L(s) = 1 | + 0.207·5-s + (−1.37 − 2.26i)7-s + 1.51i·11-s + (−3.39 + 1.95i)13-s + (0.873 + 1.51i)17-s + (−0.968 − 0.559i)19-s − 1.44i·23-s − 4.95·25-s + (−1.99 − 1.15i)29-s + (−5.15 − 2.97i)31-s + (−0.283 − 0.468i)35-s + (−2.13 + 3.69i)37-s + (2.91 + 5.04i)41-s + (−0.213 + 0.369i)43-s + (4.13 + 7.16i)47-s + ⋯ |
L(s) = 1 | + 0.0925·5-s + (−0.518 − 0.855i)7-s + 0.457i·11-s + (−0.940 + 0.543i)13-s + (0.211 + 0.366i)17-s + (−0.222 − 0.128i)19-s − 0.301i·23-s − 0.991·25-s + (−0.370 − 0.214i)29-s + (−0.926 − 0.534i)31-s + (−0.0479 − 0.0791i)35-s + (−0.351 + 0.608i)37-s + (0.454 + 0.787i)41-s + (−0.0325 + 0.0563i)43-s + (0.603 + 1.04i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.900 - 0.434i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.900 - 0.434i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2255637836\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2255637836\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.37 + 2.26i)T \) |
good | 5 | \( 1 - 0.207T + 5T^{2} \) |
| 11 | \( 1 - 1.51iT - 11T^{2} \) |
| 13 | \( 1 + (3.39 - 1.95i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.873 - 1.51i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.968 + 0.559i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 1.44iT - 23T^{2} \) |
| 29 | \( 1 + (1.99 + 1.15i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (5.15 + 2.97i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.13 - 3.69i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.91 - 5.04i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.213 - 0.369i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.13 - 7.16i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (8.16 - 4.71i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.63 - 2.83i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (10.5 - 6.07i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.24 + 5.62i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 7.10iT - 71T^{2} \) |
| 73 | \( 1 + (-10.6 + 6.13i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.57 + 4.46i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (8.36 - 14.4i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (1.96 - 3.39i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (13.1 + 7.57i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.592430935712951577628425954060, −9.400747606548387272898885164224, −8.013056320073953911405765394322, −7.43462074652230919562846822025, −6.63928418295648178835224214803, −5.82474946929037234368031226280, −4.63212255885107314633479928454, −4.00529729282240072317885866320, −2.82983990947755204971065613732, −1.63022682708150806109322036581,
0.082980994384256497312121583012, 1.96360063821105152439765662863, 2.95495647560269336117357379911, 3.87117559578798258989826632991, 5.28519299446199741250431996990, 5.62882375538971379019586103275, 6.70629494214018927086725669280, 7.53284191016892791909751686947, 8.379579511463067309881779101422, 9.247300640315756840426473916984