Properties

Label 1512.2.cx.a.89.12
Level $1512$
Weight $2$
Character 1512.89
Analytic conductor $12.073$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(17,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.cx (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 89.12
Character \(\chi\) \(=\) 1512.89
Dual form 1512.2.cx.a.17.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.207028 q^{5} +(-1.37075 - 2.26297i) q^{7} +1.51705i q^{11} +(-3.39130 + 1.95797i) q^{13} +(0.873421 + 1.51281i) q^{17} +(-0.968573 - 0.559206i) q^{19} -1.44570i q^{23} -4.95714 q^{25} +(-1.99711 - 1.15303i) q^{29} +(-5.15733 - 2.97759i) q^{31} +(-0.283783 - 0.468499i) q^{35} +(-2.13573 + 3.69920i) q^{37} +(2.91134 + 5.04260i) q^{41} +(-0.213489 + 0.369774i) q^{43} +(4.13407 + 7.16042i) q^{47} +(-3.24210 + 6.20393i) q^{49} +(-8.16638 + 4.71486i) q^{53} +0.314071i q^{55} +(-1.63405 + 2.83025i) q^{59} +(-10.5244 + 6.07629i) q^{61} +(-0.702095 + 0.405354i) q^{65} +(3.24491 - 5.62035i) q^{67} -7.10884i q^{71} +(10.6188 - 6.13075i) q^{73} +(3.43304 - 2.07949i) q^{77} +(-2.57806 - 4.46533i) q^{79} +(-8.36457 + 14.4879i) q^{83} +(0.180823 + 0.313194i) q^{85} +(-1.96290 + 3.39984i) q^{89} +(9.07945 + 4.99055i) q^{91} +(-0.200522 - 0.115771i) q^{95} +(-13.1184 - 7.57392i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{25} - 18 q^{29} + 18 q^{31} + 6 q^{41} - 6 q^{43} - 18 q^{47} - 12 q^{49} + 12 q^{53} + 18 q^{61} + 36 q^{65} + 12 q^{77} + 6 q^{79} + 18 q^{89} + 6 q^{91} + 54 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.207028 0.0925858 0.0462929 0.998928i \(-0.485259\pi\)
0.0462929 + 0.998928i \(0.485259\pi\)
\(6\) 0 0
\(7\) −1.37075 2.26297i −0.518094 0.855324i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.51705i 0.457407i 0.973496 + 0.228703i \(0.0734486\pi\)
−0.973496 + 0.228703i \(0.926551\pi\)
\(12\) 0 0
\(13\) −3.39130 + 1.95797i −0.940578 + 0.543043i −0.890141 0.455684i \(-0.849395\pi\)
−0.0504364 + 0.998727i \(0.516061\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.873421 + 1.51281i 0.211836 + 0.366910i 0.952289 0.305198i \(-0.0987225\pi\)
−0.740453 + 0.672108i \(0.765389\pi\)
\(18\) 0 0
\(19\) −0.968573 0.559206i −0.222206 0.128291i 0.384765 0.923014i \(-0.374282\pi\)
−0.606971 + 0.794724i \(0.707616\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.44570i 0.301450i −0.988576 0.150725i \(-0.951839\pi\)
0.988576 0.150725i \(-0.0481608\pi\)
\(24\) 0 0
\(25\) −4.95714 −0.991428
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.99711 1.15303i −0.370853 0.214112i 0.302978 0.952998i \(-0.402019\pi\)
−0.673831 + 0.738885i \(0.735352\pi\)
\(30\) 0 0
\(31\) −5.15733 2.97759i −0.926285 0.534791i −0.0406501 0.999173i \(-0.512943\pi\)
−0.885635 + 0.464383i \(0.846276\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.283783 0.468499i −0.0479681 0.0791908i
\(36\) 0 0
\(37\) −2.13573 + 3.69920i −0.351113 + 0.608145i −0.986445 0.164094i \(-0.947530\pi\)
0.635332 + 0.772239i \(0.280863\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.91134 + 5.04260i 0.454676 + 0.787521i 0.998669 0.0515680i \(-0.0164219\pi\)
−0.543994 + 0.839089i \(0.683089\pi\)
\(42\) 0 0
\(43\) −0.213489 + 0.369774i −0.0325568 + 0.0563900i −0.881845 0.471540i \(-0.843698\pi\)
0.849288 + 0.527930i \(0.177032\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.13407 + 7.16042i 0.603016 + 1.04445i 0.992362 + 0.123363i \(0.0393678\pi\)
−0.389346 + 0.921092i \(0.627299\pi\)
\(48\) 0 0
\(49\) −3.24210 + 6.20393i −0.463158 + 0.886276i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −8.16638 + 4.71486i −1.12174 + 0.647636i −0.941844 0.336050i \(-0.890909\pi\)
−0.179894 + 0.983686i \(0.557576\pi\)
\(54\) 0 0
\(55\) 0.314071i 0.0423494i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.63405 + 2.83025i −0.212735 + 0.368467i −0.952569 0.304321i \(-0.901570\pi\)
0.739835 + 0.672789i \(0.234904\pi\)
\(60\) 0 0
\(61\) −10.5244 + 6.07629i −1.34752 + 0.777990i −0.987897 0.155109i \(-0.950427\pi\)
−0.359620 + 0.933099i \(0.617094\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.702095 + 0.405354i −0.0870841 + 0.0502780i
\(66\) 0 0
\(67\) 3.24491 5.62035i 0.396429 0.686635i −0.596854 0.802350i \(-0.703583\pi\)
0.993282 + 0.115715i \(0.0369160\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.10884i 0.843665i −0.906674 0.421832i \(-0.861387\pi\)
0.906674 0.421832i \(-0.138613\pi\)
\(72\) 0 0
\(73\) 10.6188 6.13075i 1.24283 0.717549i 0.273162 0.961968i \(-0.411930\pi\)
0.969670 + 0.244419i \(0.0785971\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.43304 2.07949i 0.391231 0.236980i
\(78\) 0 0
\(79\) −2.57806 4.46533i −0.290054 0.502389i 0.683768 0.729700i \(-0.260340\pi\)
−0.973822 + 0.227311i \(0.927007\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −8.36457 + 14.4879i −0.918131 + 1.59025i −0.115879 + 0.993263i \(0.536969\pi\)
−0.802252 + 0.596986i \(0.796365\pi\)
\(84\) 0 0
\(85\) 0.180823 + 0.313194i 0.0196130 + 0.0339707i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.96290 + 3.39984i −0.208067 + 0.360382i −0.951105 0.308866i \(-0.900050\pi\)
0.743039 + 0.669248i \(0.233384\pi\)
\(90\) 0 0
\(91\) 9.07945 + 4.99055i 0.951785 + 0.523151i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.200522 0.115771i −0.0205731 0.0118779i
\(96\) 0 0
\(97\) −13.1184 7.57392i −1.33197 0.769016i −0.346372 0.938097i \(-0.612586\pi\)
−0.985602 + 0.169082i \(0.945920\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.2663 −1.02153 −0.510767 0.859719i \(-0.670639\pi\)
−0.510767 + 0.859719i \(0.670639\pi\)
\(102\) 0 0
\(103\) 11.2576i 1.10924i −0.832103 0.554621i \(-0.812863\pi\)
0.832103 0.554621i \(-0.187137\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.87450 5.70104i −0.954604 0.551141i −0.0600957 0.998193i \(-0.519141\pi\)
−0.894508 + 0.447052i \(0.852474\pi\)
\(108\) 0 0
\(109\) 1.50422 + 2.60538i 0.144078 + 0.249550i 0.929029 0.370008i \(-0.120645\pi\)
−0.784951 + 0.619558i \(0.787312\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −14.2634 + 8.23500i −1.34179 + 0.774683i −0.987070 0.160289i \(-0.948757\pi\)
−0.354721 + 0.934972i \(0.615424\pi\)
\(114\) 0 0
\(115\) 0.299301i 0.0279100i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.22621 4.05021i 0.204076 0.371282i
\(120\) 0 0
\(121\) 8.69857 0.790779
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2.06141 −0.184378
\(126\) 0 0
\(127\) −8.52680 −0.756631 −0.378316 0.925677i \(-0.623497\pi\)
−0.378316 + 0.925677i \(0.623497\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 14.5546 1.27164 0.635821 0.771837i \(-0.280662\pi\)
0.635821 + 0.771837i \(0.280662\pi\)
\(132\) 0 0
\(133\) 0.0622005 + 2.95838i 0.00539347 + 0.256524i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.6840i 0.912797i 0.889776 + 0.456398i \(0.150861\pi\)
−0.889776 + 0.456398i \(0.849139\pi\)
\(138\) 0 0
\(139\) 7.46448 4.30962i 0.633129 0.365537i −0.148834 0.988862i \(-0.547552\pi\)
0.781963 + 0.623325i \(0.214219\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.97033 5.14476i −0.248391 0.430227i
\(144\) 0 0
\(145\) −0.413457 0.238709i −0.0343357 0.0198237i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 22.0491i 1.80633i −0.429292 0.903166i \(-0.641237\pi\)
0.429292 0.903166i \(-0.358763\pi\)
\(150\) 0 0
\(151\) −8.80127 −0.716237 −0.358119 0.933676i \(-0.616582\pi\)
−0.358119 + 0.933676i \(0.616582\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.06771 0.616444i −0.0857608 0.0495140i
\(156\) 0 0
\(157\) 9.13924 + 5.27654i 0.729391 + 0.421114i 0.818199 0.574935i \(-0.194973\pi\)
−0.0888086 + 0.996049i \(0.528306\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.27159 + 1.98169i −0.257837 + 0.156179i
\(162\) 0 0
\(163\) −4.64731 + 8.04937i −0.364005 + 0.630475i −0.988616 0.150461i \(-0.951924\pi\)
0.624611 + 0.780936i \(0.285258\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.44458 + 7.69824i 0.343932 + 0.595707i 0.985159 0.171644i \(-0.0549078\pi\)
−0.641227 + 0.767351i \(0.721574\pi\)
\(168\) 0 0
\(169\) 1.16728 2.02179i 0.0897910 0.155523i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.89970 8.48653i −0.372517 0.645219i 0.617435 0.786622i \(-0.288172\pi\)
−0.989952 + 0.141403i \(0.954839\pi\)
\(174\) 0 0
\(175\) 6.79499 + 11.2179i 0.513653 + 0.847992i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 14.3141 8.26425i 1.06989 0.617699i 0.141735 0.989905i \(-0.454732\pi\)
0.928150 + 0.372206i \(0.121398\pi\)
\(180\) 0 0
\(181\) 23.8542i 1.77307i 0.462664 + 0.886534i \(0.346894\pi\)
−0.462664 + 0.886534i \(0.653106\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.442157 + 0.765838i −0.0325080 + 0.0563056i
\(186\) 0 0
\(187\) −2.29500 + 1.32502i −0.167827 + 0.0968951i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.3644 11.1800i 1.40116 0.808960i 0.406648 0.913585i \(-0.366698\pi\)
0.994512 + 0.104625i \(0.0333642\pi\)
\(192\) 0 0
\(193\) 4.32850 7.49719i 0.311572 0.539659i −0.667131 0.744941i \(-0.732478\pi\)
0.978703 + 0.205282i \(0.0658110\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 23.2821i 1.65878i 0.558668 + 0.829391i \(0.311313\pi\)
−0.558668 + 0.829391i \(0.688687\pi\)
\(198\) 0 0
\(199\) 8.80893 5.08584i 0.624449 0.360526i −0.154150 0.988047i \(-0.549264\pi\)
0.778599 + 0.627522i \(0.215931\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.128252 + 6.09991i 0.00900150 + 0.428130i
\(204\) 0 0
\(205\) 0.602730 + 1.04396i 0.0420965 + 0.0729132i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.848341 1.46937i 0.0586810 0.101638i
\(210\) 0 0
\(211\) −13.2184 22.8949i −0.909991 1.57615i −0.814073 0.580762i \(-0.802755\pi\)
−0.0959178 0.995389i \(-0.530579\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.0441983 + 0.0765537i −0.00301430 + 0.00522092i
\(216\) 0 0
\(217\) 0.331198 + 15.7524i 0.0224832 + 1.06935i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −5.92407 3.42026i −0.398496 0.230072i
\(222\) 0 0
\(223\) −14.4887 8.36504i −0.970233 0.560164i −0.0709258 0.997482i \(-0.522595\pi\)
−0.899307 + 0.437317i \(0.855929\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.88921 0.589998 0.294999 0.955498i \(-0.404681\pi\)
0.294999 + 0.955498i \(0.404681\pi\)
\(228\) 0 0
\(229\) 16.9536i 1.12032i −0.828383 0.560162i \(-0.810739\pi\)
0.828383 0.560162i \(-0.189261\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 17.3861 + 10.0379i 1.13900 + 0.657602i 0.946183 0.323633i \(-0.104904\pi\)
0.192817 + 0.981235i \(0.438238\pi\)
\(234\) 0 0
\(235\) 0.855868 + 1.48241i 0.0558307 + 0.0967016i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.5629 + 6.67585i −0.747943 + 0.431825i −0.824950 0.565206i \(-0.808797\pi\)
0.0770074 + 0.997031i \(0.475464\pi\)
\(240\) 0 0
\(241\) 12.7673i 0.822417i 0.911541 + 0.411209i \(0.134893\pi\)
−0.911541 + 0.411209i \(0.865107\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.671206 + 1.28439i −0.0428818 + 0.0820565i
\(246\) 0 0
\(247\) 4.37963 0.278669
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 17.8367 1.12584 0.562921 0.826511i \(-0.309678\pi\)
0.562921 + 0.826511i \(0.309678\pi\)
\(252\) 0 0
\(253\) 2.19320 0.137885
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.63718 −0.102124 −0.0510621 0.998695i \(-0.516261\pi\)
−0.0510621 + 0.998695i \(0.516261\pi\)
\(258\) 0 0
\(259\) 11.2987 0.237558i 0.702070 0.0147611i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 30.7251i 1.89459i −0.320359 0.947296i \(-0.603803\pi\)
0.320359 0.947296i \(-0.396197\pi\)
\(264\) 0 0
\(265\) −1.69067 + 0.976108i −0.103857 + 0.0599619i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.491194 0.850773i −0.0299486 0.0518726i 0.850663 0.525712i \(-0.176201\pi\)
−0.880611 + 0.473839i \(0.842868\pi\)
\(270\) 0 0
\(271\) −0.707412 0.408425i −0.0429722 0.0248100i 0.478360 0.878164i \(-0.341231\pi\)
−0.521332 + 0.853354i \(0.674565\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.52021i 0.453486i
\(276\) 0 0
\(277\) 10.6038 0.637118 0.318559 0.947903i \(-0.396801\pi\)
0.318559 + 0.947903i \(0.396801\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −14.1764 8.18477i −0.845695 0.488262i 0.0135009 0.999909i \(-0.495702\pi\)
−0.859196 + 0.511647i \(0.829036\pi\)
\(282\) 0 0
\(283\) −5.67689 3.27755i −0.337456 0.194830i 0.321691 0.946845i \(-0.395749\pi\)
−0.659146 + 0.752015i \(0.729082\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.42055 13.5004i 0.438021 0.796905i
\(288\) 0 0
\(289\) 6.97427 12.0798i 0.410251 0.710576i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7.02441 + 12.1666i 0.410370 + 0.710782i 0.994930 0.100568i \(-0.0320662\pi\)
−0.584560 + 0.811351i \(0.698733\pi\)
\(294\) 0 0
\(295\) −0.338293 + 0.585941i −0.0196962 + 0.0341148i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.83064 + 4.90281i 0.163700 + 0.283537i
\(300\) 0 0
\(301\) 1.12943 0.0237464i 0.0650992 0.00136872i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.17886 + 1.25796i −0.124761 + 0.0720308i
\(306\) 0 0
\(307\) 17.4335i 0.994982i 0.867469 + 0.497491i \(0.165745\pi\)
−0.867469 + 0.497491i \(0.834255\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7.79813 13.5068i 0.442191 0.765898i −0.555661 0.831409i \(-0.687535\pi\)
0.997852 + 0.0655116i \(0.0208679\pi\)
\(312\) 0 0
\(313\) −1.93111 + 1.11493i −0.109153 + 0.0630193i −0.553582 0.832794i \(-0.686740\pi\)
0.444430 + 0.895814i \(0.353406\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 29.7264 17.1625i 1.66960 0.963943i 0.701745 0.712428i \(-0.252405\pi\)
0.967853 0.251515i \(-0.0809287\pi\)
\(318\) 0 0
\(319\) 1.74920 3.02970i 0.0979364 0.169631i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.95369i 0.108706i
\(324\) 0 0
\(325\) 16.8112 9.70592i 0.932515 0.538388i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 10.5371 19.1704i 0.580928 1.05690i
\(330\) 0 0
\(331\) 11.2701 + 19.5205i 0.619463 + 1.07294i 0.989584 + 0.143958i \(0.0459829\pi\)
−0.370121 + 0.928984i \(0.620684\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.671787 1.16357i 0.0367037 0.0635726i
\(336\) 0 0
\(337\) −11.3776 19.7065i −0.619776 1.07348i −0.989526 0.144353i \(-0.953890\pi\)
0.369750 0.929131i \(-0.379443\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.51714 7.82392i 0.244617 0.423689i
\(342\) 0 0
\(343\) 18.4834 1.16723i 0.998012 0.0630244i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.46927 3.73504i −0.347289 0.200507i 0.316202 0.948692i \(-0.397592\pi\)
−0.663491 + 0.748185i \(0.730926\pi\)
\(348\) 0 0
\(349\) 7.60969 + 4.39346i 0.407337 + 0.235176i 0.689645 0.724148i \(-0.257767\pi\)
−0.282308 + 0.959324i \(0.591100\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.32610 −0.389929 −0.194965 0.980810i \(-0.562459\pi\)
−0.194965 + 0.980810i \(0.562459\pi\)
\(354\) 0 0
\(355\) 1.47173i 0.0781113i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11.0036 6.35295i −0.580749 0.335296i 0.180682 0.983542i \(-0.442170\pi\)
−0.761431 + 0.648246i \(0.775503\pi\)
\(360\) 0 0
\(361\) −8.87458 15.3712i −0.467083 0.809012i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.19838 1.26924i 0.115069 0.0664349i
\(366\) 0 0
\(367\) 16.2728i 0.849435i 0.905326 + 0.424717i \(0.139626\pi\)
−0.905326 + 0.424717i \(0.860374\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 21.8636 + 12.0174i 1.13510 + 0.623913i
\(372\) 0 0
\(373\) 15.8803 0.822251 0.411126 0.911579i \(-0.365136\pi\)
0.411126 + 0.911579i \(0.365136\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9.03038 0.465088
\(378\) 0 0
\(379\) −0.0882488 −0.00453304 −0.00226652 0.999997i \(-0.500721\pi\)
−0.00226652 + 0.999997i \(0.500721\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −33.9273 −1.73360 −0.866802 0.498652i \(-0.833828\pi\)
−0.866802 + 0.498652i \(0.833828\pi\)
\(384\) 0 0
\(385\) 0.710735 0.430512i 0.0362224 0.0219409i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 11.3976i 0.577881i −0.957347 0.288940i \(-0.906697\pi\)
0.957347 0.288940i \(-0.0933029\pi\)
\(390\) 0 0
\(391\) 2.18707 1.26271i 0.110605 0.0638578i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −0.533731 0.924449i −0.0268549 0.0465141i
\(396\) 0 0
\(397\) −3.81168 2.20068i −0.191303 0.110449i 0.401289 0.915951i \(-0.368562\pi\)
−0.592592 + 0.805503i \(0.701895\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8.48250i 0.423596i −0.977313 0.211798i \(-0.932068\pi\)
0.977313 0.211798i \(-0.0679318\pi\)
\(402\) 0 0
\(403\) 23.3201 1.16166
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.61186 3.24001i −0.278170 0.160601i
\(408\) 0 0
\(409\) 10.0254 + 5.78819i 0.495726 + 0.286207i 0.726947 0.686694i \(-0.240939\pi\)
−0.231221 + 0.972901i \(0.574272\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8.64465 0.181755i 0.425375 0.00894359i
\(414\) 0 0
\(415\) −1.73170 + 2.99939i −0.0850059 + 0.147234i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 11.3173 + 19.6021i 0.552885 + 0.957625i 0.998065 + 0.0621839i \(0.0198065\pi\)
−0.445180 + 0.895441i \(0.646860\pi\)
\(420\) 0 0
\(421\) −3.51429 + 6.08693i −0.171276 + 0.296659i −0.938866 0.344282i \(-0.888122\pi\)
0.767590 + 0.640941i \(0.221456\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.32967 7.49921i −0.210020 0.363765i
\(426\) 0 0
\(427\) 28.1769 + 15.4875i 1.36357 + 0.749492i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.267173 + 0.154252i −0.0128693 + 0.00743007i −0.506421 0.862286i \(-0.669032\pi\)
0.493552 + 0.869717i \(0.335698\pi\)
\(432\) 0 0
\(433\) 32.8376i 1.57807i 0.614347 + 0.789036i \(0.289420\pi\)
−0.614347 + 0.789036i \(0.710580\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.808445 + 1.40027i −0.0386732 + 0.0669839i
\(438\) 0 0
\(439\) 2.91256 1.68157i 0.139009 0.0802568i −0.428883 0.903360i \(-0.641093\pi\)
0.567891 + 0.823103i \(0.307759\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −31.0997 + 17.9554i −1.47759 + 0.853087i −0.999679 0.0253206i \(-0.991939\pi\)
−0.477911 + 0.878408i \(0.658606\pi\)
\(444\) 0 0
\(445\) −0.406375 + 0.703862i −0.0192640 + 0.0333662i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 13.9993i 0.660668i −0.943864 0.330334i \(-0.892839\pi\)
0.943864 0.330334i \(-0.107161\pi\)
\(450\) 0 0
\(451\) −7.64985 + 4.41664i −0.360217 + 0.207972i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.87970 + 1.03318i 0.0881217 + 0.0484364i
\(456\) 0 0
\(457\) −3.97051 6.87713i −0.185733 0.321699i 0.758090 0.652149i \(-0.226133\pi\)
−0.943823 + 0.330451i \(0.892799\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.12627 + 3.68281i −0.0990304 + 0.171526i −0.911284 0.411779i \(-0.864907\pi\)
0.812253 + 0.583305i \(0.198241\pi\)
\(462\) 0 0
\(463\) −10.2557 17.7634i −0.476622 0.825534i 0.523019 0.852321i \(-0.324806\pi\)
−0.999641 + 0.0267869i \(0.991472\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −13.8842 + 24.0481i −0.642484 + 1.11281i 0.342393 + 0.939557i \(0.388763\pi\)
−0.984877 + 0.173257i \(0.944571\pi\)
\(468\) 0 0
\(469\) −17.1667 + 0.360932i −0.792682 + 0.0166663i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.560965 0.323873i −0.0257932 0.0148917i
\(474\) 0 0
\(475\) 4.80135 + 2.77206i 0.220301 + 0.127191i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 31.4128 1.43529 0.717643 0.696411i \(-0.245221\pi\)
0.717643 + 0.696411i \(0.245221\pi\)
\(480\) 0 0
\(481\) 16.7268i 0.762677i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.71588 1.56801i −0.123322 0.0711999i
\(486\) 0 0
\(487\) −16.1798 28.0242i −0.733176 1.26990i −0.955519 0.294929i \(-0.904704\pi\)
0.222343 0.974968i \(-0.428629\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −33.6617 + 19.4346i −1.51913 + 0.877071i −0.519385 + 0.854540i \(0.673839\pi\)
−0.999746 + 0.0225309i \(0.992828\pi\)
\(492\) 0 0
\(493\) 4.02832i 0.181426i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −16.0871 + 9.74443i −0.721606 + 0.437097i
\(498\) 0 0
\(499\) 39.7540 1.77963 0.889816 0.456319i \(-0.150832\pi\)
0.889816 + 0.456319i \(0.150832\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4.45463 0.198622 0.0993110 0.995056i \(-0.468336\pi\)
0.0993110 + 0.995056i \(0.468336\pi\)
\(504\) 0 0
\(505\) −2.12541 −0.0945796
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 19.8433 0.879539 0.439769 0.898111i \(-0.355060\pi\)
0.439769 + 0.898111i \(0.355060\pi\)
\(510\) 0 0
\(511\) −28.4294 15.6263i −1.25764 0.691266i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.33064i 0.102700i
\(516\) 0 0
\(517\) −10.8627 + 6.27157i −0.477740 + 0.275824i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 6.51527 + 11.2848i 0.285439 + 0.494395i 0.972716 0.232001i \(-0.0745273\pi\)
−0.687277 + 0.726396i \(0.741194\pi\)
\(522\) 0 0
\(523\) 28.6981 + 16.5688i 1.25488 + 0.724505i 0.972075 0.234672i \(-0.0754017\pi\)
0.282805 + 0.959177i \(0.408735\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10.4028i 0.453151i
\(528\) 0 0
\(529\) 20.9099 0.909128
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −19.7465 11.4006i −0.855315 0.493817i
\(534\) 0 0
\(535\) −2.04430 1.18028i −0.0883827 0.0510278i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −9.41165 4.91842i −0.405389 0.211851i
\(540\) 0 0
\(541\) 13.3022 23.0402i 0.571908 0.990574i −0.424462 0.905446i \(-0.639537\pi\)
0.996370 0.0851281i \(-0.0271300\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.311415 + 0.539387i 0.0133396 + 0.0231048i
\(546\) 0 0
\(547\) −4.32361 + 7.48870i −0.184864 + 0.320194i −0.943531 0.331285i \(-0.892518\pi\)
0.758667 + 0.651479i \(0.225851\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.28956 + 2.23359i 0.0549372 + 0.0951539i
\(552\) 0 0
\(553\) −6.57106 + 11.9549i −0.279430 + 0.508375i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −19.1707 + 11.0682i −0.812289 + 0.468975i −0.847750 0.530396i \(-0.822043\pi\)
0.0354610 + 0.999371i \(0.488710\pi\)
\(558\) 0 0
\(559\) 1.67202i 0.0707190i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6.10275 + 10.5703i −0.257200 + 0.445484i −0.965491 0.260437i \(-0.916133\pi\)
0.708291 + 0.705921i \(0.249467\pi\)
\(564\) 0 0
\(565\) −2.95293 + 1.70488i −0.124231 + 0.0717247i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.16135 4.71196i 0.342142 0.197536i −0.319077 0.947729i \(-0.603373\pi\)
0.661219 + 0.750193i \(0.270040\pi\)
\(570\) 0 0
\(571\) −7.73579 + 13.3988i −0.323733 + 0.560721i −0.981255 0.192714i \(-0.938271\pi\)
0.657522 + 0.753435i \(0.271604\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 7.16655i 0.298866i
\(576\) 0 0
\(577\) −8.48608 + 4.89944i −0.353280 + 0.203966i −0.666129 0.745836i \(-0.732050\pi\)
0.312849 + 0.949803i \(0.398717\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 44.2514 0.930392i 1.83586 0.0385992i
\(582\) 0 0
\(583\) −7.15266 12.3888i −0.296233 0.513091i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12.4297 + 21.5289i −0.513028 + 0.888591i 0.486858 + 0.873481i \(0.338143\pi\)
−0.999886 + 0.0151097i \(0.995190\pi\)
\(588\) 0 0
\(589\) 3.33017 + 5.76802i 0.137217 + 0.237667i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 20.9831 36.3438i 0.861673 1.49246i −0.00863918 0.999963i \(-0.502750\pi\)
0.870313 0.492500i \(-0.163917\pi\)
\(594\) 0 0
\(595\) 0.460888 0.838507i 0.0188946 0.0343754i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −26.2575 15.1598i −1.07285 0.619412i −0.143894 0.989593i \(-0.545962\pi\)
−0.928960 + 0.370181i \(0.879296\pi\)
\(600\) 0 0
\(601\) −2.71173 1.56562i −0.110614 0.0638628i 0.443673 0.896189i \(-0.353675\pi\)
−0.554286 + 0.832326i \(0.687009\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.80085 0.0732149
\(606\) 0 0
\(607\) 14.3866i 0.583934i 0.956428 + 0.291967i \(0.0943097\pi\)
−0.956428 + 0.291967i \(0.905690\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −28.0397 16.1888i −1.13437 0.654927i
\(612\) 0 0
\(613\) −4.36863 7.56669i −0.176447 0.305616i 0.764214 0.644963i \(-0.223127\pi\)
−0.940661 + 0.339347i \(0.889794\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 25.9444 14.9790i 1.04448 0.603033i 0.123384 0.992359i \(-0.460625\pi\)
0.921100 + 0.389326i \(0.127292\pi\)
\(618\) 0 0
\(619\) 2.63070i 0.105737i 0.998601 + 0.0528683i \(0.0168363\pi\)
−0.998601 + 0.0528683i \(0.983164\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10.3844 0.218333i 0.416041 0.00874734i
\(624\) 0 0
\(625\) 24.3589 0.974357
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7.46158 −0.297513
\(630\) 0 0
\(631\) −18.0872 −0.720039 −0.360019 0.932945i \(-0.617230\pi\)
−0.360019 + 0.932945i \(0.617230\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1.76529 −0.0700533
\(636\) 0 0
\(637\) −1.15216 27.3873i −0.0456501 1.08513i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 41.1733i 1.62625i 0.582091 + 0.813124i \(0.302235\pi\)
−0.582091 + 0.813124i \(0.697765\pi\)
\(642\) 0 0
\(643\) −31.3046 + 18.0737i −1.23453 + 0.712758i −0.967971 0.251060i \(-0.919221\pi\)
−0.266561 + 0.963818i \(0.585887\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −4.09812 7.09815i −0.161114 0.279057i 0.774155 0.632996i \(-0.218175\pi\)
−0.935268 + 0.353939i \(0.884842\pi\)
\(648\) 0 0
\(649\) −4.29362 2.47892i −0.168539 0.0973063i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 26.9751i 1.05562i 0.849364 + 0.527808i \(0.176986\pi\)
−0.849364 + 0.527808i \(0.823014\pi\)
\(654\) 0 0
\(655\) 3.01321 0.117736
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.60125 + 1.50183i 0.101330 + 0.0585032i 0.549809 0.835291i \(-0.314701\pi\)
−0.448478 + 0.893794i \(0.648034\pi\)
\(660\) 0 0
\(661\) −31.2423 18.0377i −1.21518 0.701586i −0.251299 0.967909i \(-0.580858\pi\)
−0.963884 + 0.266323i \(0.914191\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.0128773 + 0.612469i 0.000499359 + 0.0237505i
\(666\) 0 0
\(667\) −1.66694 + 2.88722i −0.0645441 + 0.111794i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −9.21802 15.9661i −0.355858 0.616364i
\(672\) 0 0
\(673\) 3.20540 5.55191i 0.123559 0.214010i −0.797610 0.603174i \(-0.793903\pi\)
0.921169 + 0.389163i \(0.127236\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −17.2249 29.8344i −0.662007 1.14663i −0.980088 0.198566i \(-0.936372\pi\)
0.318081 0.948064i \(-0.396962\pi\)
\(678\) 0 0
\(679\) 0.842449 + 40.0686i 0.0323302 + 1.53769i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −2.53802 + 1.46533i −0.0971148 + 0.0560693i −0.547771 0.836628i \(-0.684523\pi\)
0.450656 + 0.892698i \(0.351190\pi\)
\(684\) 0 0
\(685\) 2.21189i 0.0845120i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 18.4631 31.9790i 0.703388 1.21830i
\(690\) 0 0
\(691\) −3.29381 + 1.90168i −0.125303 + 0.0723434i −0.561341 0.827585i \(-0.689714\pi\)
0.436039 + 0.899928i \(0.356381\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.54536 0.892213i 0.0586188 0.0338436i
\(696\) 0 0
\(697\) −5.08566 + 8.80862i −0.192633 + 0.333650i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 36.7042i 1.38630i 0.720795 + 0.693149i \(0.243777\pi\)
−0.720795 + 0.693149i \(0.756223\pi\)
\(702\) 0 0
\(703\) 4.13723 2.38863i 0.156039 0.0900889i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 14.0725 + 23.2324i 0.529251 + 0.873743i
\(708\) 0 0
\(709\) −10.4040 18.0202i −0.390730 0.676764i 0.601816 0.798635i \(-0.294444\pi\)
−0.992546 + 0.121870i \(0.961111\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4.30471 + 7.45597i −0.161213 + 0.279228i
\(714\) 0 0
\(715\) −0.614942 1.06511i −0.0229975 0.0398329i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −15.1577 + 26.2540i −0.565288 + 0.979108i 0.431734 + 0.902001i \(0.357902\pi\)
−0.997023 + 0.0771074i \(0.975432\pi\)
\(720\) 0 0
\(721\) −25.4756 + 15.4313i −0.948761 + 0.574692i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 9.89993 + 5.71573i 0.367674 + 0.212277i
\(726\) 0 0
\(727\) −29.7259 17.1622i −1.10247 0.636512i −0.165602 0.986193i \(-0.552957\pi\)
−0.936869 + 0.349680i \(0.886290\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −0.745864 −0.0275868
\(732\) 0 0
\(733\) 6.18213i 0.228342i −0.993461 0.114171i \(-0.963579\pi\)
0.993461 0.114171i \(-0.0364212\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.52633 + 4.92268i 0.314071 + 0.181329i
\(738\) 0 0
\(739\) −13.5892 23.5372i −0.499887 0.865829i 0.500113 0.865960i \(-0.333292\pi\)
−1.00000 0.000131035i \(0.999958\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −24.3213 + 14.0419i −0.892262 + 0.515148i −0.874682 0.484698i \(-0.838930\pi\)
−0.0175804 + 0.999845i \(0.505596\pi\)
\(744\) 0 0
\(745\) 4.56478i 0.167241i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.634128 + 30.1604i 0.0231705 + 1.10204i
\(750\) 0 0
\(751\) −42.1842 −1.53932 −0.769661 0.638453i \(-0.779575\pi\)
−0.769661 + 0.638453i \(0.779575\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1.82211 −0.0663134
\(756\) 0 0
\(757\) −32.6771 −1.18767 −0.593835 0.804587i \(-0.702387\pi\)
−0.593835 + 0.804587i \(0.702387\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −31.7567 −1.15118 −0.575589 0.817739i \(-0.695227\pi\)
−0.575589 + 0.817739i \(0.695227\pi\)
\(762\) 0 0
\(763\) 3.83401 6.97532i 0.138800 0.252524i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.7976i 0.462096i
\(768\) 0 0
\(769\) −30.8593 + 17.8166i −1.11281 + 0.642484i −0.939557 0.342393i \(-0.888763\pi\)
−0.173258 + 0.984877i \(0.555429\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6.44721 11.1669i −0.231890 0.401645i 0.726474 0.687194i \(-0.241158\pi\)
−0.958364 + 0.285548i \(0.907824\pi\)
\(774\) 0 0
\(775\) 25.5656 + 14.7603i 0.918344 + 0.530206i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.51216i 0.233322i
\(780\) 0 0
\(781\) 10.7844 0.385898
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.89208 + 1.09239i 0.0675312 + 0.0389892i
\(786\) 0 0
\(787\) −15.3158 8.84260i −0.545950 0.315205i 0.201537 0.979481i \(-0.435406\pi\)
−0.747487 + 0.664276i \(0.768740\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 38.1871 + 20.9897i 1.35778 + 0.746307i
\(792\) 0 0
\(793\) 23.7944 41.2131i 0.844963 1.46352i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22.8391 + 39.5585i 0.809003 + 1.40123i 0.913555 + 0.406714i \(0.133326\pi\)
−0.104553 + 0.994519i \(0.533341\pi\)
\(798\) 0 0
\(799\) −7.22156 + 12.5081i −0.255481 + 0.442505i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9.30063 + 16.1092i 0.328212 + 0.568480i
\(804\) 0 0
\(805\) −0.677310 + 0.410266i −0.0238721 + 0.0144600i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 10.8291 6.25218i 0.380731 0.219815i −0.297405 0.954751i \(-0.596121\pi\)
0.678136 + 0.734936i \(0.262788\pi\)
\(810\) 0 0
\(811\) 9.57778i 0.336322i 0.985760 + 0.168161i \(0.0537828\pi\)
−0.985760 + 0.168161i \(0.946217\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.962123 + 1.66645i −0.0337017 + 0.0583730i
\(816\) 0 0
\(817\) 0.413560 0.238769i 0.0144686 0.00835346i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −24.1379 + 13.9360i −0.842420 + 0.486371i −0.858086 0.513506i \(-0.828346\pi\)
0.0156664 + 0.999877i \(0.495013\pi\)
\(822\) 0 0
\(823\) −23.6383 + 40.9428i −0.823980 + 1.42717i 0.0787167 + 0.996897i \(0.474918\pi\)
−0.902697 + 0.430278i \(0.858416\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 24.1672i 0.840377i −0.907437 0.420188i \(-0.861964\pi\)
0.907437 0.420188i \(-0.138036\pi\)
\(828\) 0 0
\(829\) 23.0216 13.2915i 0.799572 0.461633i −0.0437494 0.999043i \(-0.513930\pi\)
0.843322 + 0.537409i \(0.180597\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −12.2171 + 0.513960i −0.423297 + 0.0178076i
\(834\) 0 0
\(835\) 0.920152 + 1.59375i 0.0318432 + 0.0551540i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −4.03255 + 6.98459i −0.139219 + 0.241135i −0.927201 0.374563i \(-0.877793\pi\)
0.787982 + 0.615698i \(0.211126\pi\)
\(840\) 0 0
\(841\) −11.8410 20.5093i −0.408312 0.707217i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.241660 0.418568i 0.00831337 0.0143992i
\(846\) 0 0
\(847\) −11.9235 19.6846i −0.409698 0.676372i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5.34794 + 3.08764i 0.183325 + 0.105843i
\(852\) 0 0
\(853\) −11.6046 6.69994i −0.397335 0.229402i 0.287998 0.957631i \(-0.407010\pi\)
−0.685334 + 0.728229i \(0.740344\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 44.6679 1.52583 0.762914 0.646500i \(-0.223768\pi\)
0.762914 + 0.646500i \(0.223768\pi\)
\(858\) 0 0
\(859\) 50.5104i 1.72339i 0.507425 + 0.861696i \(0.330597\pi\)
−0.507425 + 0.861696i \(0.669403\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.227203 0.131176i −0.00773408 0.00446528i 0.496128 0.868249i \(-0.334755\pi\)
−0.503862 + 0.863784i \(0.668088\pi\)
\(864\) 0 0
\(865\) −1.01438 1.75695i −0.0344898 0.0597381i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6.77412 3.91104i 0.229796 0.132673i
\(870\) 0 0
\(871\) 25.4137i 0.861111i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.82567 + 4.66491i 0.0955250 + 0.157703i
\(876\) 0 0
\(877\) −9.26607 −0.312893 −0.156446 0.987686i \(-0.550004\pi\)
−0.156446 + 0.987686i \(0.550004\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −41.5555 −1.40004 −0.700021 0.714122i \(-0.746826\pi\)
−0.700021 + 0.714122i \(0.746826\pi\)
\(882\) 0 0
\(883\) −29.4547 −0.991231 −0.495615 0.868542i \(-0.665057\pi\)
−0.495615 + 0.868542i \(0.665057\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −15.5824 −0.523207 −0.261603 0.965175i \(-0.584251\pi\)
−0.261603 + 0.965175i \(0.584251\pi\)
\(888\) 0 0
\(889\) 11.6881 + 19.2959i 0.392006 + 0.647165i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 9.24718i 0.309445i
\(894\) 0 0
\(895\) 2.96342 1.71093i 0.0990562 0.0571901i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.86649 + 11.8931i 0.229010 + 0.396658i
\(900\) 0 0
\(901\) −14.2654 8.23612i −0.475248 0.274385i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.93849i 0.164161i
\(906\) 0 0
\(907\) 20.5208 0.681383 0.340692 0.940175i \(-0.389339\pi\)
0.340692 + 0.940175i \(0.389339\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 15.0554 + 8.69226i 0.498809 + 0.287987i 0.728222 0.685342i \(-0.240347\pi\)
−0.229413 + 0.973329i \(0.573681\pi\)
\(912\) 0 0
\(913\) −21.9788 12.6894i −0.727391 0.419959i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −19.9507 32.9367i −0.658830 1.08767i
\(918\) 0 0
\(919\) 17.1002 29.6183i 0.564082 0.977019i −0.433052 0.901369i \(-0.642563\pi\)
0.997134 0.0756501i \(-0.0241032\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 13.9189 + 24.1082i 0.458146 + 0.793532i
\(924\) 0 0
\(925\) 10.5871 18.3375i 0.348103 0.602932i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.49596 + 2.59108i 0.0490808 + 0.0850105i 0.889522 0.456892i \(-0.151037\pi\)
−0.840441 + 0.541903i \(0.817704\pi\)
\(930\) 0 0
\(931\) 6.60949 4.19596i 0.216617 0.137517i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −0.475130 + 0.274316i −0.0155384 + 0.00897110i
\(936\) 0 0
\(937\) 10.9928i 0.359120i 0.983747 + 0.179560i \(0.0574674\pi\)
−0.983747 + 0.179560i \(0.942533\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 4.95300 8.57884i 0.161463 0.279662i −0.773931 0.633271i \(-0.781712\pi\)
0.935394 + 0.353608i \(0.115045\pi\)
\(942\) 0 0
\(943\) 7.29009 4.20894i 0.237398 0.137062i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −23.4219 + 13.5227i −0.761110 + 0.439427i −0.829694 0.558218i \(-0.811485\pi\)
0.0685840 + 0.997645i \(0.478152\pi\)
\(948\) 0 0
\(949\) −24.0076 + 41.5824i −0.779320 + 1.34982i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 51.9958i 1.68431i 0.539236 + 0.842155i \(0.318713\pi\)
−0.539236 + 0.842155i \(0.681287\pi\)
\(954\) 0 0
\(955\) 4.00898 2.31458i 0.129727 0.0748982i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 24.1776 14.6451i 0.780737 0.472914i
\(960\) 0 0
\(961\) 2.23207 + 3.86605i 0.0720022 + 0.124711i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0.896121 1.55213i 0.0288472 0.0499648i
\(966\) 0 0
\(967\) 8.23005 + 14.2549i 0.264660 + 0.458405i 0.967475 0.252968i \(-0.0814068\pi\)
−0.702814 + 0.711374i \(0.748073\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 6.09724 10.5607i 0.195670 0.338910i −0.751450 0.659790i \(-0.770645\pi\)
0.947120 + 0.320880i \(0.103979\pi\)
\(972\) 0 0
\(973\) −19.9845 10.9845i −0.640673 0.352148i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −18.8425 10.8787i −0.602824 0.348040i 0.167328 0.985901i \(-0.446486\pi\)
−0.770152 + 0.637861i \(0.779819\pi\)
\(978\) 0 0
\(979\) −5.15771 2.97781i −0.164841 0.0951711i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −62.4746 −1.99263 −0.996316 0.0857622i \(-0.972667\pi\)
−0.996316 + 0.0857622i \(0.972667\pi\)
\(984\) 0 0
\(985\) 4.82005i 0.153580i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.534583 + 0.308642i 0.0169988 + 0.00981424i
\(990\) 0 0
\(991\) −27.5362 47.6942i −0.874717 1.51505i −0.857064 0.515210i \(-0.827714\pi\)
−0.0176535 0.999844i \(-0.505620\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.82370 1.05291i 0.0578151 0.0333795i
\(996\) 0 0
\(997\) 23.8706i 0.755990i 0.925808 + 0.377995i \(0.123386\pi\)
−0.925808 + 0.377995i \(0.876614\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.cx.a.89.12 48
3.2 odd 2 504.2.cx.a.425.10 yes 48
4.3 odd 2 3024.2.df.e.1601.12 48
7.3 odd 6 1512.2.bs.a.521.12 48
9.4 even 3 504.2.bs.a.257.19 48
9.5 odd 6 1512.2.bs.a.1097.12 48
12.11 even 2 1008.2.df.e.929.15 48
21.17 even 6 504.2.bs.a.353.19 yes 48
28.3 even 6 3024.2.ca.e.2033.12 48
36.23 even 6 3024.2.ca.e.2609.12 48
36.31 odd 6 1008.2.ca.e.257.6 48
63.31 odd 6 504.2.cx.a.185.10 yes 48
63.59 even 6 inner 1512.2.cx.a.17.12 48
84.59 odd 6 1008.2.ca.e.353.6 48
252.31 even 6 1008.2.df.e.689.15 48
252.59 odd 6 3024.2.df.e.17.12 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.19 48 9.4 even 3
504.2.bs.a.353.19 yes 48 21.17 even 6
504.2.cx.a.185.10 yes 48 63.31 odd 6
504.2.cx.a.425.10 yes 48 3.2 odd 2
1008.2.ca.e.257.6 48 36.31 odd 6
1008.2.ca.e.353.6 48 84.59 odd 6
1008.2.df.e.689.15 48 252.31 even 6
1008.2.df.e.929.15 48 12.11 even 2
1512.2.bs.a.521.12 48 7.3 odd 6
1512.2.bs.a.1097.12 48 9.5 odd 6
1512.2.cx.a.17.12 48 63.59 even 6 inner
1512.2.cx.a.89.12 48 1.1 even 1 trivial
3024.2.ca.e.2033.12 48 28.3 even 6
3024.2.ca.e.2609.12 48 36.23 even 6
3024.2.df.e.17.12 48 252.59 odd 6
3024.2.df.e.1601.12 48 4.3 odd 2