Properties

Label 504.2.bs.a.353.19
Level $504$
Weight $2$
Character 504.353
Analytic conductor $4.024$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,2,Mod(257,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.257"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.bs (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 353.19
Character \(\chi\) \(=\) 504.353
Dual form 504.2.bs.a.257.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.10617 - 1.33281i) q^{3} +(-0.103514 + 0.179292i) q^{5} +(2.64517 + 0.0556151i) q^{7} +(-0.552770 - 2.94863i) q^{9} +(-1.31380 + 0.758523i) q^{11} +(3.39130 - 1.95797i) q^{13} +(0.124457 + 0.336292i) q^{15} +(0.873421 - 1.51281i) q^{17} +(-0.968573 + 0.559206i) q^{19} +(3.00013 - 3.46399i) q^{21} +(-1.25201 - 0.722851i) q^{23} +(2.47857 + 4.29301i) q^{25} +(-4.54143 - 2.52496i) q^{27} +(1.99711 + 1.15303i) q^{29} -5.95518i q^{31} +(-0.442321 + 2.59010i) q^{33} +(-0.283783 + 0.468499i) q^{35} +(-2.13573 - 3.69920i) q^{37} +(1.14176 - 6.68581i) q^{39} +(2.91134 + 5.04260i) q^{41} +(-0.213489 + 0.369774i) q^{43} +(0.585885 + 0.206118i) q^{45} -8.26814 q^{47} +(6.99381 + 0.294222i) q^{49} +(-1.05014 - 2.83753i) q^{51} +(-8.16638 - 4.71486i) q^{53} -0.314071i q^{55} +(-0.326092 + 1.90950i) q^{57} +3.26809 q^{59} +12.1526i q^{61} +(-1.29818 - 7.83037i) q^{63} +0.810709i q^{65} -6.48982 q^{67} +(-2.34837 + 0.869102i) q^{69} +7.10884i q^{71} +(10.6188 + 6.13075i) q^{73} +(8.46349 + 1.44534i) q^{75} +(-3.51741 + 1.93335i) q^{77} +5.15612 q^{79} +(-8.38889 + 3.25983i) q^{81} +(-8.36457 + 14.4879i) q^{83} +(0.180823 + 0.313194i) q^{85} +(3.74591 - 1.38632i) q^{87} +(-1.96290 - 3.39984i) q^{89} +(9.07945 - 4.99055i) q^{91} +(-7.93713 - 6.58745i) q^{93} -0.231543i q^{95} +(13.1184 + 7.57392i) q^{97} +(2.96284 + 3.45463i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{9} + 8 q^{15} + 8 q^{21} - 12 q^{23} - 24 q^{25} - 18 q^{27} + 18 q^{29} - 10 q^{39} + 6 q^{41} - 6 q^{43} + 6 q^{45} + 36 q^{47} + 6 q^{49} - 12 q^{51} + 12 q^{53} + 4 q^{57} + 46 q^{63} - 54 q^{75}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.10617 1.33281i 0.638648 0.769499i
\(4\) 0 0
\(5\) −0.103514 + 0.179292i −0.0462929 + 0.0801816i −0.888243 0.459373i \(-0.848074\pi\)
0.841951 + 0.539555i \(0.181407\pi\)
\(6\) 0 0
\(7\) 2.64517 + 0.0556151i 0.999779 + 0.0210205i
\(8\) 0 0
\(9\) −0.552770 2.94863i −0.184257 0.982878i
\(10\) 0 0
\(11\) −1.31380 + 0.758523i −0.396126 + 0.228703i −0.684811 0.728721i \(-0.740115\pi\)
0.288685 + 0.957424i \(0.406782\pi\)
\(12\) 0 0
\(13\) 3.39130 1.95797i 0.940578 0.543043i 0.0504364 0.998727i \(-0.483939\pi\)
0.890141 + 0.455684i \(0.150605\pi\)
\(14\) 0 0
\(15\) 0.124457 + 0.336292i 0.0321348 + 0.0868302i
\(16\) 0 0
\(17\) 0.873421 1.51281i 0.211836 0.366910i −0.740453 0.672108i \(-0.765389\pi\)
0.952289 + 0.305198i \(0.0987225\pi\)
\(18\) 0 0
\(19\) −0.968573 + 0.559206i −0.222206 + 0.128291i −0.606971 0.794724i \(-0.707616\pi\)
0.384765 + 0.923014i \(0.374282\pi\)
\(20\) 0 0
\(21\) 3.00013 3.46399i 0.654682 0.755904i
\(22\) 0 0
\(23\) −1.25201 0.722851i −0.261063 0.150725i 0.363756 0.931494i \(-0.381494\pi\)
−0.624819 + 0.780769i \(0.714827\pi\)
\(24\) 0 0
\(25\) 2.47857 + 4.29301i 0.495714 + 0.858602i
\(26\) 0 0
\(27\) −4.54143 2.52496i −0.873999 0.485928i
\(28\) 0 0
\(29\) 1.99711 + 1.15303i 0.370853 + 0.214112i 0.673831 0.738885i \(-0.264648\pi\)
−0.302978 + 0.952998i \(0.597981\pi\)
\(30\) 0 0
\(31\) 5.95518i 1.06958i −0.844985 0.534791i \(-0.820390\pi\)
0.844985 0.534791i \(-0.179610\pi\)
\(32\) 0 0
\(33\) −0.442321 + 2.59010i −0.0769982 + 0.450879i
\(34\) 0 0
\(35\) −0.283783 + 0.468499i −0.0479681 + 0.0791908i
\(36\) 0 0
\(37\) −2.13573 3.69920i −0.351113 0.608145i 0.635332 0.772239i \(-0.280863\pi\)
−0.986445 + 0.164094i \(0.947530\pi\)
\(38\) 0 0
\(39\) 1.14176 6.68581i 0.182828 1.07059i
\(40\) 0 0
\(41\) 2.91134 + 5.04260i 0.454676 + 0.787521i 0.998669 0.0515680i \(-0.0164219\pi\)
−0.543994 + 0.839089i \(0.683089\pi\)
\(42\) 0 0
\(43\) −0.213489 + 0.369774i −0.0325568 + 0.0563900i −0.881845 0.471540i \(-0.843698\pi\)
0.849288 + 0.527930i \(0.177032\pi\)
\(44\) 0 0
\(45\) 0.585885 + 0.206118i 0.0873385 + 0.0307263i
\(46\) 0 0
\(47\) −8.26814 −1.20603 −0.603016 0.797729i \(-0.706034\pi\)
−0.603016 + 0.797729i \(0.706034\pi\)
\(48\) 0 0
\(49\) 6.99381 + 0.294222i 0.999116 + 0.0420318i
\(50\) 0 0
\(51\) −1.05014 2.83753i −0.147048 0.397334i
\(52\) 0 0
\(53\) −8.16638 4.71486i −1.12174 0.647636i −0.179894 0.983686i \(-0.557576\pi\)
−0.941844 + 0.336050i \(0.890909\pi\)
\(54\) 0 0
\(55\) 0.314071i 0.0423494i
\(56\) 0 0
\(57\) −0.326092 + 1.90950i −0.0431919 + 0.252920i
\(58\) 0 0
\(59\) 3.26809 0.425469 0.212735 0.977110i \(-0.431763\pi\)
0.212735 + 0.977110i \(0.431763\pi\)
\(60\) 0 0
\(61\) 12.1526i 1.55598i 0.628277 + 0.777990i \(0.283760\pi\)
−0.628277 + 0.777990i \(0.716240\pi\)
\(62\) 0 0
\(63\) −1.29818 7.83037i −0.163555 0.986534i
\(64\) 0 0
\(65\) 0.810709i 0.100556i
\(66\) 0 0
\(67\) −6.48982 −0.792858 −0.396429 0.918065i \(-0.629751\pi\)
−0.396429 + 0.918065i \(0.629751\pi\)
\(68\) 0 0
\(69\) −2.34837 + 0.869102i −0.282710 + 0.104628i
\(70\) 0 0
\(71\) 7.10884i 0.843665i 0.906674 + 0.421832i \(0.138613\pi\)
−0.906674 + 0.421832i \(0.861387\pi\)
\(72\) 0 0
\(73\) 10.6188 + 6.13075i 1.24283 + 0.717549i 0.969670 0.244419i \(-0.0785971\pi\)
0.273162 + 0.961968i \(0.411930\pi\)
\(74\) 0 0
\(75\) 8.46349 + 1.44534i 0.977280 + 0.166893i
\(76\) 0 0
\(77\) −3.51741 + 1.93335i −0.400846 + 0.220326i
\(78\) 0 0
\(79\) 5.15612 0.580109 0.290054 0.957010i \(-0.406327\pi\)
0.290054 + 0.957010i \(0.406327\pi\)
\(80\) 0 0
\(81\) −8.38889 + 3.25983i −0.932099 + 0.362204i
\(82\) 0 0
\(83\) −8.36457 + 14.4879i −0.918131 + 1.59025i −0.115879 + 0.993263i \(0.536969\pi\)
−0.802252 + 0.596986i \(0.796365\pi\)
\(84\) 0 0
\(85\) 0.180823 + 0.313194i 0.0196130 + 0.0339707i
\(86\) 0 0
\(87\) 3.74591 1.38632i 0.401604 0.148629i
\(88\) 0 0
\(89\) −1.96290 3.39984i −0.208067 0.360382i 0.743039 0.669248i \(-0.233384\pi\)
−0.951105 + 0.308866i \(0.900050\pi\)
\(90\) 0 0
\(91\) 9.07945 4.99055i 0.951785 0.523151i
\(92\) 0 0
\(93\) −7.93713 6.58745i −0.823042 0.683086i
\(94\) 0 0
\(95\) 0.231543i 0.0237558i
\(96\) 0 0
\(97\) 13.1184 + 7.57392i 1.33197 + 0.769016i 0.985602 0.169082i \(-0.0540802\pi\)
0.346372 + 0.938097i \(0.387414\pi\)
\(98\) 0 0
\(99\) 2.96284 + 3.45463i 0.297776 + 0.347203i
\(100\) 0 0
\(101\) 5.13315 + 8.89088i 0.510767 + 0.884675i 0.999922 + 0.0124781i \(0.00397201\pi\)
−0.489155 + 0.872197i \(0.662695\pi\)
\(102\) 0 0
\(103\) −9.74935 5.62879i −0.960632 0.554621i −0.0642646 0.997933i \(-0.520470\pi\)
−0.896368 + 0.443312i \(0.853804\pi\)
\(104\) 0 0
\(105\) 0.310508 + 0.896470i 0.0303025 + 0.0874865i
\(106\) 0 0
\(107\) −9.87450 + 5.70104i −0.954604 + 0.551141i −0.894508 0.447052i \(-0.852474\pi\)
−0.0600957 + 0.998193i \(0.519141\pi\)
\(108\) 0 0
\(109\) 1.50422 2.60538i 0.144078 0.249550i −0.784951 0.619558i \(-0.787312\pi\)
0.929029 + 0.370008i \(0.120645\pi\)
\(110\) 0 0
\(111\) −7.29282 1.24542i −0.692204 0.118210i
\(112\) 0 0
\(113\) 14.2634 8.23500i 1.34179 0.774683i 0.354721 0.934972i \(-0.384576\pi\)
0.987070 + 0.160289i \(0.0512426\pi\)
\(114\) 0 0
\(115\) 0.259202 0.149650i 0.0241707 0.0139550i
\(116\) 0 0
\(117\) −7.64794 8.91740i −0.707053 0.824414i
\(118\) 0 0
\(119\) 2.39448 3.95306i 0.219502 0.362376i
\(120\) 0 0
\(121\) −4.34928 + 7.53318i −0.395390 + 0.684835i
\(122\) 0 0
\(123\) 9.94127 + 1.69770i 0.896374 + 0.153077i
\(124\) 0 0
\(125\) −2.06141 −0.184378
\(126\) 0 0
\(127\) −8.52680 −0.756631 −0.378316 0.925677i \(-0.623497\pi\)
−0.378316 + 0.925677i \(0.623497\pi\)
\(128\) 0 0
\(129\) 0.256683 + 0.693575i 0.0225997 + 0.0610658i
\(130\) 0 0
\(131\) −7.27730 + 12.6047i −0.635821 + 1.10127i 0.350520 + 0.936555i \(0.386005\pi\)
−0.986341 + 0.164719i \(0.947328\pi\)
\(132\) 0 0
\(133\) −2.59314 + 1.42533i −0.224853 + 0.123591i
\(134\) 0 0
\(135\) 0.922805 0.552872i 0.0794224 0.0475836i
\(136\) 0 0
\(137\) −9.25263 + 5.34201i −0.790505 + 0.456398i −0.840140 0.542369i \(-0.817527\pi\)
0.0496351 + 0.998767i \(0.484194\pi\)
\(138\) 0 0
\(139\) −7.46448 + 4.30962i −0.633129 + 0.365537i −0.781963 0.623325i \(-0.785781\pi\)
0.148834 + 0.988862i \(0.452448\pi\)
\(140\) 0 0
\(141\) −9.14598 + 11.0199i −0.770230 + 0.928040i
\(142\) 0 0
\(143\) −2.97033 + 5.14476i −0.248391 + 0.430227i
\(144\) 0 0
\(145\) −0.413457 + 0.238709i −0.0343357 + 0.0198237i
\(146\) 0 0
\(147\) 8.12850 8.99597i 0.670427 0.741975i
\(148\) 0 0
\(149\) −19.0951 11.0245i −1.56433 0.903166i −0.996811 0.0798049i \(-0.974570\pi\)
−0.567518 0.823361i \(-0.692096\pi\)
\(150\) 0 0
\(151\) 4.40064 + 7.62212i 0.358119 + 0.620280i 0.987647 0.156698i \(-0.0500850\pi\)
−0.629528 + 0.776978i \(0.716752\pi\)
\(152\) 0 0
\(153\) −4.94352 1.73916i −0.399660 0.140603i
\(154\) 0 0
\(155\) 1.06771 + 0.616444i 0.0857608 + 0.0495140i
\(156\) 0 0
\(157\) 10.5531i 0.842228i 0.907008 + 0.421114i \(0.138361\pi\)
−0.907008 + 0.421114i \(0.861639\pi\)
\(158\) 0 0
\(159\) −15.3174 + 5.66879i −1.21475 + 0.449565i
\(160\) 0 0
\(161\) −3.27159 1.98169i −0.257837 0.156179i
\(162\) 0 0
\(163\) −4.64731 8.04937i −0.364005 0.630475i 0.624611 0.780936i \(-0.285258\pi\)
−0.988616 + 0.150461i \(0.951924\pi\)
\(164\) 0 0
\(165\) −0.418598 0.347417i −0.0325878 0.0270463i
\(166\) 0 0
\(167\) 4.44458 + 7.69824i 0.343932 + 0.595707i 0.985159 0.171644i \(-0.0549078\pi\)
−0.641227 + 0.767351i \(0.721574\pi\)
\(168\) 0 0
\(169\) 1.16728 2.02179i 0.0897910 0.155523i
\(170\) 0 0
\(171\) 2.18429 + 2.54685i 0.167037 + 0.194763i
\(172\) 0 0
\(173\) 9.79940 0.745034 0.372517 0.928025i \(-0.378495\pi\)
0.372517 + 0.928025i \(0.378495\pi\)
\(174\) 0 0
\(175\) 6.31747 + 11.4936i 0.477556 + 0.868832i
\(176\) 0 0
\(177\) 3.61507 4.35575i 0.271725 0.327398i
\(178\) 0 0
\(179\) 14.3141 + 8.26425i 1.06989 + 0.617699i 0.928150 0.372206i \(-0.121398\pi\)
0.141735 + 0.989905i \(0.454732\pi\)
\(180\) 0 0
\(181\) 23.8542i 1.77307i −0.462664 0.886534i \(-0.653106\pi\)
0.462664 0.886534i \(-0.346894\pi\)
\(182\) 0 0
\(183\) 16.1971 + 13.4428i 1.19732 + 0.993723i
\(184\) 0 0
\(185\) 0.884314 0.0650161
\(186\) 0 0
\(187\) 2.65004i 0.193790i
\(188\) 0 0
\(189\) −11.8724 6.93151i −0.863591 0.504193i
\(190\) 0 0
\(191\) 22.3601i 1.61792i −0.587864 0.808960i \(-0.700031\pi\)
0.587864 0.808960i \(-0.299969\pi\)
\(192\) 0 0
\(193\) −8.65700 −0.623145 −0.311572 0.950222i \(-0.600856\pi\)
−0.311572 + 0.950222i \(0.600856\pi\)
\(194\) 0 0
\(195\) 1.08052 + 0.896783i 0.0773778 + 0.0642200i
\(196\) 0 0
\(197\) 23.2821i 1.65878i −0.558668 0.829391i \(-0.688687\pi\)
0.558668 0.829391i \(-0.311313\pi\)
\(198\) 0 0
\(199\) 8.80893 + 5.08584i 0.624449 + 0.360526i 0.778599 0.627522i \(-0.215931\pi\)
−0.154150 + 0.988047i \(0.549264\pi\)
\(200\) 0 0
\(201\) −7.17885 + 8.64970i −0.506357 + 0.610103i
\(202\) 0 0
\(203\) 5.21855 + 3.16102i 0.366270 + 0.221860i
\(204\) 0 0
\(205\) −1.20546 −0.0841930
\(206\) 0 0
\(207\) −1.43935 + 4.09130i −0.100042 + 0.284365i
\(208\) 0 0
\(209\) 0.848341 1.46937i 0.0586810 0.101638i
\(210\) 0 0
\(211\) −13.2184 22.8949i −0.909991 1.57615i −0.814073 0.580762i \(-0.802755\pi\)
−0.0959178 0.995389i \(-0.530579\pi\)
\(212\) 0 0
\(213\) 9.47475 + 7.86360i 0.649199 + 0.538805i
\(214\) 0 0
\(215\) −0.0441983 0.0765537i −0.00301430 0.00522092i
\(216\) 0 0
\(217\) 0.331198 15.7524i 0.0224832 1.06935i
\(218\) 0 0
\(219\) 19.9173 7.37115i 1.34589 0.498096i
\(220\) 0 0
\(221\) 6.84052i 0.460143i
\(222\) 0 0
\(223\) 14.4887 + 8.36504i 0.970233 + 0.560164i 0.899307 0.437317i \(-0.144071\pi\)
0.0709258 + 0.997482i \(0.477405\pi\)
\(224\) 0 0
\(225\) 11.2884 9.68144i 0.752562 0.645429i
\(226\) 0 0
\(227\) −4.44461 7.69828i −0.294999 0.510953i 0.679986 0.733225i \(-0.261986\pi\)
−0.974985 + 0.222272i \(0.928653\pi\)
\(228\) 0 0
\(229\) −14.6822 8.47679i −0.970229 0.560162i −0.0709229 0.997482i \(-0.522594\pi\)
−0.899306 + 0.437320i \(0.855928\pi\)
\(230\) 0 0
\(231\) −1.31406 + 6.82666i −0.0864589 + 0.449161i
\(232\) 0 0
\(233\) 17.3861 10.0379i 1.13900 0.657602i 0.192817 0.981235i \(-0.438238\pi\)
0.946183 + 0.323633i \(0.104904\pi\)
\(234\) 0 0
\(235\) 0.855868 1.48241i 0.0558307 0.0967016i
\(236\) 0 0
\(237\) 5.70355 6.87213i 0.370486 0.446393i
\(238\) 0 0
\(239\) 11.5629 6.67585i 0.747943 0.431825i −0.0770074 0.997031i \(-0.524536\pi\)
0.824950 + 0.565206i \(0.191203\pi\)
\(240\) 0 0
\(241\) −11.0568 + 6.38367i −0.712234 + 0.411209i −0.811888 0.583814i \(-0.801560\pi\)
0.0996536 + 0.995022i \(0.468227\pi\)
\(242\) 0 0
\(243\) −4.93481 + 14.7867i −0.316568 + 0.948570i
\(244\) 0 0
\(245\) −0.776709 + 1.22348i −0.0496221 + 0.0781650i
\(246\) 0 0
\(247\) −2.18981 + 3.79287i −0.139335 + 0.241335i
\(248\) 0 0
\(249\) 10.0569 + 27.1744i 0.637332 + 1.72211i
\(250\) 0 0
\(251\) 17.8367 1.12584 0.562921 0.826511i \(-0.309678\pi\)
0.562921 + 0.826511i \(0.309678\pi\)
\(252\) 0 0
\(253\) 2.19320 0.137885
\(254\) 0 0
\(255\) 0.617449 + 0.105444i 0.0386662 + 0.00660315i
\(256\) 0 0
\(257\) 0.818588 1.41784i 0.0510621 0.0884421i −0.839365 0.543569i \(-0.817073\pi\)
0.890427 + 0.455127i \(0.150406\pi\)
\(258\) 0 0
\(259\) −5.44364 9.90378i −0.338251 0.615391i
\(260\) 0 0
\(261\) 2.29592 6.52609i 0.142114 0.403955i
\(262\) 0 0
\(263\) 26.6087 15.3626i 1.64077 0.947296i 0.660203 0.751087i \(-0.270470\pi\)
0.980562 0.196210i \(-0.0628633\pi\)
\(264\) 0 0
\(265\) 1.69067 0.976108i 0.103857 0.0599619i
\(266\) 0 0
\(267\) −6.70264 1.14463i −0.410195 0.0700503i
\(268\) 0 0
\(269\) −0.491194 + 0.850773i −0.0299486 + 0.0518726i −0.880611 0.473839i \(-0.842868\pi\)
0.850663 + 0.525712i \(0.176201\pi\)
\(270\) 0 0
\(271\) −0.707412 + 0.408425i −0.0429722 + 0.0248100i −0.521332 0.853354i \(-0.674565\pi\)
0.478360 + 0.878164i \(0.341231\pi\)
\(272\) 0 0
\(273\) 3.39197 17.6216i 0.205292 1.06651i
\(274\) 0 0
\(275\) −6.51269 3.76011i −0.392730 0.226743i
\(276\) 0 0
\(277\) −5.30188 9.18313i −0.318559 0.551761i 0.661629 0.749832i \(-0.269866\pi\)
−0.980188 + 0.198071i \(0.936532\pi\)
\(278\) 0 0
\(279\) −17.5596 + 3.29184i −1.05127 + 0.197077i
\(280\) 0 0
\(281\) 14.1764 + 8.18477i 0.845695 + 0.488262i 0.859196 0.511647i \(-0.170964\pi\)
−0.0135009 + 0.999909i \(0.504298\pi\)
\(282\) 0 0
\(283\) 6.55510i 0.389660i −0.980837 0.194830i \(-0.937584\pi\)
0.980837 0.194830i \(-0.0624156\pi\)
\(284\) 0 0
\(285\) −0.308602 0.256126i −0.0182800 0.0151716i
\(286\) 0 0
\(287\) 7.42055 + 13.5004i 0.438021 + 0.796905i
\(288\) 0 0
\(289\) 6.97427 + 12.0798i 0.410251 + 0.710576i
\(290\) 0 0
\(291\) 24.6058 9.10632i 1.44242 0.533822i
\(292\) 0 0
\(293\) 7.02441 + 12.1666i 0.410370 + 0.710782i 0.994930 0.100568i \(-0.0320662\pi\)
−0.584560 + 0.811351i \(0.698733\pi\)
\(294\) 0 0
\(295\) −0.338293 + 0.585941i −0.0196962 + 0.0341148i
\(296\) 0 0
\(297\) 7.88177 0.127489i 0.457347 0.00739769i
\(298\) 0 0
\(299\) −5.66128 −0.327400
\(300\) 0 0
\(301\) −0.585280 + 0.966241i −0.0337350 + 0.0556932i
\(302\) 0 0
\(303\) 17.5280 + 2.99331i 1.00696 + 0.171961i
\(304\) 0 0
\(305\) −2.17886 1.25796i −0.124761 0.0720308i
\(306\) 0 0
\(307\) 17.4335i 0.994982i −0.867469 0.497491i \(-0.834255\pi\)
0.867469 0.497491i \(-0.165745\pi\)
\(308\) 0 0
\(309\) −18.2866 + 6.76764i −1.04029 + 0.384997i
\(310\) 0 0
\(311\) −15.5963 −0.884382 −0.442191 0.896921i \(-0.645799\pi\)
−0.442191 + 0.896921i \(0.645799\pi\)
\(312\) 0 0
\(313\) 2.22985i 0.126039i 0.998012 + 0.0630193i \(0.0200730\pi\)
−0.998012 + 0.0630193i \(0.979927\pi\)
\(314\) 0 0
\(315\) 1.53830 + 0.577801i 0.0866734 + 0.0325554i
\(316\) 0 0
\(317\) 34.3250i 1.92789i −0.266109 0.963943i \(-0.585738\pi\)
0.266109 0.963943i \(-0.414262\pi\)
\(318\) 0 0
\(319\) −3.49840 −0.195873
\(320\) 0 0
\(321\) −3.32447 + 19.4672i −0.185554 + 1.08655i
\(322\) 0 0
\(323\) 1.95369i 0.108706i
\(324\) 0 0
\(325\) 16.8112 + 9.70592i 0.932515 + 0.538388i
\(326\) 0 0
\(327\) −1.80856 4.88683i −0.100013 0.270242i
\(328\) 0 0
\(329\) −21.8706 0.459833i −1.20577 0.0253514i
\(330\) 0 0
\(331\) −22.5403 −1.23893 −0.619463 0.785026i \(-0.712650\pi\)
−0.619463 + 0.785026i \(0.712650\pi\)
\(332\) 0 0
\(333\) −9.72702 + 8.34231i −0.533037 + 0.457156i
\(334\) 0 0
\(335\) 0.671787 1.16357i 0.0367037 0.0635726i
\(336\) 0 0
\(337\) −11.3776 19.7065i −0.619776 1.07348i −0.989526 0.144353i \(-0.953890\pi\)
0.369750 0.929131i \(-0.379443\pi\)
\(338\) 0 0
\(339\) 4.80211 28.1198i 0.260815 1.52726i
\(340\) 0 0
\(341\) 4.51714 + 7.82392i 0.244617 + 0.423689i
\(342\) 0 0
\(343\) 18.4834 + 1.16723i 0.998012 + 0.0630244i
\(344\) 0 0
\(345\) 0.0872663 0.511007i 0.00469826 0.0275117i
\(346\) 0 0
\(347\) 7.47007i 0.401015i −0.979692 0.200507i \(-0.935741\pi\)
0.979692 0.200507i \(-0.0642590\pi\)
\(348\) 0 0
\(349\) −7.60969 4.39346i −0.407337 0.235176i 0.282308 0.959324i \(-0.408900\pi\)
−0.689645 + 0.724148i \(0.742233\pi\)
\(350\) 0 0
\(351\) −20.3451 + 0.329087i −1.08594 + 0.0175654i
\(352\) 0 0
\(353\) 3.66305 + 6.34459i 0.194965 + 0.337689i 0.946889 0.321561i \(-0.104207\pi\)
−0.751924 + 0.659249i \(0.770874\pi\)
\(354\) 0 0
\(355\) −1.27456 0.735865i −0.0676464 0.0390557i
\(356\) 0 0
\(357\) −2.61997 7.56415i −0.138664 0.400337i
\(358\) 0 0
\(359\) −11.0036 + 6.35295i −0.580749 + 0.335296i −0.761431 0.648246i \(-0.775503\pi\)
0.180682 + 0.983542i \(0.442170\pi\)
\(360\) 0 0
\(361\) −8.87458 + 15.3712i −0.467083 + 0.809012i
\(362\) 0 0
\(363\) 5.22925 + 14.1298i 0.274465 + 0.741620i
\(364\) 0 0
\(365\) −2.19838 + 1.26924i −0.115069 + 0.0664349i
\(366\) 0 0
\(367\) −14.0927 + 8.13641i −0.735632 + 0.424717i −0.820479 0.571677i \(-0.806293\pi\)
0.0848471 + 0.996394i \(0.472960\pi\)
\(368\) 0 0
\(369\) 13.2595 11.3719i 0.690260 0.591997i
\(370\) 0 0
\(371\) −21.3392 12.9258i −1.10788 0.671072i
\(372\) 0 0
\(373\) −7.94015 + 13.7527i −0.411126 + 0.712090i −0.995013 0.0997442i \(-0.968198\pi\)
0.583888 + 0.811835i \(0.301531\pi\)
\(374\) 0 0
\(375\) −2.28027 + 2.74747i −0.117753 + 0.141879i
\(376\) 0 0
\(377\) 9.03038 0.465088
\(378\) 0 0
\(379\) −0.0882488 −0.00453304 −0.00226652 0.999997i \(-0.500721\pi\)
−0.00226652 + 0.999997i \(0.500721\pi\)
\(380\) 0 0
\(381\) −9.43211 + 11.3646i −0.483221 + 0.582227i
\(382\) 0 0
\(383\) 16.9637 29.3819i 0.866802 1.50135i 0.00155547 0.999999i \(-0.499505\pi\)
0.865247 0.501346i \(-0.167162\pi\)
\(384\) 0 0
\(385\) 0.0174671 0.830771i 0.000890205 0.0423400i
\(386\) 0 0
\(387\) 1.20834 + 0.425102i 0.0614234 + 0.0216091i
\(388\) 0 0
\(389\) 9.87060 5.69879i 0.500459 0.288940i −0.228444 0.973557i \(-0.573364\pi\)
0.728903 + 0.684617i \(0.240030\pi\)
\(390\) 0 0
\(391\) −2.18707 + 1.26271i −0.110605 + 0.0638578i
\(392\) 0 0
\(393\) 8.74968 + 23.6422i 0.441363 + 1.19259i
\(394\) 0 0
\(395\) −0.533731 + 0.924449i −0.0268549 + 0.0465141i
\(396\) 0 0
\(397\) −3.81168 + 2.20068i −0.191303 + 0.110449i −0.592592 0.805503i \(-0.701895\pi\)
0.401289 + 0.915951i \(0.368562\pi\)
\(398\) 0 0
\(399\) −0.968765 + 5.03281i −0.0484989 + 0.251956i
\(400\) 0 0
\(401\) −7.34606 4.24125i −0.366845 0.211798i 0.305234 0.952277i \(-0.401265\pi\)
−0.672079 + 0.740479i \(0.734599\pi\)
\(402\) 0 0
\(403\) −11.6601 20.1958i −0.580828 1.00602i
\(404\) 0 0
\(405\) 0.283908 1.84150i 0.0141075 0.0915047i
\(406\) 0 0
\(407\) 5.61186 + 3.24001i 0.278170 + 0.160601i
\(408\) 0 0
\(409\) 11.5764i 0.572415i 0.958168 + 0.286207i \(0.0923946\pi\)
−0.958168 + 0.286207i \(0.907605\pi\)
\(410\) 0 0
\(411\) −3.11511 + 18.2412i −0.153657 + 0.899771i
\(412\) 0 0
\(413\) 8.64465 + 0.181755i 0.425375 + 0.00894359i
\(414\) 0 0
\(415\) −1.73170 2.99939i −0.0850059 0.147234i
\(416\) 0 0
\(417\) −2.51309 + 14.7159i −0.123066 + 0.720642i
\(418\) 0 0
\(419\) 11.3173 + 19.6021i 0.552885 + 0.957625i 0.998065 + 0.0621839i \(0.0198065\pi\)
−0.445180 + 0.895441i \(0.646860\pi\)
\(420\) 0 0
\(421\) −3.51429 + 6.08693i −0.171276 + 0.296659i −0.938866 0.344282i \(-0.888122\pi\)
0.767590 + 0.640941i \(0.221456\pi\)
\(422\) 0 0
\(423\) 4.57038 + 24.3797i 0.222219 + 1.18538i
\(424\) 0 0
\(425\) 8.65934 0.420040
\(426\) 0 0
\(427\) −0.675867 + 32.1456i −0.0327075 + 1.55564i
\(428\) 0 0
\(429\) 3.57130 + 9.64988i 0.172424 + 0.465900i
\(430\) 0 0
\(431\) −0.267173 0.154252i −0.0128693 0.00743007i 0.493552 0.869717i \(-0.335698\pi\)
−0.506421 + 0.862286i \(0.669032\pi\)
\(432\) 0 0
\(433\) 32.8376i 1.57807i −0.614347 0.789036i \(-0.710580\pi\)
0.614347 0.789036i \(-0.289420\pi\)
\(434\) 0 0
\(435\) −0.139200 + 0.815113i −0.00667411 + 0.0390817i
\(436\) 0 0
\(437\) 1.61689 0.0773463
\(438\) 0 0
\(439\) 3.36313i 0.160514i −0.996774 0.0802568i \(-0.974426\pi\)
0.996774 0.0802568i \(-0.0255740\pi\)
\(440\) 0 0
\(441\) −2.99842 20.7848i −0.142782 0.989754i
\(442\) 0 0
\(443\) 35.9108i 1.70617i 0.521768 + 0.853087i \(0.325273\pi\)
−0.521768 + 0.853087i \(0.674727\pi\)
\(444\) 0 0
\(445\) 0.812749 0.0385280
\(446\) 0 0
\(447\) −35.8160 + 13.2551i −1.69404 + 0.626944i
\(448\) 0 0
\(449\) 13.9993i 0.660668i 0.943864 + 0.330334i \(0.107161\pi\)
−0.943864 + 0.330334i \(0.892839\pi\)
\(450\) 0 0
\(451\) −7.64985 4.41664i −0.360217 0.207972i
\(452\) 0 0
\(453\) 15.0267 + 2.56616i 0.706016 + 0.120569i
\(454\) 0 0
\(455\) −0.0450876 + 2.14446i −0.00211374 + 0.100534i
\(456\) 0 0
\(457\) 7.94102 0.371465 0.185733 0.982600i \(-0.440534\pi\)
0.185733 + 0.982600i \(0.440534\pi\)
\(458\) 0 0
\(459\) −7.78636 + 4.66497i −0.363436 + 0.217742i
\(460\) 0 0
\(461\) −2.12627 + 3.68281i −0.0990304 + 0.171526i −0.911284 0.411779i \(-0.864907\pi\)
0.812253 + 0.583305i \(0.198241\pi\)
\(462\) 0 0
\(463\) −10.2557 17.7634i −0.476622 0.825534i 0.523019 0.852321i \(-0.324806\pi\)
−0.999641 + 0.0267869i \(0.991472\pi\)
\(464\) 0 0
\(465\) 2.00268 0.741166i 0.0928719 0.0343708i
\(466\) 0 0
\(467\) −13.8842 24.0481i −0.642484 1.11281i −0.984877 0.173257i \(-0.944571\pi\)
0.342393 0.939557i \(-0.388763\pi\)
\(468\) 0 0
\(469\) −17.1667 0.360932i −0.792682 0.0166663i
\(470\) 0 0
\(471\) 14.0653 + 11.6735i 0.648093 + 0.537887i
\(472\) 0 0
\(473\) 0.647746i 0.0297834i
\(474\) 0 0
\(475\) −4.80135 2.77206i −0.220301 0.127191i
\(476\) 0 0
\(477\) −9.38827 + 26.6859i −0.429860 + 1.22186i
\(478\) 0 0
\(479\) −15.7064 27.2042i −0.717643 1.24299i −0.961931 0.273291i \(-0.911888\pi\)
0.244289 0.969703i \(-0.421446\pi\)
\(480\) 0 0
\(481\) −14.4858 8.36340i −0.660497 0.381338i
\(482\) 0 0
\(483\) −6.26016 + 2.16831i −0.284847 + 0.0986617i
\(484\) 0 0
\(485\) −2.71588 + 1.56801i −0.123322 + 0.0711999i
\(486\) 0 0
\(487\) −16.1798 + 28.0242i −0.733176 + 1.26990i 0.222343 + 0.974968i \(0.428629\pi\)
−0.955519 + 0.294929i \(0.904704\pi\)
\(488\) 0 0
\(489\) −15.8690 2.71000i −0.717621 0.122551i
\(490\) 0 0
\(491\) 33.6617 19.4346i 1.51913 0.877071i 0.519385 0.854540i \(-0.326161\pi\)
0.999746 0.0225309i \(-0.00717243\pi\)
\(492\) 0 0
\(493\) 3.48863 2.01416i 0.157120 0.0907132i
\(494\) 0 0
\(495\) −0.926081 + 0.173609i −0.0416243 + 0.00780315i
\(496\) 0 0
\(497\) −0.395359 + 18.8041i −0.0177343 + 0.843478i
\(498\) 0 0
\(499\) −19.8770 + 34.4280i −0.889816 + 1.54121i −0.0497240 + 0.998763i \(0.515834\pi\)
−0.840092 + 0.542444i \(0.817499\pi\)
\(500\) 0 0
\(501\) 15.1768 + 2.59179i 0.678048 + 0.115792i
\(502\) 0 0
\(503\) 4.45463 0.198622 0.0993110 0.995056i \(-0.468336\pi\)
0.0993110 + 0.995056i \(0.468336\pi\)
\(504\) 0 0
\(505\) −2.12541 −0.0945796
\(506\) 0 0
\(507\) −1.40345 3.79222i −0.0623296 0.168418i
\(508\) 0 0
\(509\) −9.92165 + 17.1848i −0.439769 + 0.761703i −0.997671 0.0682040i \(-0.978273\pi\)
0.557902 + 0.829907i \(0.311606\pi\)
\(510\) 0 0
\(511\) 27.7474 + 16.8074i 1.22747 + 0.743516i
\(512\) 0 0
\(513\) 5.81068 0.0939890i 0.256548 0.00414971i
\(514\) 0 0
\(515\) 2.01839 1.16532i 0.0889409 0.0513500i
\(516\) 0 0
\(517\) 10.8627 6.27157i 0.477740 0.275824i
\(518\) 0 0
\(519\) 10.8398 13.0607i 0.475815 0.573303i
\(520\) 0 0
\(521\) 6.51527 11.2848i 0.285439 0.494395i −0.687277 0.726396i \(-0.741194\pi\)
0.972716 + 0.232001i \(0.0745273\pi\)
\(522\) 0 0
\(523\) 28.6981 16.5688i 1.25488 0.724505i 0.282805 0.959177i \(-0.408735\pi\)
0.972075 + 0.234672i \(0.0754017\pi\)
\(524\) 0 0
\(525\) 22.3070 + 4.29386i 0.973556 + 0.187399i
\(526\) 0 0
\(527\) −9.00905 5.20138i −0.392440 0.226575i
\(528\) 0 0
\(529\) −10.4550 18.1085i −0.454564 0.787328i
\(530\) 0 0
\(531\) −1.80650 9.63641i −0.0783955 0.418185i
\(532\) 0 0
\(533\) 19.7465 + 11.4006i 0.855315 + 0.493817i
\(534\) 0 0
\(535\) 2.36055i 0.102056i
\(536\) 0 0
\(537\) 26.8485 9.93631i 1.15860 0.428783i
\(538\) 0 0
\(539\) −9.41165 + 4.91842i −0.405389 + 0.211851i
\(540\) 0 0
\(541\) 13.3022 + 23.0402i 0.571908 + 0.990574i 0.996370 + 0.0851281i \(0.0271300\pi\)
−0.424462 + 0.905446i \(0.639537\pi\)
\(542\) 0 0
\(543\) −31.7931 26.3868i −1.36437 1.13237i
\(544\) 0 0
\(545\) 0.311415 + 0.539387i 0.0133396 + 0.0231048i
\(546\) 0 0
\(547\) −4.32361 + 7.48870i −0.184864 + 0.320194i −0.943531 0.331285i \(-0.892518\pi\)
0.758667 + 0.651479i \(0.225851\pi\)
\(548\) 0 0
\(549\) 35.8335 6.71758i 1.52934 0.286699i
\(550\) 0 0
\(551\) −2.57912 −0.109874
\(552\) 0 0
\(553\) 13.6388 + 0.286758i 0.579981 + 0.0121942i
\(554\) 0 0
\(555\) 0.978203 1.17862i 0.0415224 0.0500298i
\(556\) 0 0
\(557\) −19.1707 11.0682i −0.812289 0.468975i 0.0354610 0.999371i \(-0.488710\pi\)
−0.847750 + 0.530396i \(0.822043\pi\)
\(558\) 0 0
\(559\) 1.67202i 0.0707190i
\(560\) 0 0
\(561\) 3.53200 + 2.93140i 0.149121 + 0.123764i
\(562\) 0 0
\(563\) 12.2055 0.514400 0.257200 0.966358i \(-0.417200\pi\)
0.257200 + 0.966358i \(0.417200\pi\)
\(564\) 0 0
\(565\) 3.40975i 0.143449i
\(566\) 0 0
\(567\) −22.3713 + 8.15625i −0.939507 + 0.342530i
\(568\) 0 0
\(569\) 9.42392i 0.395071i −0.980296 0.197536i \(-0.936706\pi\)
0.980296 0.197536i \(-0.0632938\pi\)
\(570\) 0 0
\(571\) 15.4716 0.647465 0.323733 0.946149i \(-0.395062\pi\)
0.323733 + 0.946149i \(0.395062\pi\)
\(572\) 0 0
\(573\) −29.8018 24.7341i −1.24499 1.03328i
\(574\) 0 0
\(575\) 7.16655i 0.298866i
\(576\) 0 0
\(577\) −8.48608 4.89944i −0.353280 0.203966i 0.312849 0.949803i \(-0.398717\pi\)
−0.666129 + 0.745836i \(0.732050\pi\)
\(578\) 0 0
\(579\) −9.57613 + 11.5381i −0.397970 + 0.479509i
\(580\) 0 0
\(581\) −22.9314 + 37.8576i −0.951356 + 1.57060i
\(582\) 0 0
\(583\) 14.3053 0.592466
\(584\) 0 0
\(585\) 2.39048 0.448135i 0.0988344 0.0185281i
\(586\) 0 0
\(587\) −12.4297 + 21.5289i −0.513028 + 0.888591i 0.486858 + 0.873481i \(0.338143\pi\)
−0.999886 + 0.0151097i \(0.995190\pi\)
\(588\) 0 0
\(589\) 3.33017 + 5.76802i 0.137217 + 0.237667i
\(590\) 0 0
\(591\) −31.0307 25.7540i −1.27643 1.05938i
\(592\) 0 0
\(593\) 20.9831 + 36.3438i 0.861673 + 1.49246i 0.870313 + 0.492500i \(0.163917\pi\)
−0.00863918 + 0.999963i \(0.502750\pi\)
\(594\) 0 0
\(595\) 0.460888 + 0.838507i 0.0188946 + 0.0343754i
\(596\) 0 0
\(597\) 16.5226 6.11483i 0.676227 0.250263i
\(598\) 0 0
\(599\) 30.3196i 1.23882i −0.785066 0.619412i \(-0.787371\pi\)
0.785066 0.619412i \(-0.212629\pi\)
\(600\) 0 0
\(601\) 2.71173 + 1.56562i 0.110614 + 0.0638628i 0.554286 0.832326i \(-0.312991\pi\)
−0.443673 + 0.896189i \(0.646325\pi\)
\(602\) 0 0
\(603\) 3.58738 + 19.1361i 0.146089 + 0.779282i
\(604\) 0 0
\(605\) −0.900424 1.55958i −0.0366074 0.0634060i
\(606\) 0 0
\(607\) 12.4592 + 7.19329i 0.505701 + 0.291967i 0.731065 0.682308i \(-0.239024\pi\)
−0.225364 + 0.974275i \(0.572357\pi\)
\(608\) 0 0
\(609\) 9.98566 3.45871i 0.404639 0.140154i
\(610\) 0 0
\(611\) −28.0397 + 16.1888i −1.13437 + 0.654927i
\(612\) 0 0
\(613\) −4.36863 + 7.56669i −0.176447 + 0.305616i −0.940661 0.339347i \(-0.889794\pi\)
0.764214 + 0.644963i \(0.223127\pi\)
\(614\) 0 0
\(615\) −1.33345 + 1.60665i −0.0537697 + 0.0647864i
\(616\) 0 0
\(617\) −25.9444 + 14.9790i −1.04448 + 0.603033i −0.921100 0.389326i \(-0.872708\pi\)
−0.123384 + 0.992359i \(0.539375\pi\)
\(618\) 0 0
\(619\) −2.27825 + 1.31535i −0.0915706 + 0.0528683i −0.545086 0.838380i \(-0.683503\pi\)
0.453515 + 0.891248i \(0.350170\pi\)
\(620\) 0 0
\(621\) 3.86077 + 6.44406i 0.154927 + 0.258591i
\(622\) 0 0
\(623\) −5.00311 9.10230i −0.200445 0.364676i
\(624\) 0 0
\(625\) −12.1795 + 21.0955i −0.487179 + 0.843818i
\(626\) 0 0
\(627\) −1.01998 2.75605i −0.0407341 0.110066i
\(628\) 0 0
\(629\) −7.46158 −0.297513
\(630\) 0 0
\(631\) −18.0872 −0.720039 −0.360019 0.932945i \(-0.617230\pi\)
−0.360019 + 0.932945i \(0.617230\pi\)
\(632\) 0 0
\(633\) −45.1364 7.70809i −1.79401 0.306369i
\(634\) 0 0
\(635\) 0.882644 1.52878i 0.0350266 0.0606679i
\(636\) 0 0
\(637\) 24.2942 12.6959i 0.962572 0.503029i
\(638\) 0 0
\(639\) 20.9614 3.92955i 0.829220 0.155451i
\(640\) 0 0
\(641\) −35.6571 + 20.5867i −1.40837 + 0.813124i −0.995231 0.0975432i \(-0.968902\pi\)
−0.413141 + 0.910667i \(0.635568\pi\)
\(642\) 0 0
\(643\) 31.3046 18.0737i 1.23453 0.712758i 0.266561 0.963818i \(-0.414113\pi\)
0.967971 + 0.251060i \(0.0807792\pi\)
\(644\) 0 0
\(645\) −0.150922 0.0257735i −0.00594256 0.00101483i
\(646\) 0 0
\(647\) −4.09812 + 7.09815i −0.161114 + 0.279057i −0.935268 0.353939i \(-0.884842\pi\)
0.774155 + 0.632996i \(0.218175\pi\)
\(648\) 0 0
\(649\) −4.29362 + 2.47892i −0.168539 + 0.0973063i
\(650\) 0 0
\(651\) −20.6287 17.8663i −0.808501 0.700236i
\(652\) 0 0
\(653\) 23.3611 + 13.4875i 0.914190 + 0.527808i 0.881777 0.471667i \(-0.156348\pi\)
0.0324129 + 0.999475i \(0.489681\pi\)
\(654\) 0 0
\(655\) −1.50661 2.60952i −0.0588680 0.101962i
\(656\) 0 0
\(657\) 12.2076 34.6997i 0.476264 1.35377i
\(658\) 0 0
\(659\) −2.60125 1.50183i −0.101330 0.0585032i 0.448478 0.893794i \(-0.351966\pi\)
−0.549809 + 0.835291i \(0.685299\pi\)
\(660\) 0 0
\(661\) 36.0755i 1.40317i −0.712585 0.701586i \(-0.752476\pi\)
0.712585 0.701586i \(-0.247524\pi\)
\(662\) 0 0
\(663\) −9.11712 7.56679i −0.354080 0.293870i
\(664\) 0 0
\(665\) 0.0128773 0.612469i 0.000499359 0.0237505i
\(666\) 0 0
\(667\) −1.66694 2.88722i −0.0645441 0.111794i
\(668\) 0 0
\(669\) 27.1760 10.0575i 1.05068 0.388845i
\(670\) 0 0
\(671\) −9.21802 15.9661i −0.355858 0.616364i
\(672\) 0 0
\(673\) 3.20540 5.55191i 0.123559 0.214010i −0.797610 0.603174i \(-0.793903\pi\)
0.921169 + 0.389163i \(0.127236\pi\)
\(674\) 0 0
\(675\) −0.416588 25.7547i −0.0160345 0.991298i
\(676\) 0 0
\(677\) 34.4498 1.32401 0.662007 0.749498i \(-0.269705\pi\)
0.662007 + 0.749498i \(0.269705\pi\)
\(678\) 0 0
\(679\) 34.2792 + 20.7639i 1.31551 + 0.796844i
\(680\) 0 0
\(681\) −15.1769 2.59180i −0.581578 0.0993180i
\(682\) 0 0
\(683\) −2.53802 1.46533i −0.0971148 0.0560693i 0.450656 0.892698i \(-0.351190\pi\)
−0.547771 + 0.836628i \(0.684523\pi\)
\(684\) 0 0
\(685\) 2.21189i 0.0845120i
\(686\) 0 0
\(687\) −27.5390 + 10.1919i −1.05068 + 0.388843i
\(688\) 0 0
\(689\) −36.9262 −1.40678
\(690\) 0 0
\(691\) 3.80337i 0.144687i 0.997380 + 0.0723434i \(0.0230478\pi\)
−0.997380 + 0.0723434i \(0.976952\pi\)
\(692\) 0 0
\(693\) 7.64507 + 9.30285i 0.290412 + 0.353386i
\(694\) 0 0
\(695\) 1.78443i 0.0676871i
\(696\) 0 0
\(697\) 10.1713 0.385266
\(698\) 0 0
\(699\) 5.85341 34.2759i 0.221396 1.29643i
\(700\) 0 0
\(701\) 36.7042i 1.38630i −0.720795 0.693149i \(-0.756223\pi\)
0.720795 0.693149i \(-0.243777\pi\)
\(702\) 0 0
\(703\) 4.13723 + 2.38863i 0.156039 + 0.0900889i
\(704\) 0 0
\(705\) −1.02903 2.78051i −0.0387556 0.104720i
\(706\) 0 0
\(707\) 13.0836 + 23.8033i 0.492058 + 0.895216i
\(708\) 0 0
\(709\) 20.8080 0.781460 0.390730 0.920505i \(-0.372223\pi\)
0.390730 + 0.920505i \(0.372223\pi\)
\(710\) 0 0
\(711\) −2.85015 15.2035i −0.106889 0.570176i
\(712\) 0 0
\(713\) −4.30471 + 7.45597i −0.161213 + 0.279228i
\(714\) 0 0
\(715\) −0.614942 1.06511i −0.0229975 0.0398329i
\(716\) 0 0
\(717\) 3.89292 22.7958i 0.145384 0.851325i
\(718\) 0 0
\(719\) −15.1577 26.2540i −0.565288 0.979108i −0.997023 0.0771074i \(-0.975432\pi\)
0.431734 0.902001i \(-0.357902\pi\)
\(720\) 0 0
\(721\) −25.4756 15.4313i −0.948761 0.574692i
\(722\) 0 0
\(723\) −3.72254 + 21.7981i −0.138443 + 0.810681i
\(724\) 0 0
\(725\) 11.4315i 0.424554i
\(726\) 0 0
\(727\) 29.7259 + 17.1622i 1.10247 + 0.636512i 0.936869 0.349680i \(-0.113710\pi\)
0.165602 + 0.986193i \(0.447043\pi\)
\(728\) 0 0
\(729\) 14.2492 + 22.9338i 0.527747 + 0.849401i
\(730\) 0 0
\(731\) 0.372932 + 0.645937i 0.0137934 + 0.0238908i
\(732\) 0 0
\(733\) −5.35388 3.09106i −0.197750 0.114171i 0.397855 0.917448i \(-0.369755\pi\)
−0.595606 + 0.803277i \(0.703088\pi\)
\(734\) 0 0
\(735\) 0.771488 + 2.38858i 0.0284568 + 0.0881041i
\(736\) 0 0
\(737\) 8.52633 4.92268i 0.314071 0.181329i
\(738\) 0 0
\(739\) −13.5892 + 23.5372i −0.499887 + 0.865829i −1.00000 0.000131035i \(-0.999958\pi\)
0.500113 + 0.865960i \(0.333292\pi\)
\(740\) 0 0
\(741\) 2.63287 + 7.11417i 0.0967208 + 0.261346i
\(742\) 0 0
\(743\) 24.3213 14.0419i 0.892262 0.515148i 0.0175804 0.999845i \(-0.494404\pi\)
0.874682 + 0.484698i \(0.161070\pi\)
\(744\) 0 0
\(745\) 3.95321 2.28239i 0.144835 0.0836203i
\(746\) 0 0
\(747\) 47.3431 + 16.6556i 1.73219 + 0.609397i
\(748\) 0 0
\(749\) −26.4368 + 14.5310i −0.965978 + 0.530953i
\(750\) 0 0
\(751\) 21.0921 36.5326i 0.769661 1.33309i −0.168086 0.985772i \(-0.553759\pi\)
0.937747 0.347320i \(-0.112908\pi\)
\(752\) 0 0
\(753\) 19.7304 23.7729i 0.719017 0.866334i
\(754\) 0 0
\(755\) −1.82211 −0.0663134
\(756\) 0 0
\(757\) −32.6771 −1.18767 −0.593835 0.804587i \(-0.702387\pi\)
−0.593835 + 0.804587i \(0.702387\pi\)
\(758\) 0 0
\(759\) 2.42605 2.92312i 0.0880601 0.106102i
\(760\) 0 0
\(761\) 15.8783 27.5021i 0.575589 0.996949i −0.420388 0.907344i \(-0.638106\pi\)
0.995977 0.0896051i \(-0.0285605\pi\)
\(762\) 0 0
\(763\) 4.12380 6.80801i 0.149292 0.246466i
\(764\) 0 0
\(765\) 0.823541 0.706304i 0.0297752 0.0255365i
\(766\) 0 0
\(767\) 11.0831 6.39882i 0.400187 0.231048i
\(768\) 0 0
\(769\) 30.8593 17.8166i 1.11281 0.642484i 0.173258 0.984877i \(-0.444571\pi\)
0.939557 + 0.342393i \(0.111237\pi\)
\(770\) 0 0
\(771\) −0.984208 2.65939i −0.0354454 0.0957756i
\(772\) 0 0
\(773\) −6.44721 + 11.1669i −0.231890 + 0.401645i −0.958364 0.285548i \(-0.907824\pi\)
0.726474 + 0.687194i \(0.241158\pi\)
\(774\) 0 0
\(775\) 25.5656 14.7603i 0.918344 0.530206i
\(776\) 0 0
\(777\) −19.2215 3.69993i −0.689566 0.132734i
\(778\) 0 0
\(779\) −5.63970 3.25608i −0.202063 0.116661i
\(780\) 0 0
\(781\) −5.39222 9.33961i −0.192949 0.334197i
\(782\) 0 0
\(783\) −6.15837 10.2790i −0.220082 0.367342i
\(784\) 0 0
\(785\) −1.89208 1.09239i −0.0675312 0.0389892i
\(786\) 0 0
\(787\) 17.6852i 0.630409i −0.949024 0.315205i \(-0.897927\pi\)
0.949024 0.315205i \(-0.102073\pi\)
\(788\) 0 0
\(789\) 8.95844 52.4581i 0.318929 1.86756i
\(790\) 0 0
\(791\) 38.1871 20.9897i 1.35778 0.746307i
\(792\) 0 0
\(793\) 23.7944 + 41.2131i 0.844963 + 1.46352i
\(794\) 0 0
\(795\) 0.569202 3.33309i 0.0201875 0.118212i
\(796\) 0 0
\(797\) 22.8391 + 39.5585i 0.809003 + 1.40123i 0.913555 + 0.406714i \(0.133326\pi\)
−0.104553 + 0.994519i \(0.533341\pi\)
\(798\) 0 0
\(799\) −7.22156 + 12.5081i −0.255481 + 0.442505i
\(800\) 0 0
\(801\) −8.93985 + 7.66719i −0.315874 + 0.270907i
\(802\) 0 0
\(803\) −18.6013 −0.656424
\(804\) 0 0
\(805\) 0.693956 0.381435i 0.0244587 0.0134438i
\(806\) 0 0
\(807\) 0.590575 + 1.59577i 0.0207892 + 0.0561738i
\(808\) 0 0
\(809\) 10.8291 + 6.25218i 0.380731 + 0.219815i 0.678136 0.734936i \(-0.262788\pi\)
−0.297405 + 0.954751i \(0.596121\pi\)
\(810\) 0 0
\(811\) 9.57778i 0.336322i −0.985760 0.168161i \(-0.946217\pi\)
0.985760 0.168161i \(-0.0537828\pi\)
\(812\) 0 0
\(813\) −0.238166 + 1.39463i −0.00835286 + 0.0489119i
\(814\) 0 0
\(815\) 1.92425 0.0674034
\(816\) 0 0
\(817\) 0.477538i 0.0167069i
\(818\) 0 0
\(819\) −19.7341 24.0134i −0.689567 0.839095i
\(820\) 0 0
\(821\) 27.8721i 0.972742i 0.873752 + 0.486371i \(0.161680\pi\)
−0.873752 + 0.486371i \(0.838320\pi\)
\(822\) 0 0
\(823\) 47.2766 1.64796 0.823980 0.566619i \(-0.191749\pi\)
0.823980 + 0.566619i \(0.191749\pi\)
\(824\) 0 0
\(825\) −12.2157 + 4.52087i −0.425295 + 0.157396i
\(826\) 0 0
\(827\) 24.1672i 0.840377i 0.907437 + 0.420188i \(0.138036\pi\)
−0.907437 + 0.420188i \(0.861964\pi\)
\(828\) 0 0
\(829\) 23.0216 + 13.2915i 0.799572 + 0.461633i 0.843322 0.537409i \(-0.180597\pi\)
−0.0437494 + 0.999043i \(0.513930\pi\)
\(830\) 0 0
\(831\) −18.1042 3.09171i −0.628026 0.107250i
\(832\) 0 0
\(833\) 6.55365 10.3233i 0.227070 0.357682i
\(834\) 0 0
\(835\) −1.84030 −0.0636864
\(836\) 0 0
\(837\) −15.0366 + 27.0450i −0.519740 + 0.934813i
\(838\) 0 0
\(839\) −4.03255 + 6.98459i −0.139219 + 0.241135i −0.927201 0.374563i \(-0.877793\pi\)
0.787982 + 0.615698i \(0.211126\pi\)
\(840\) 0 0
\(841\) −11.8410 20.5093i −0.408312 0.707217i
\(842\) 0 0
\(843\) 26.5903 9.84075i 0.915819 0.338933i
\(844\) 0 0
\(845\) 0.241660 + 0.418568i 0.00831337 + 0.0143992i
\(846\) 0 0
\(847\) −11.9235 + 19.6846i −0.409698 + 0.676372i
\(848\) 0 0
\(849\) −8.73671 7.25107i −0.299843 0.248856i
\(850\) 0 0
\(851\) 6.17527i 0.211686i
\(852\) 0 0
\(853\) 11.6046 + 6.69994i 0.397335 + 0.229402i 0.685334 0.728229i \(-0.259656\pi\)
−0.287998 + 0.957631i \(0.592990\pi\)
\(854\) 0 0
\(855\) −0.682734 + 0.127990i −0.0233490 + 0.00437716i
\(856\) 0 0
\(857\) −22.3340 38.6836i −0.762914 1.32141i −0.941343 0.337452i \(-0.890435\pi\)
0.178429 0.983953i \(-0.442899\pi\)
\(858\) 0 0
\(859\) 43.7433 + 25.2552i 1.49250 + 0.861696i 0.999963 0.00859547i \(-0.00273606\pi\)
0.492538 + 0.870291i \(0.336069\pi\)
\(860\) 0 0
\(861\) 26.2019 + 5.04359i 0.892958 + 0.171885i
\(862\) 0 0
\(863\) −0.227203 + 0.131176i −0.00773408 + 0.00446528i −0.503862 0.863784i \(-0.668088\pi\)
0.496128 + 0.868249i \(0.334755\pi\)
\(864\) 0 0
\(865\) −1.01438 + 1.75695i −0.0344898 + 0.0597381i
\(866\) 0 0
\(867\) 23.8148 + 4.06694i 0.808794 + 0.138120i
\(868\) 0 0
\(869\) −6.77412 + 3.91104i −0.229796 + 0.132673i
\(870\) 0 0
\(871\) −22.0089 + 12.7069i −0.745744 + 0.430556i
\(872\) 0 0
\(873\) 15.0813 42.8681i 0.510424 1.45086i
\(874\) 0 0
\(875\) −5.45277 0.114645i −0.184337 0.00387572i
\(876\) 0 0
\(877\) 4.63303 8.02465i 0.156446 0.270973i −0.777138 0.629330i \(-0.783329\pi\)
0.933585 + 0.358357i \(0.116663\pi\)
\(878\) 0 0
\(879\) 23.9860 + 4.09617i 0.809028 + 0.138160i
\(880\) 0 0
\(881\) −41.5555 −1.40004 −0.700021 0.714122i \(-0.746826\pi\)
−0.700021 + 0.714122i \(0.746826\pi\)
\(882\) 0 0
\(883\) −29.4547 −0.991231 −0.495615 0.868542i \(-0.665057\pi\)
−0.495615 + 0.868542i \(0.665057\pi\)
\(884\) 0 0
\(885\) 0.406739 + 1.09903i 0.0136724 + 0.0369436i
\(886\) 0 0
\(887\) 7.79122 13.4948i 0.261603 0.453111i −0.705065 0.709143i \(-0.749082\pi\)
0.966668 + 0.256032i \(0.0824154\pi\)
\(888\) 0 0
\(889\) −22.5548 0.474219i −0.756464 0.0159048i
\(890\) 0 0
\(891\) 8.54867 10.6459i 0.286391 0.356652i
\(892\) 0 0
\(893\) 8.00829 4.62359i 0.267987 0.154723i
\(894\) 0 0
\(895\) −2.96342 + 1.71093i −0.0990562 + 0.0571901i
\(896\) 0 0
\(897\) −6.26235 + 7.54542i −0.209094 + 0.251934i
\(898\) 0 0
\(899\) 6.86649 11.8931i 0.229010 0.396658i
\(900\) 0 0
\(901\) −14.2654 + 8.23612i −0.475248 + 0.274385i
\(902\) 0 0
\(903\) 0.640397 + 1.84890i 0.0213111 + 0.0615274i
\(904\) 0 0
\(905\) 4.27685 + 2.46924i 0.142167 + 0.0820804i
\(906\) 0 0
\(907\) −10.2604 17.7716i −0.340692 0.590095i 0.643870 0.765135i \(-0.277328\pi\)
−0.984561 + 0.175040i \(0.943995\pi\)
\(908\) 0 0
\(909\) 23.3785 20.0504i 0.775416 0.665029i
\(910\) 0 0
\(911\) −15.0554 8.69226i −0.498809 0.287987i 0.229413 0.973329i \(-0.426319\pi\)
−0.728222 + 0.685342i \(0.759653\pi\)
\(912\) 0 0
\(913\) 25.3789i 0.839919i
\(914\) 0 0
\(915\) −4.08682 + 1.51248i −0.135106 + 0.0500011i
\(916\) 0 0
\(917\) −19.9507 + 32.9367i −0.658830 + 1.08767i
\(918\) 0 0
\(919\) 17.1002 + 29.6183i 0.564082 + 0.977019i 0.997134 + 0.0756501i \(0.0241032\pi\)
−0.433052 + 0.901369i \(0.642563\pi\)
\(920\) 0 0
\(921\) −23.2355 19.2844i −0.765637 0.635444i
\(922\) 0 0
\(923\) 13.9189 + 24.1082i 0.458146 + 0.793532i
\(924\) 0 0
\(925\) 10.5871 18.3375i 0.348103 0.602932i
\(926\) 0 0
\(927\) −11.2081 + 31.8587i −0.368122 + 1.04638i
\(928\) 0 0
\(929\) −2.99192 −0.0981617 −0.0490808 0.998795i \(-0.515629\pi\)
−0.0490808 + 0.998795i \(0.515629\pi\)
\(930\) 0 0
\(931\) −6.93855 + 3.62600i −0.227402 + 0.118838i
\(932\) 0 0
\(933\) −17.2521 + 20.7869i −0.564809 + 0.680531i
\(934\) 0 0
\(935\) −0.475130 0.274316i −0.0155384 0.00897110i
\(936\) 0 0
\(937\) 10.9928i 0.359120i −0.983747 0.179560i \(-0.942533\pi\)
0.983747 0.179560i \(-0.0574674\pi\)
\(938\) 0 0
\(939\) 2.97197 + 2.46660i 0.0969865 + 0.0804943i
\(940\) 0 0
\(941\) −9.90600 −0.322926 −0.161463 0.986879i \(-0.551621\pi\)
−0.161463 + 0.986879i \(0.551621\pi\)
\(942\) 0 0
\(943\) 8.41787i 0.274124i
\(944\) 0 0
\(945\) 2.47172 1.41112i 0.0804051 0.0459036i
\(946\) 0 0
\(947\) 27.0453i 0.878854i 0.898278 + 0.439427i \(0.144819\pi\)
−0.898278 + 0.439427i \(0.855181\pi\)
\(948\) 0 0
\(949\) 48.0152 1.55864
\(950\) 0 0
\(951\) −45.7488 37.9694i −1.48351 1.23124i
\(952\) 0 0
\(953\) 51.9958i 1.68431i −0.539236 0.842155i \(-0.681287\pi\)
0.539236 0.842155i \(-0.318713\pi\)
\(954\) 0 0
\(955\) 4.00898 + 2.31458i 0.129727 + 0.0748982i
\(956\) 0 0
\(957\) −3.86983 + 4.66270i −0.125094 + 0.150724i
\(958\) 0 0
\(959\) −24.7718 + 13.6159i −0.799924 + 0.439681i
\(960\) 0 0
\(961\) −4.46414 −0.144004
\(962\) 0 0
\(963\) 22.2686 + 25.9649i 0.717596 + 0.836708i
\(964\) 0 0
\(965\) 0.896121 1.55213i 0.0288472 0.0499648i
\(966\) 0 0
\(967\) 8.23005 + 14.2549i 0.264660 + 0.458405i 0.967475 0.252968i \(-0.0814068\pi\)
−0.702814 + 0.711374i \(0.748073\pi\)
\(968\) 0 0
\(969\) 2.60390 + 2.16111i 0.0836492 + 0.0694250i
\(970\) 0 0
\(971\) 6.09724 + 10.5607i 0.195670 + 0.338910i 0.947120 0.320880i \(-0.103979\pi\)
−0.751450 + 0.659790i \(0.770645\pi\)
\(972\) 0 0
\(973\) −19.9845 + 10.9845i −0.640673 + 0.352148i
\(974\) 0 0
\(975\) 31.5322 11.6697i 1.00984 0.373729i
\(976\) 0 0
\(977\) 21.7574i 0.696081i −0.937480 0.348040i \(-0.886847\pi\)
0.937480 0.348040i \(-0.113153\pi\)
\(978\) 0 0
\(979\) 5.15771 + 2.97781i 0.164841 + 0.0951711i
\(980\) 0 0
\(981\) −8.51380 2.99521i −0.271825 0.0956297i
\(982\) 0 0
\(983\) 31.2373 + 54.1046i 0.996316 + 1.72567i 0.572430 + 0.819954i \(0.306001\pi\)
0.423886 + 0.905716i \(0.360666\pi\)
\(984\) 0 0
\(985\) 4.17429 + 2.41003i 0.133004 + 0.0767898i
\(986\) 0 0
\(987\) −24.8055 + 28.6407i −0.789568 + 0.911644i
\(988\) 0 0
\(989\) 0.534583 0.308642i 0.0169988 0.00981424i
\(990\) 0 0
\(991\) −27.5362 + 47.6942i −0.874717 + 1.51505i −0.0176535 + 0.999844i \(0.505620\pi\)
−0.857064 + 0.515210i \(0.827714\pi\)
\(992\) 0 0
\(993\) −24.9334 + 30.0419i −0.791238 + 0.953352i
\(994\) 0 0
\(995\) −1.82370 + 1.05291i −0.0578151 + 0.0333795i
\(996\) 0 0
\(997\) −20.6726 + 11.9353i −0.654707 + 0.377995i −0.790257 0.612775i \(-0.790053\pi\)
0.135550 + 0.990770i \(0.456720\pi\)
\(998\) 0 0
\(999\) 0.358965 + 22.1923i 0.0113572 + 0.702133i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.bs.a.353.19 yes 48
3.2 odd 2 1512.2.bs.a.521.12 48
4.3 odd 2 1008.2.ca.e.353.6 48
7.5 odd 6 504.2.cx.a.425.10 yes 48
9.4 even 3 1512.2.cx.a.17.12 48
9.5 odd 6 504.2.cx.a.185.10 yes 48
12.11 even 2 3024.2.ca.e.2033.12 48
21.5 even 6 1512.2.cx.a.89.12 48
28.19 even 6 1008.2.df.e.929.15 48
36.23 even 6 1008.2.df.e.689.15 48
36.31 odd 6 3024.2.df.e.17.12 48
63.5 even 6 inner 504.2.bs.a.257.19 48
63.40 odd 6 1512.2.bs.a.1097.12 48
84.47 odd 6 3024.2.df.e.1601.12 48
252.103 even 6 3024.2.ca.e.2609.12 48
252.131 odd 6 1008.2.ca.e.257.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.19 48 63.5 even 6 inner
504.2.bs.a.353.19 yes 48 1.1 even 1 trivial
504.2.cx.a.185.10 yes 48 9.5 odd 6
504.2.cx.a.425.10 yes 48 7.5 odd 6
1008.2.ca.e.257.6 48 252.131 odd 6
1008.2.ca.e.353.6 48 4.3 odd 2
1008.2.df.e.689.15 48 36.23 even 6
1008.2.df.e.929.15 48 28.19 even 6
1512.2.bs.a.521.12 48 3.2 odd 2
1512.2.bs.a.1097.12 48 63.40 odd 6
1512.2.cx.a.17.12 48 9.4 even 3
1512.2.cx.a.89.12 48 21.5 even 6
3024.2.ca.e.2033.12 48 12.11 even 2
3024.2.ca.e.2609.12 48 252.103 even 6
3024.2.df.e.17.12 48 36.31 odd 6
3024.2.df.e.1601.12 48 84.47 odd 6