.31977 + 5.75000i −0.124152 + 0.215038i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.57296 + 6.18855i 0.133249 + 0.230794i 0.924927 0.380144i \(-0.124126\pi\)
−0.791678 + 0.610938i \(0.790792\pi\)
\(720\) 0 0
\(721\) −38.3615 + 35.5554i −1.42866 + 1.32415i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 23.8096 13.7465i 0.884267 0.510532i
\(726\) 0 0
\(727\) 8.71161 5.02965i 0.323096 0.186539i −0.329676 0.944094i \(-0.606939\pi\)
0.652772 + 0.757555i \(0.273606\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 20.9944 0.776504
\(732\) 0 0
\(733\) 25.2511i 0.932671i −0.884608 0.466335i \(-0.845574\pi\)
0.884608 0.466335i \(-0.154426\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.664091 0.383413i 0.0244621 0.0141232i
\(738\) 0 0
\(739\) −7.29244 + 12.6309i −0.268257 + 0.464634i −0.968412 0.249357i \(-0.919781\pi\)
0.700155 + 0.713991i \(0.253114\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −26.0383 15.0332i −0.955251 0.551515i −0.0605431 0.998166i \(-0.519283\pi\)
−0.894708 + 0.446651i \(0.852617\pi\)
\(744\) 0 0
\(745\) 7.79737i 0.285674i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −16.0616 4.96394i −0.586878 0.181378i
\(750\) 0 0
\(751\) −5.52772 −0.201709 −0.100855 0.994901i \(-0.532158\pi\)
−0.100855 + 0.994901i \(0.532158\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −10.8535 −0.394999
\(756\) 0 0
\(757\) −22.2176 −0.807512 −0.403756 0.914867i \(-0.632296\pi\)
−0.403756 + 0.914867i \(0.632296\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −39.5470 −1.43358 −0.716789 0.697290i \(-0.754389\pi\)
−0.716789 + 0.697290i \(0.754389\pi\)
\(762\) 0 0
\(763\) 5.36332 1.22107i 0.194165 0.0442056i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 13.4348i 0.485104i
\(768\) 0 0
\(769\) 27.1448 + 15.6720i 0.978865 + 0.565148i 0.901927 0.431888i \(-0.142152\pi\)
0.0769379 + 0.997036i \(0.475486\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5.11009 8.85093i 0.183797 0.318346i −0.759373 0.650655i \(-0.774494\pi\)
0.943171 + 0.332309i \(0.107828\pi\)
\(774\) 0 0
\(775\) −8.05062 + 4.64803i −0.289187 + 0.166962i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 7.20988i 0.258321i
\(780\) 0 0
\(781\) 33.5774 1.20150
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −14.2073 + 8.20260i −0.507081 + 0.292763i
\(786\) 0 0
\(787\) 41.4304 23.9198i 1.47683 0.852650i 0.477176 0.878808i \(-0.341661\pi\)
0.999658 + 0.0261578i \(0.00832724\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8.75138 38.4389i −0.311163 1.36673i
\(792\) 0 0
\(793\) −4.13207 7.15696i −0.146734 0.254151i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −18.7811 + 32.5297i −0.665259 + 1.15226i 0.313956 + 0.949438i \(0.398346\pi\)
−0.979215 + 0.202825i \(0.934988\pi\)
\(798\) 0 0
\(799\) −12.2246 21.1737i −0.432476 0.749071i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 52.0737 90.1942i 1.83764 3.18289i
\(804\) 0 0
\(805\) 9.01735 8.35773i 0.317820 0.294571i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −4.88303 2.81922i −0.171678 0.0991184i 0.411699 0.911320i \(-0.364936\pi\)
−0.583377 + 0.812202i \(0.698269\pi\)
\(810\) 0 0
\(811\) 29.2693i 1.02778i 0.857855 + 0.513892i \(0.171797\pi\)
−0.857855 + 0.513892i \(0.828203\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.09856 3.63481i −0.0735093 0.127322i
\(816\) 0 0
\(817\) 5.56716 + 3.21420i 0.194770 + 0.112451i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −41.3052 23.8476i −1.44156 0.832286i −0.443608 0.896221i \(-0.646302\pi\)
−0.997954 + 0.0639351i \(0.979635\pi\)
\(822\) 0 0
\(823\) −19.7712 34.2447i −0.689180 1.19369i −0.972104 0.234552i \(-0.924638\pi\)
0.282924 0.959142i \(-0.408696\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 27.9149i 0.970696i −0.874321 0.485348i \(-0.838693\pi\)
0.874321 0.485348i \(-0.161307\pi\)
\(828\) 0 0
\(829\) −19.5489 11.2866i −0.678962 0.391999i 0.120502 0.992713i \(-0.461550\pi\)
−0.799464 + 0.600714i \(0.794883\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −37.7763 25.8158i −1.30887 0.894466i
\(834\) 0 0
\(835\) −3.85467 + 6.67648i −0.133396 + 0.231049i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 25.2760 + 43.7794i 0.872625 + 1.51143i 0.859271 + 0.511520i \(0.170918\pi\)
0.0133541 + 0.999911i \(0.495749\pi\)
\(840\) 0 0
\(841\) 10.5367 18.2501i 0.363334 0.629312i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −6.32752 10.9596i −0.217673 0.377021i
\(846\) 0 0
\(847\) 50.3560 + 54.3302i 1.73025 + 1.86681i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 27.7641 16.0296i 0.951740 0.549487i
\(852\) 0 0
\(853\) −31.0102 + 17.9037i −1.06177 + 0.613013i −0.925921 0.377717i \(-0.876709\pi\)
−0.135848 + 0.990730i \(0.543376\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 27.6398 0.944157 0.472079 0.881556i \(-0.343504\pi\)
0.472079 + 0.881556i \(0.343504\pi\)
\(858\) 0 0
\(859\) 32.3990i 1.10544i 0.833367 + 0.552721i \(0.186410\pi\)
−0.833367 + 0.552721i \(0.813590\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −14.5080 + 8.37622i −0.493859 + 0.285130i −0.726174 0.687511i \(-0.758703\pi\)
0.232315 + 0.972641i \(0.425370\pi\)
\(864\) 0 0
\(865\) 4.46309 7.73029i 0.151749 0.262838i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 47.9317 + 27.6734i 1.62597 + 0.938755i
\(870\) 0 0
\(871\) 0.123650i 0.00418972i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 16.8722 + 18.2038i 0.570385 + 0.615401i
\(876\) 0 0
\(877\) −26.0180 −0.878565 −0.439282 0.898349i \(-0.644767\pi\)
−0.439282 + 0.898349i \(0.644767\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 8.83562 0.297680 0.148840 0.988861i \(-0.452446\pi\)
0.148840 + 0.988861i \(0.452446\pi\)
\(882\) 0 0
\(883\) 12.1308 0.408234 0.204117 0.978946i \(-0.434568\pi\)
0.204117 + 0.978946i \(0.434568\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 20.5105 0.688676 0.344338 0.938846i \(-0.388103\pi\)
0.344338 + 0.938846i \(0.388103\pi\)
\(888\) 0 0
\(889\) 33.6035 + 36.2555i 1.12702 + 1.21597i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.48628i 0.250519i
\(894\) 0 0
\(895\) −0.0464332 0.0268082i −0.00155209 0.000896100i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −8.46552 + 14.6627i −0.282341 + 0.489029i
\(900\) 0 0
\(901\) −39.3789 + 22.7354i −1.31190 + 0.757427i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.79036i 0.0927546i
\(906\) 0 0
\(907\) −42.4131 −1.40830 −0.704152 0.710049i \(-0.748673\pi\)
−0.704152 + 0.710049i \(0.748673\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −6.19281 + 3.57542i −0.205177 + 0.118459i −0.599068 0.800698i \(-0.704462\pi\)
0.393891 + 0.919157i \(0.371129\pi\)
\(912\) 0 0
\(913\) −11.6459 + 6.72373i −0.385421 + 0.222523i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15.3615 + 16.5739i 0.507283 + 0.547319i
\(918\) 0 0
\(919\) −3.31427 5.74049i −0.109328 0.189361i 0.806170 0.591683i \(-0.201536\pi\)
−0.915498 + 0.402322i \(0.868203\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.70717 4.68895i 0.0891075 0.154339i
\(924\) 0 0
\(925\) 14.1500 + 24.5084i 0.465248 + 0.805833i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 6.48279 11.2285i 0.212693 0.368396i −0.739863 0.672757i \(-0.765110\pi\)
0.952557 + 0.304362i \(0.0984431\pi\)
\(930\) 0 0
\(931\) −6.06494 12.6292i −0.198770 0.413905i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 37.3237 + 21.5489i 1.22062 + 0.704723i
\(936\) 0 0
\(937\) 29.9409i 0.978127i −0.872248 0.489063i \(-0.837339\pi\)
0.872248 0.489063i \(-0.162661\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 27.4460 + 47.5379i 0.894715 + 1.54969i 0.834157 + 0.551527i \(0.185955\pi\)
0.0605579 + 0.998165i \(0.480712\pi\)
\(942\) 0 0
\(943\) −13.7311 7.92764i −0.447145 0.258160i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −2.56505 1.48093i −0.0833530 0.0481239i 0.457744 0.889084i \(-0.348658\pi\)
−0.541097 + 0.840960i \(0.681991\pi\)
\(948\) 0 0
\(949\) −8.39683 14.5437i −0.272573 0.472110i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 25.3530i 0.821264i −0.911801 0.410632i \(-0.865308\pi\)
0.911801 0.410632i \(-0.134692\pi\)
\(954\) 0 0
\(955\) −22.2059 12.8206i −0.718565 0.414864i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −24.0577 + 22.2979i −0.776864 + 0.720037i
\(960\) 0 0
\(961\) −12.6376 + 21.8890i −0.407665 + 0.706096i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3.15621 + 5.46672i 0.101602 + 0.175980i
\(966\) 0 0
\(967\) −10.3196 + 17.8741i −0.331857 + 0.574794i −0.982876 0.184268i \(-0.941009\pi\)
0.651019 + 0.759062i \(0.274342\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −15.1851 26.3013i −0.487312 0.844050i 0.512581 0.858639i \(-0.328689\pi\)
−0.999894 + 0.0145888i \(0.995356\pi\)
\(972\) 0 0
\(973\) 10.4976 + 46.1090i 0.336539 + 1.47819i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.43133 2.55843i 0.141771 0.0818514i −0.427437 0.904045i \(-0.640583\pi\)
0.569208 + 0.822194i \(0.307250\pi\)
\(978\) 0 0
\(979\) 24.1425 13.9387i 0.771596 0.445481i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3.89768 0.124317 0.0621584 0.998066i \(-0.480202\pi\)
0.0621584 + 0.998066i \(0.480202\pi\)
\(984\) 0 0
\(985\) 0.117180i 0.00373368i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12.2428 7.06836i 0.389297 0.224761i
\(990\) 0 0
\(991\) 7.39964 12.8166i 0.235057 0.407131i −0.724232 0.689556i \(-0.757806\pi\)
0.959289 + 0.282425i \(0.0911389\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −8.39990 4.84968i −0.266295 0.153745i
\(996\) 0 0
\(997\) 31.4855i 0.997156i 0.866845 + 0.498578i \(0.166144\pi\)
−0.866845 + 0.498578i \(0.833856\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.df.e.17.15 48
3.2 odd 2 1008.2.df.e.689.10 48
4.3 odd 2 1512.2.cx.a.17.15 48
7.5 odd 6 3024.2.ca.e.2609.15 48
9.2 odd 6 3024.2.ca.e.2033.15 48
9.7 even 3 1008.2.ca.e.353.18 48
12.11 even 2 504.2.cx.a.185.15 yes 48
21.5 even 6 1008.2.ca.e.257.18 48
28.19 even 6 1512.2.bs.a.1097.15 48
36.7 odd 6 504.2.bs.a.353.7 yes 48
36.11 even 6 1512.2.bs.a.521.15 48
63.47 even 6 inner 3024.2.df.e.1601.15 48
63.61 odd 6 1008.2.df.e.929.10 48
84.47 odd 6 504.2.bs.a.257.7 48
252.47 odd 6 1512.2.cx.a.89.15 48
252.187 even 6 504.2.cx.a.425.15 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.7 48 84.47 odd 6
504.2.bs.a.353.7 yes 48 36.7 odd 6
504.2.cx.a.185.15 yes 48 12.11 even 2
504.2.cx.a.425.15 yes 48 252.187 even 6
1008.2.ca.e.257.18 48 21.5 even 6
1008.2.ca.e.353.18 48 9.7 even 3
1008.2.df.e.689.10 48 3.2 odd 2
1008.2.df.e.929.10 48 63.61 odd 6
1512.2.bs.a.521.15 48 36.11 even 6
1512.2.bs.a.1097.15 48 28.19 even 6
1512.2.cx.a.17.15 48 4.3 odd 2
1512.2.cx.a.89.15 48 252.47 odd 6
3024.2.ca.e.2033.15 48 9.2 odd 6
3024.2.ca.e.2609.15 48 7.5 odd 6
3024.2.df.e.17.15 48 1.1 even 1 trivial
3024.2.df.e.1601.15 48 63.47 even 6 inner