Properties

Label 1512.2.bs.a.1097.1
Level $1512$
Weight $2$
Character 1512.1097
Analytic conductor $12.073$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(521,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.bs (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1097.1
Character \(\chi\) \(=\) 1512.1097
Dual form 1512.2.bs.a.521.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.05742 - 3.56356i) q^{5} +(1.89056 - 1.85089i) q^{7} +(5.04147 + 2.91069i) q^{11} +(2.52259 + 1.45642i) q^{13} +(1.58162 + 2.73945i) q^{17} +(0.722488 + 0.417129i) q^{19} +(6.14668 - 3.54879i) q^{23} +(-5.96595 + 10.3333i) q^{25} +(1.91234 - 1.10409i) q^{29} -4.23424i q^{31} +(-10.4854 - 2.92907i) q^{35} +(1.82507 - 3.16112i) q^{37} +(2.04811 - 3.54743i) q^{41} +(0.155460 + 0.269265i) q^{43} -1.00467 q^{47} +(0.148439 - 6.99843i) q^{49} +(-1.94801 + 1.12469i) q^{53} -23.9541i q^{55} -5.03496 q^{59} -4.60348i q^{61} -11.9859i q^{65} -9.99453 q^{67} +11.4186i q^{71} +(-3.04990 + 1.76086i) q^{73} +(14.9186 - 3.82834i) q^{77} -1.15870 q^{79} +(-7.57669 - 13.1232i) q^{83} +(6.50813 - 11.2724i) q^{85} +(4.82266 - 8.35309i) q^{89} +(7.46478 - 1.91558i) q^{91} -3.43284i q^{95} +(-5.06969 + 2.92699i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 12 q^{23} - 24 q^{25} - 18 q^{29} - 6 q^{41} - 6 q^{43} - 36 q^{47} + 6 q^{49} - 12 q^{53} + 36 q^{77} - 12 q^{79} - 18 q^{89} + 6 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.05742 3.56356i −0.920106 1.59367i −0.799248 0.601001i \(-0.794769\pi\)
−0.120858 0.992670i \(-0.538564\pi\)
\(6\) 0 0
\(7\) 1.89056 1.85089i 0.714565 0.699569i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.04147 + 2.91069i 1.52006 + 0.877607i 0.999720 + 0.0236471i \(0.00752781\pi\)
0.520339 + 0.853960i \(0.325806\pi\)
\(12\) 0 0
\(13\) 2.52259 + 1.45642i 0.699641 + 0.403938i 0.807214 0.590259i \(-0.200975\pi\)
−0.107573 + 0.994197i \(0.534308\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.58162 + 2.73945i 0.383600 + 0.664415i 0.991574 0.129542i \(-0.0413508\pi\)
−0.607974 + 0.793957i \(0.708017\pi\)
\(18\) 0 0
\(19\) 0.722488 + 0.417129i 0.165750 + 0.0956959i 0.580580 0.814203i \(-0.302826\pi\)
−0.414830 + 0.909899i \(0.636159\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.14668 3.54879i 1.28167 0.739973i 0.304518 0.952507i \(-0.401505\pi\)
0.977154 + 0.212533i \(0.0681714\pi\)
\(24\) 0 0
\(25\) −5.96595 + 10.3333i −1.19319 + 2.06667i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.91234 1.10409i 0.355113 0.205025i −0.311822 0.950141i \(-0.600939\pi\)
0.666935 + 0.745116i \(0.267606\pi\)
\(30\) 0 0
\(31\) 4.23424i 0.760493i −0.924885 0.380246i \(-0.875839\pi\)
0.924885 0.380246i \(-0.124161\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −10.4854 2.92907i −1.77236 0.495103i
\(36\) 0 0
\(37\) 1.82507 3.16112i 0.300040 0.519684i −0.676105 0.736806i \(-0.736333\pi\)
0.976145 + 0.217121i \(0.0696667\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.04811 3.54743i 0.319861 0.554016i −0.660598 0.750740i \(-0.729697\pi\)
0.980459 + 0.196724i \(0.0630303\pi\)
\(42\) 0 0
\(43\) 0.155460 + 0.269265i 0.0237074 + 0.0410625i 0.877636 0.479328i \(-0.159120\pi\)
−0.853928 + 0.520391i \(0.825786\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.00467 −0.146546 −0.0732731 0.997312i \(-0.523344\pi\)
−0.0732731 + 0.997312i \(0.523344\pi\)
\(48\) 0 0
\(49\) 0.148439 6.99843i 0.0212055 0.999775i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.94801 + 1.12469i −0.267580 + 0.154487i −0.627787 0.778385i \(-0.716039\pi\)
0.360207 + 0.932872i \(0.382706\pi\)
\(54\) 0 0
\(55\) 23.9541i 3.22997i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.03496 −0.655496 −0.327748 0.944765i \(-0.606290\pi\)
−0.327748 + 0.944765i \(0.606290\pi\)
\(60\) 0 0
\(61\) 4.60348i 0.589416i −0.955587 0.294708i \(-0.904778\pi\)
0.955587 0.294708i \(-0.0952224\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 11.9859i 1.48666i
\(66\) 0 0
\(67\) −9.99453 −1.22103 −0.610513 0.792006i \(-0.709037\pi\)
−0.610513 + 0.792006i \(0.709037\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.4186i 1.35514i 0.735458 + 0.677571i \(0.236967\pi\)
−0.735458 + 0.677571i \(0.763033\pi\)
\(72\) 0 0
\(73\) −3.04990 + 1.76086i −0.356964 + 0.206093i −0.667748 0.744387i \(-0.732742\pi\)
0.310784 + 0.950480i \(0.399408\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 14.9186 3.82834i 1.70013 0.436280i
\(78\) 0 0
\(79\) −1.15870 −0.130364 −0.0651820 0.997873i \(-0.520763\pi\)
−0.0651820 + 0.997873i \(0.520763\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.57669 13.1232i −0.831650 1.44046i −0.896729 0.442579i \(-0.854063\pi\)
0.0650797 0.997880i \(-0.479270\pi\)
\(84\) 0 0
\(85\) 6.50813 11.2724i 0.705905 1.22266i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.82266 8.35309i 0.511201 0.885426i −0.488715 0.872444i \(-0.662534\pi\)
0.999916 0.0129824i \(-0.00413254\pi\)
\(90\) 0 0
\(91\) 7.46478 1.91558i 0.782521 0.200808i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.43284i 0.352201i
\(96\) 0 0
\(97\) −5.06969 + 2.92699i −0.514749 + 0.297190i −0.734784 0.678302i \(-0.762716\pi\)
0.220035 + 0.975492i \(0.429383\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.92632 + 5.06853i −0.291180 + 0.504338i −0.974089 0.226165i \(-0.927381\pi\)
0.682909 + 0.730503i \(0.260714\pi\)
\(102\) 0 0
\(103\) −0.675732 + 0.390134i −0.0665818 + 0.0384410i −0.532921 0.846165i \(-0.678906\pi\)
0.466340 + 0.884606i \(0.345573\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.15538 4.13116i −0.691737 0.399374i 0.112526 0.993649i \(-0.464106\pi\)
−0.804262 + 0.594274i \(0.797439\pi\)
\(108\) 0 0
\(109\) 3.63584 + 6.29745i 0.348250 + 0.603187i 0.985939 0.167107i \(-0.0534427\pi\)
−0.637689 + 0.770294i \(0.720109\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.0816 + 9.28474i 1.51283 + 0.873435i 0.999887 + 0.0150145i \(0.00477945\pi\)
0.512947 + 0.858421i \(0.328554\pi\)
\(114\) 0 0
\(115\) −25.2926 14.6027i −2.35855 1.36171i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 8.06057 + 2.25169i 0.738911 + 0.206412i
\(120\) 0 0
\(121\) 11.4443 + 19.8220i 1.04039 + 1.80200i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 28.5237 2.55124
\(126\) 0 0
\(127\) 4.38363 0.388984 0.194492 0.980904i \(-0.437694\pi\)
0.194492 + 0.980904i \(0.437694\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.85419 + 13.6039i 0.686224 + 1.18857i 0.973051 + 0.230592i \(0.0740662\pi\)
−0.286827 + 0.957982i \(0.592600\pi\)
\(132\) 0 0
\(133\) 2.13797 0.548636i 0.185385 0.0475728i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 15.9901 + 9.23190i 1.36613 + 0.788734i 0.990431 0.138008i \(-0.0440701\pi\)
0.375697 + 0.926743i \(0.377403\pi\)
\(138\) 0 0
\(139\) −3.80522 2.19695i −0.322755 0.186343i 0.329865 0.944028i \(-0.392997\pi\)
−0.652620 + 0.757685i \(0.726330\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.47837 + 14.6850i 0.708997 + 1.22802i
\(144\) 0 0
\(145\) −7.86898 4.54316i −0.653483 0.377289i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −17.7580 + 10.2526i −1.45479 + 0.839922i −0.998747 0.0500363i \(-0.984066\pi\)
−0.456041 + 0.889959i \(0.650733\pi\)
\(150\) 0 0
\(151\) −2.70776 + 4.68998i −0.220354 + 0.381665i −0.954916 0.296877i \(-0.904055\pi\)
0.734561 + 0.678542i \(0.237388\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −15.0890 + 8.71162i −1.21197 + 0.699734i
\(156\) 0 0
\(157\) 11.2537i 0.898140i −0.893497 0.449070i \(-0.851755\pi\)
0.893497 0.449070i \(-0.148245\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.05227 18.0860i 0.398175 1.42538i
\(162\) 0 0
\(163\) −1.25819 + 2.17924i −0.0985487 + 0.170691i −0.911084 0.412220i \(-0.864753\pi\)
0.812535 + 0.582912i \(0.198087\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.38259 16.2511i 0.726047 1.25755i −0.232495 0.972598i \(-0.574689\pi\)
0.958542 0.284952i \(-0.0919777\pi\)
\(168\) 0 0
\(169\) −2.25769 3.91043i −0.173668 0.300803i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.71715 −0.738781 −0.369391 0.929274i \(-0.620434\pi\)
−0.369391 + 0.929274i \(0.620434\pi\)
\(174\) 0 0
\(175\) 7.84683 + 30.5781i 0.593165 + 2.31149i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.24569 + 5.33800i −0.691055 + 0.398981i −0.804007 0.594619i \(-0.797303\pi\)
0.112952 + 0.993600i \(0.463969\pi\)
\(180\) 0 0
\(181\) 4.34901i 0.323259i −0.986851 0.161630i \(-0.948325\pi\)
0.986851 0.161630i \(-0.0516750\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −15.0198 −1.10427
\(186\) 0 0
\(187\) 18.4145i 1.34660i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 24.7918i 1.79387i −0.442159 0.896937i \(-0.645787\pi\)
0.442159 0.896937i \(-0.354213\pi\)
\(192\) 0 0
\(193\) 26.6512 1.91840 0.959198 0.282736i \(-0.0912419\pi\)
0.959198 + 0.282736i \(0.0912419\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.11068i 0.435368i 0.976019 + 0.217684i \(0.0698502\pi\)
−0.976019 + 0.217684i \(0.930150\pi\)
\(198\) 0 0
\(199\) −0.385220 + 0.222407i −0.0273075 + 0.0157660i −0.513592 0.858035i \(-0.671685\pi\)
0.486284 + 0.873801i \(0.338352\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.57185 5.62688i 0.110322 0.394930i
\(204\) 0 0
\(205\) −16.8553 −1.17723
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.42827 + 4.20588i 0.167967 + 0.290927i
\(210\) 0 0
\(211\) −4.23912 + 7.34236i −0.291833 + 0.505469i −0.974243 0.225500i \(-0.927598\pi\)
0.682410 + 0.730969i \(0.260932\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.639693 1.10798i 0.0436267 0.0755636i
\(216\) 0 0
\(217\) −7.83710 8.00509i −0.532017 0.543421i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9.21402i 0.619802i
\(222\) 0 0
\(223\) 7.25738 4.19005i 0.485990 0.280587i −0.236919 0.971529i \(-0.576138\pi\)
0.722909 + 0.690943i \(0.242804\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.11075 1.92388i 0.0737233 0.127693i −0.826807 0.562486i \(-0.809845\pi\)
0.900530 + 0.434793i \(0.143178\pi\)
\(228\) 0 0
\(229\) −20.4417 + 11.8020i −1.35082 + 0.779898i −0.988365 0.152102i \(-0.951396\pi\)
−0.362458 + 0.932000i \(0.618062\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.69275 3.86406i −0.438457 0.253143i 0.264486 0.964390i \(-0.414798\pi\)
−0.702943 + 0.711246i \(0.748131\pi\)
\(234\) 0 0
\(235\) 2.06703 + 3.58020i 0.134838 + 0.233546i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −16.2873 9.40346i −1.05354 0.608259i −0.129899 0.991527i \(-0.541465\pi\)
−0.923637 + 0.383268i \(0.874799\pi\)
\(240\) 0 0
\(241\) 21.5749 + 12.4563i 1.38976 + 0.802379i 0.993288 0.115668i \(-0.0369008\pi\)
0.396473 + 0.918047i \(0.370234\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −25.2447 + 13.8697i −1.61282 + 0.886105i
\(246\) 0 0
\(247\) 1.21503 + 2.10449i 0.0773104 + 0.133906i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3.39294 −0.214161 −0.107080 0.994250i \(-0.534150\pi\)
−0.107080 + 0.994250i \(0.534150\pi\)
\(252\) 0 0
\(253\) 41.3177 2.59762
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.47711 4.29047i −0.154518 0.267632i 0.778366 0.627811i \(-0.216049\pi\)
−0.932883 + 0.360179i \(0.882716\pi\)
\(258\) 0 0
\(259\) −2.40046 9.35428i −0.149157 0.581247i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.52396 1.45721i −0.155634 0.0898553i 0.420160 0.907450i \(-0.361974\pi\)
−0.575794 + 0.817595i \(0.695307\pi\)
\(264\) 0 0
\(265\) 8.01576 + 4.62790i 0.492404 + 0.284290i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −9.41429 16.3060i −0.573999 0.994196i −0.996150 0.0876702i \(-0.972058\pi\)
0.422150 0.906526i \(-0.361276\pi\)
\(270\) 0 0
\(271\) −13.6959 7.90734i −0.831967 0.480336i 0.0225585 0.999746i \(-0.492819\pi\)
−0.854526 + 0.519409i \(0.826152\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −60.1543 + 34.7301i −3.62744 + 2.09430i
\(276\) 0 0
\(277\) 2.45231 4.24753i 0.147345 0.255209i −0.782900 0.622147i \(-0.786261\pi\)
0.930245 + 0.366938i \(0.119594\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.77186 + 1.60034i −0.165355 + 0.0954680i −0.580394 0.814336i \(-0.697101\pi\)
0.415039 + 0.909804i \(0.363768\pi\)
\(282\) 0 0
\(283\) 5.06740i 0.301226i −0.988593 0.150613i \(-0.951875\pi\)
0.988593 0.150613i \(-0.0481247\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.69382 10.4975i −0.159011 0.619646i
\(288\) 0 0
\(289\) 3.49694 6.05687i 0.205702 0.356287i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −12.3751 + 21.4343i −0.722961 + 1.25221i 0.236847 + 0.971547i \(0.423886\pi\)
−0.959808 + 0.280658i \(0.909447\pi\)
\(294\) 0 0
\(295\) 10.3590 + 17.9424i 0.603126 + 1.04464i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 20.6741 1.19561
\(300\) 0 0
\(301\) 0.792285 + 0.221322i 0.0456665 + 0.0127568i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −16.4048 + 9.47130i −0.939335 + 0.542325i
\(306\) 0 0
\(307\) 19.8011i 1.13011i −0.825054 0.565055i \(-0.808855\pi\)
0.825054 0.565055i \(-0.191145\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 12.0490 0.683235 0.341617 0.939839i \(-0.389025\pi\)
0.341617 + 0.939839i \(0.389025\pi\)
\(312\) 0 0
\(313\) 30.0873i 1.70064i 0.526269 + 0.850318i \(0.323590\pi\)
−0.526269 + 0.850318i \(0.676410\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.6887i 0.712669i −0.934358 0.356335i \(-0.884026\pi\)
0.934358 0.356335i \(-0.115974\pi\)
\(318\) 0 0
\(319\) 12.8547 0.719724
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.63896i 0.146836i
\(324\) 0 0
\(325\) −30.0993 + 17.3778i −1.66961 + 0.963950i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.89939 + 1.85953i −0.104717 + 0.102519i
\(330\) 0 0
\(331\) −5.90816 −0.324742 −0.162371 0.986730i \(-0.551914\pi\)
−0.162371 + 0.986730i \(0.551914\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 20.5629 + 35.6161i 1.12347 + 1.94591i
\(336\) 0 0
\(337\) −10.5675 + 18.3034i −0.575647 + 0.997051i 0.420323 + 0.907374i \(0.361917\pi\)
−0.995971 + 0.0896763i \(0.971417\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.3246 21.3468i 0.667414 1.15599i
\(342\) 0 0
\(343\) −12.6727 13.5057i −0.684259 0.729239i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 29.5975i 1.58888i −0.607344 0.794439i \(-0.707765\pi\)
0.607344 0.794439i \(-0.292235\pi\)
\(348\) 0 0
\(349\) 6.60232 3.81185i 0.353414 0.204044i −0.312774 0.949828i \(-0.601258\pi\)
0.666188 + 0.745784i \(0.267925\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5.24727 + 9.08854i −0.279284 + 0.483734i −0.971207 0.238237i \(-0.923430\pi\)
0.691923 + 0.721971i \(0.256764\pi\)
\(354\) 0 0
\(355\) 40.6909 23.4929i 2.15965 1.24687i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.65028 + 2.68484i 0.245432 + 0.141700i 0.617671 0.786437i \(-0.288076\pi\)
−0.372239 + 0.928137i \(0.621410\pi\)
\(360\) 0 0
\(361\) −9.15201 15.8517i −0.481685 0.834302i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12.5498 + 7.24566i 0.656889 + 0.379255i
\(366\) 0 0
\(367\) 9.61757 + 5.55271i 0.502033 + 0.289849i 0.729553 0.683925i \(-0.239728\pi\)
−0.227520 + 0.973773i \(0.573062\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.60117 + 5.73184i −0.0831286 + 0.297582i
\(372\) 0 0
\(373\) 17.7021 + 30.6610i 0.916580 + 1.58756i 0.804571 + 0.593857i \(0.202395\pi\)
0.112010 + 0.993707i \(0.464271\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.43208 0.331269
\(378\) 0 0
\(379\) −26.5906 −1.36587 −0.682933 0.730481i \(-0.739296\pi\)
−0.682933 + 0.730481i \(0.739296\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 12.2956 + 21.2967i 0.628277 + 1.08821i 0.987897 + 0.155110i \(0.0495731\pi\)
−0.359620 + 0.933099i \(0.617094\pi\)
\(384\) 0 0
\(385\) −44.3363 45.2866i −2.25958 2.30802i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −16.5400 9.54936i −0.838611 0.484172i 0.0181812 0.999835i \(-0.494212\pi\)
−0.856792 + 0.515663i \(0.827546\pi\)
\(390\) 0 0
\(391\) 19.4435 + 11.2257i 0.983298 + 0.567708i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.38394 + 4.12910i 0.119949 + 0.207757i
\(396\) 0 0
\(397\) 17.8857 + 10.3263i 0.897655 + 0.518261i 0.876439 0.481513i \(-0.159913\pi\)
0.0212165 + 0.999775i \(0.493246\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13.3677 7.71786i 0.667553 0.385412i −0.127596 0.991826i \(-0.540726\pi\)
0.795149 + 0.606414i \(0.207393\pi\)
\(402\) 0 0
\(403\) 6.16683 10.6813i 0.307192 0.532072i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 18.4021 10.6244i 0.912157 0.526634i
\(408\) 0 0
\(409\) 18.6613i 0.922741i 0.887208 + 0.461370i \(0.152642\pi\)
−0.887208 + 0.461370i \(0.847358\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −9.51889 + 9.31914i −0.468394 + 0.458565i
\(414\) 0 0
\(415\) −31.1769 + 53.9999i −1.53041 + 2.65075i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 14.3576 24.8681i 0.701414 1.21488i −0.266557 0.963819i \(-0.585886\pi\)
0.967970 0.251065i \(-0.0807807\pi\)
\(420\) 0 0
\(421\) 12.8338 + 22.2287i 0.625479 + 1.08336i 0.988448 + 0.151560i \(0.0484296\pi\)
−0.362969 + 0.931801i \(0.618237\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −37.7436 −1.83083
\(426\) 0 0
\(427\) −8.52053 8.70317i −0.412337 0.421176i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −17.0243 + 9.82896i −0.820030 + 0.473444i −0.850427 0.526094i \(-0.823656\pi\)
0.0303970 + 0.999538i \(0.490323\pi\)
\(432\) 0 0
\(433\) 7.07732i 0.340114i −0.985434 0.170057i \(-0.945605\pi\)
0.985434 0.170057i \(-0.0543952\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.92120 0.283250
\(438\) 0 0
\(439\) 19.4414i 0.927889i 0.885864 + 0.463945i \(0.153566\pi\)
−0.885864 + 0.463945i \(0.846434\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 34.5199i 1.64009i 0.572299 + 0.820045i \(0.306052\pi\)
−0.572299 + 0.820045i \(0.693948\pi\)
\(444\) 0 0
\(445\) −39.6889 −1.88144
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10.9491i 0.516720i 0.966049 + 0.258360i \(0.0831821\pi\)
−0.966049 + 0.258360i \(0.916818\pi\)
\(450\) 0 0
\(451\) 20.6510 11.9228i 0.972417 0.561425i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −22.1845 22.6600i −1.04002 1.06232i
\(456\) 0 0
\(457\) −19.1923 −0.897776 −0.448888 0.893588i \(-0.648180\pi\)
−0.448888 + 0.893588i \(0.648180\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 16.2492 + 28.1444i 0.756799 + 1.31081i 0.944475 + 0.328584i \(0.106571\pi\)
−0.187676 + 0.982231i \(0.560095\pi\)
\(462\) 0 0
\(463\) 13.9136 24.0991i 0.646621 1.11998i −0.337303 0.941396i \(-0.609515\pi\)
0.983924 0.178585i \(-0.0571519\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −0.0869153 + 0.150542i −0.00402196 + 0.00696624i −0.868029 0.496513i \(-0.834614\pi\)
0.864007 + 0.503479i \(0.167947\pi\)
\(468\) 0 0
\(469\) −18.8953 + 18.4987i −0.872502 + 0.854192i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.80998i 0.0832232i
\(474\) 0 0
\(475\) −8.62066 + 4.97714i −0.395543 + 0.228367i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.46598 2.53915i 0.0669822 0.116017i −0.830589 0.556885i \(-0.811996\pi\)
0.897572 + 0.440869i \(0.145330\pi\)
\(480\) 0 0
\(481\) 9.20782 5.31614i 0.419840 0.242395i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 20.8610 + 12.0441i 0.947247 + 0.546893i
\(486\) 0 0
\(487\) 18.7014 + 32.3917i 0.847440 + 1.46781i 0.883486 + 0.468458i \(0.155190\pi\)
−0.0360460 + 0.999350i \(0.511476\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7.27844 + 4.20221i 0.328472 + 0.189643i 0.655162 0.755488i \(-0.272600\pi\)
−0.326691 + 0.945131i \(0.605934\pi\)
\(492\) 0 0
\(493\) 6.04921 + 3.49251i 0.272443 + 0.157295i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 21.1346 + 21.5876i 0.948015 + 0.968336i
\(498\) 0 0
\(499\) 0.0176239 + 0.0305256i 0.000788956 + 0.00136651i 0.866420 0.499317i \(-0.166416\pi\)
−0.865631 + 0.500683i \(0.833082\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −14.9085 −0.664736 −0.332368 0.943150i \(-0.607848\pi\)
−0.332368 + 0.943150i \(0.607848\pi\)
\(504\) 0 0
\(505\) 24.0827 1.07166
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 7.20640 + 12.4818i 0.319418 + 0.553248i 0.980367 0.197183i \(-0.0631793\pi\)
−0.660949 + 0.750431i \(0.729846\pi\)
\(510\) 0 0
\(511\) −2.50687 + 8.97403i −0.110897 + 0.396988i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.78053 + 1.60534i 0.122525 + 0.0707397i
\(516\) 0 0
\(517\) −5.06501 2.92429i −0.222759 0.128610i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −10.4159 18.0409i −0.456330 0.790386i 0.542434 0.840098i \(-0.317503\pi\)
−0.998764 + 0.0497124i \(0.984170\pi\)
\(522\) 0 0
\(523\) 12.6684 + 7.31408i 0.553949 + 0.319822i 0.750713 0.660628i \(-0.229710\pi\)
−0.196764 + 0.980451i \(0.563043\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 11.5995 6.69698i 0.505282 0.291725i
\(528\) 0 0
\(529\) 13.6878 23.7079i 0.595121 1.03078i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10.3331 5.96582i 0.447576 0.258408i
\(534\) 0 0
\(535\) 33.9981i 1.46987i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 21.1186 34.8503i 0.909643 1.50111i
\(540\) 0 0
\(541\) 3.60713 6.24773i 0.155083 0.268611i −0.778006 0.628256i \(-0.783769\pi\)
0.933089 + 0.359645i \(0.117102\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14.9609 25.9130i 0.640854 1.10999i
\(546\) 0 0
\(547\) 3.81987 + 6.61620i 0.163326 + 0.282888i 0.936059 0.351842i \(-0.114445\pi\)
−0.772734 + 0.634730i \(0.781111\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.84219 0.0784801
\(552\) 0 0
\(553\) −2.19060 + 2.14462i −0.0931536 + 0.0911987i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.13965 + 4.69943i −0.344888 + 0.199121i −0.662432 0.749122i \(-0.730475\pi\)
0.317543 + 0.948244i \(0.397142\pi\)
\(558\) 0 0
\(559\) 0.905659i 0.0383053i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4.12705 −0.173934 −0.0869671 0.996211i \(-0.527718\pi\)
−0.0869671 + 0.996211i \(0.527718\pi\)
\(564\) 0 0
\(565\) 76.4104i 3.21461i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18.2143i 0.763583i −0.924248 0.381792i \(-0.875307\pi\)
0.924248 0.381792i \(-0.124693\pi\)
\(570\) 0 0
\(571\) −45.1826 −1.89083 −0.945417 0.325864i \(-0.894345\pi\)
−0.945417 + 0.325864i \(0.894345\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 84.6876i 3.53172i
\(576\) 0 0
\(577\) 7.04322 4.06641i 0.293213 0.169287i −0.346177 0.938169i \(-0.612520\pi\)
0.639390 + 0.768883i \(0.279187\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −38.6138 10.7866i −1.60197 0.447505i
\(582\) 0 0
\(583\) −13.0945 −0.542317
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.4379 + 21.5430i 0.513366 + 0.889175i 0.999880 + 0.0155026i \(0.00493481\pi\)
−0.486514 + 0.873673i \(0.661732\pi\)
\(588\) 0 0
\(589\) 1.76622 3.05919i 0.0727760 0.126052i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −15.6229 + 27.0596i −0.641554 + 1.11120i 0.343532 + 0.939141i \(0.388377\pi\)
−0.985086 + 0.172063i \(0.944957\pi\)
\(594\) 0 0
\(595\) −8.55993 33.3570i −0.350923 1.36750i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 6.39849i 0.261435i 0.991420 + 0.130718i \(0.0417281\pi\)
−0.991420 + 0.130718i \(0.958272\pi\)
\(600\) 0 0
\(601\) −36.0541 + 20.8158i −1.47068 + 0.849095i −0.999458 0.0329215i \(-0.989519\pi\)
−0.471218 + 0.882017i \(0.656186\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 47.0913 81.5645i 1.91453 3.31607i
\(606\) 0 0
\(607\) −21.7167 + 12.5381i −0.881452 + 0.508907i −0.871137 0.491040i \(-0.836617\pi\)
−0.0103153 + 0.999947i \(0.503284\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.53437 1.46322i −0.102530 0.0591956i
\(612\) 0 0
\(613\) 15.3779 + 26.6352i 0.621106 + 1.07579i 0.989280 + 0.146030i \(0.0466497\pi\)
−0.368174 + 0.929757i \(0.620017\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.1910 + 5.88375i 0.410272 + 0.236871i 0.690907 0.722944i \(-0.257212\pi\)
−0.280634 + 0.959815i \(0.590545\pi\)
\(618\) 0 0
\(619\) 6.14617 + 3.54849i 0.247035 + 0.142626i 0.618406 0.785859i \(-0.287779\pi\)
−0.371371 + 0.928485i \(0.621112\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.34309 24.7182i −0.254131 0.990315i
\(624\) 0 0
\(625\) −28.8554 49.9791i −1.15422 1.99916i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 11.5463 0.460381
\(630\) 0 0
\(631\) 13.0686 0.520252 0.260126 0.965575i \(-0.416236\pi\)
0.260126 + 0.965575i \(0.416236\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −9.01897 15.6213i −0.357907 0.619913i
\(636\) 0 0
\(637\) 10.5671 17.4380i 0.418683 0.690918i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −10.9219 6.30573i −0.431387 0.249062i 0.268550 0.963266i \(-0.413455\pi\)
−0.699937 + 0.714204i \(0.746789\pi\)
\(642\) 0 0
\(643\) −12.3449 7.12736i −0.486837 0.281076i 0.236424 0.971650i \(-0.424025\pi\)
−0.723261 + 0.690574i \(0.757358\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −20.0060 34.6515i −0.786519 1.36229i −0.928088 0.372362i \(-0.878548\pi\)
0.141569 0.989928i \(-0.454785\pi\)
\(648\) 0 0
\(649\) −25.3836 14.6552i −0.996392 0.575267i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12.6726 7.31656i 0.495919 0.286319i −0.231108 0.972928i \(-0.574235\pi\)
0.727027 + 0.686609i \(0.240902\pi\)
\(654\) 0 0
\(655\) 32.3187 55.9777i 1.26280 2.18723i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 23.7553 13.7151i 0.925374 0.534265i 0.0400285 0.999199i \(-0.487255\pi\)
0.885346 + 0.464934i \(0.153922\pi\)
\(660\) 0 0
\(661\) 35.6097i 1.38506i −0.721391 0.692528i \(-0.756497\pi\)
0.721391 0.692528i \(-0.243503\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.35379 6.48998i −0.246389 0.251671i
\(666\) 0 0
\(667\) 7.83637 13.5730i 0.303426 0.525548i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 13.3993 23.2083i 0.517275 0.895947i
\(672\) 0 0
\(673\) 6.35937 + 11.0147i 0.245136 + 0.424587i 0.962170 0.272451i \(-0.0878342\pi\)
−0.717034 + 0.697038i \(0.754501\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −28.0556 −1.07826 −0.539131 0.842222i \(-0.681247\pi\)
−0.539131 + 0.842222i \(0.681247\pi\)
\(678\) 0 0
\(679\) −4.16703 + 14.9171i −0.159916 + 0.572464i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −14.4564 + 8.34638i −0.553157 + 0.319365i −0.750394 0.660990i \(-0.770136\pi\)
0.197237 + 0.980356i \(0.436803\pi\)
\(684\) 0 0
\(685\) 75.9756i 2.90288i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −6.55205 −0.249613
\(690\) 0 0
\(691\) 30.4437i 1.15813i 0.815281 + 0.579066i \(0.196583\pi\)
−0.815281 + 0.579066i \(0.803417\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 18.0802i 0.685820i
\(696\) 0 0
\(697\) 12.9574 0.490795
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 6.16940i 0.233015i −0.993190 0.116507i \(-0.962830\pi\)
0.993190 0.116507i \(-0.0371699\pi\)
\(702\) 0 0
\(703\) 2.63719 1.52258i 0.0994633 0.0574252i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.84890 + 14.9987i 0.144753 + 0.564082i
\(708\) 0 0
\(709\) 25.4973 0.957572 0.478786 0.877932i \(-0.341077\pi\)
0.478786 + 0.877932i \(0.341077\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −15.0264 26.0265i −0.562744 0.974702i
\(714\) 0 0
\(715\) 34.8871 60.4263i 1.30471 2.25982i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 12.1263 21.0034i 0.452236 0.783296i −0.546289 0.837597i \(-0.683960\pi\)
0.998525 + 0.0543012i \(0.0172931\pi\)
\(720\) 0 0
\(721\) −0.555418 + 1.98827i −0.0206849 + 0.0740472i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 26.3478i 0.978534i
\(726\) 0 0
\(727\) 13.5251 7.80870i 0.501617 0.289609i −0.227764 0.973716i \(-0.573141\pi\)
0.729381 + 0.684108i \(0.239808\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −0.491758 + 0.851750i −0.0181883 + 0.0315031i
\(732\) 0 0
\(733\) 30.9202 17.8518i 1.14206 0.659371i 0.195123 0.980779i \(-0.437489\pi\)
0.946941 + 0.321408i \(0.104156\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −50.3871 29.0910i −1.85603 1.07158i
\(738\) 0 0
\(739\) 7.27883 + 12.6073i 0.267756 + 0.463767i 0.968282 0.249860i \(-0.0803846\pi\)
−0.700526 + 0.713627i \(0.747051\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.0287226 0.0165830i −0.00105373 0.000608372i 0.499473 0.866329i \(-0.333527\pi\)
−0.500527 + 0.865721i \(0.666860\pi\)
\(744\) 0 0
\(745\) 73.0711 + 42.1876i 2.67712 + 1.54564i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −21.1740 + 5.43359i −0.773681 + 0.198539i
\(750\) 0 0
\(751\) −11.8949 20.6027i −0.434053 0.751801i 0.563165 0.826344i \(-0.309584\pi\)
−0.997218 + 0.0745430i \(0.976250\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 22.2840 0.810998
\(756\) 0 0
\(757\) −33.2060 −1.20689 −0.603446 0.797404i \(-0.706206\pi\)
−0.603446 + 0.797404i \(0.706206\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 21.2837 + 36.8645i 0.771535 + 1.33634i 0.936722 + 0.350075i \(0.113844\pi\)
−0.165187 + 0.986262i \(0.552823\pi\)
\(762\) 0 0
\(763\) 18.5296 + 5.17620i 0.670818 + 0.187391i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −12.7011 7.33301i −0.458612 0.264780i
\(768\) 0 0
\(769\) −27.1091 15.6514i −0.977578 0.564405i −0.0760402 0.997105i \(-0.524228\pi\)
−0.901538 + 0.432700i \(0.857561\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.165130 + 0.286014i 0.00593932 + 0.0102872i 0.868980 0.494848i \(-0.164776\pi\)
−0.863040 + 0.505135i \(0.831443\pi\)
\(774\) 0 0
\(775\) 43.7539 + 25.2613i 1.57168 + 0.907413i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.95947 1.70865i 0.106034 0.0612188i
\(780\) 0 0
\(781\) −33.2361 + 57.5666i −1.18928 + 2.05990i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −40.1031 + 23.1535i −1.43134 + 0.826384i
\(786\) 0 0
\(787\) 7.50934i 0.267679i 0.991003 + 0.133840i \(0.0427307\pi\)
−0.991003 + 0.133840i \(0.957269\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 47.5883 12.2119i 1.69205 0.434206i
\(792\) 0 0
\(793\) 6.70460 11.6127i 0.238087 0.412379i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.58136 6.20310i 0.126858 0.219725i −0.795600 0.605823i \(-0.792844\pi\)
0.922458 + 0.386098i \(0.126177\pi\)
\(798\) 0 0
\(799\) −1.58901 2.75225i −0.0562151 0.0973675i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −20.5013 −0.723475
\(804\) 0 0
\(805\) −74.8451 + 19.2065i −2.63794 + 0.676939i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 39.9767 23.0806i 1.40551 0.811469i 0.410556 0.911836i \(-0.365335\pi\)
0.994951 + 0.100366i \(0.0320014\pi\)
\(810\) 0 0
\(811\) 22.8560i 0.802581i 0.915951 + 0.401290i \(0.131438\pi\)
−0.915951 + 0.401290i \(0.868562\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 10.3545 0.362701
\(816\) 0 0
\(817\) 0.259387i 0.00907481i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.91410i 0.0668026i −0.999442 0.0334013i \(-0.989366\pi\)
0.999442 0.0334013i \(-0.0106339\pi\)
\(822\) 0 0
\(823\) −15.0947 −0.526168 −0.263084 0.964773i \(-0.584740\pi\)
−0.263084 + 0.964773i \(0.584740\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.4077i 0.501004i −0.968116 0.250502i \(-0.919404\pi\)
0.968116 0.250502i \(-0.0805956\pi\)
\(828\) 0 0
\(829\) −37.1450 + 21.4457i −1.29010 + 0.744840i −0.978672 0.205430i \(-0.934141\pi\)
−0.311429 + 0.950270i \(0.600807\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 19.4066 10.6622i 0.672400 0.369424i
\(834\) 0 0
\(835\) −77.2157 −2.67216
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12.5327 21.7073i −0.432678 0.749421i 0.564425 0.825485i \(-0.309098\pi\)
−0.997103 + 0.0760639i \(0.975765\pi\)
\(840\) 0 0
\(841\) −12.0620 + 20.8919i −0.415930 + 0.720412i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −9.29003 + 16.0908i −0.319587 + 0.553541i
\(846\) 0 0
\(847\) 58.3244 + 16.2927i 2.00405 + 0.559825i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 25.9072i 0.888086i
\(852\) 0 0
\(853\) 14.9013 8.60328i 0.510211 0.294571i −0.222709 0.974885i \(-0.571490\pi\)
0.732920 + 0.680314i \(0.238157\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −24.3484 + 42.1727i −0.831726 + 1.44059i 0.0649433 + 0.997889i \(0.479313\pi\)
−0.896669 + 0.442702i \(0.854020\pi\)
\(858\) 0 0
\(859\) −2.68282 + 1.54893i −0.0915366 + 0.0528487i −0.545070 0.838391i \(-0.683497\pi\)
0.453533 + 0.891239i \(0.350163\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 22.2443 + 12.8427i 0.757203 + 0.437172i 0.828291 0.560299i \(-0.189314\pi\)
−0.0710874 + 0.997470i \(0.522647\pi\)
\(864\) 0 0
\(865\) 19.9923 + 34.6276i 0.679757 + 1.17737i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −5.84156 3.37262i −0.198161 0.114408i
\(870\) 0 0
\(871\) −25.2121 14.5562i −0.854280 0.493219i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 53.9257 52.7941i 1.82302 1.78477i
\(876\) 0 0
\(877\) −0.626626 1.08535i −0.0211597 0.0366496i 0.855252 0.518213i \(-0.173403\pi\)
−0.876411 + 0.481563i \(0.840069\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18.7429 0.631464 0.315732 0.948848i \(-0.397750\pi\)
0.315732 + 0.948848i \(0.397750\pi\)
\(882\) 0 0
\(883\) 39.3701 1.32491 0.662454 0.749103i \(-0.269515\pi\)
0.662454 + 0.749103i \(0.269515\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.5954 + 32.2083i 0.624374 + 1.08145i 0.988662 + 0.150161i \(0.0479792\pi\)
−0.364288 + 0.931286i \(0.618687\pi\)
\(888\) 0 0
\(889\) 8.28752 8.11360i 0.277955 0.272122i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.725863 0.419077i −0.0242901 0.0140239i
\(894\) 0 0
\(895\) 38.0445 + 21.9650i 1.27169 + 0.734210i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.67499 8.09732i −0.155920 0.270061i
\(900\) 0 0
\(901\) −6.16204 3.55766i −0.205287 0.118523i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −15.4979 + 8.94774i −0.515169 + 0.297433i
\(906\) 0 0
\(907\) 15.4295 26.7247i 0.512328 0.887378i −0.487570 0.873084i \(-0.662117\pi\)
0.999898 0.0142940i \(-0.00455008\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 14.7486 8.51511i 0.488643 0.282118i −0.235368 0.971906i \(-0.575630\pi\)
0.724011 + 0.689788i \(0.242296\pi\)
\(912\) 0 0
\(913\) 88.2136i 2.91945i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 40.0280 + 11.1817i 1.32184 + 0.369252i
\(918\) 0 0
\(919\) −8.44635 + 14.6295i −0.278619 + 0.482583i −0.971042 0.238909i \(-0.923210\pi\)
0.692422 + 0.721492i \(0.256543\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −16.6303 + 28.8045i −0.547393 + 0.948112i
\(924\) 0 0
\(925\) 21.7766 + 37.7182i 0.716010 + 1.24017i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 6.79356 0.222889 0.111445 0.993771i \(-0.464452\pi\)
0.111445 + 0.993771i \(0.464452\pi\)
\(930\) 0 0
\(931\) 3.02649 4.99436i 0.0991892 0.163684i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 65.6210 37.8863i 2.14604 1.23901i
\(936\) 0 0
\(937\) 5.14535i 0.168091i 0.996462 + 0.0840456i \(0.0267841\pi\)
−0.996462 + 0.0840456i \(0.973216\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.920907 −0.0300207 −0.0150104 0.999887i \(-0.504778\pi\)
−0.0150104 + 0.999887i \(0.504778\pi\)
\(942\) 0 0
\(943\) 29.0733i 0.946756i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 24.4835i 0.795606i 0.917471 + 0.397803i \(0.130227\pi\)
−0.917471 + 0.397803i \(0.869773\pi\)
\(948\) 0 0
\(949\) −10.2582 −0.332995
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 9.80916i 0.317750i 0.987299 + 0.158875i \(0.0507866\pi\)
−0.987299 + 0.158875i \(0.949213\pi\)
\(954\) 0 0
\(955\) −88.3471 + 51.0072i −2.85884 + 1.65055i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 47.3175 12.1424i 1.52796 0.392099i
\(960\) 0 0
\(961\) 13.0712 0.421651
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −54.8327 94.9731i −1.76513 3.05729i
\(966\) 0 0
\(967\) −18.1376 + 31.4152i −0.583264 + 1.01024i 0.411825 + 0.911263i \(0.364892\pi\)
−0.995089 + 0.0989807i \(0.968442\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.09772 + 1.90130i −0.0352274 + 0.0610157i −0.883102 0.469182i \(-0.844549\pi\)
0.847874 + 0.530198i \(0.177882\pi\)
\(972\) 0 0
\(973\) −11.2603 + 2.88958i −0.360989 + 0.0926356i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 42.7181i 1.36667i 0.730103 + 0.683337i \(0.239472\pi\)
−0.730103 + 0.683337i \(0.760528\pi\)
\(978\) 0 0
\(979\) 48.6266 28.0746i 1.55411 0.897267i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −22.8781 + 39.6260i −0.729698 + 1.26387i 0.227313 + 0.973822i \(0.427006\pi\)
−0.957011 + 0.290052i \(0.906327\pi\)
\(984\) 0 0
\(985\) 21.7757 12.5722i 0.693832 0.400584i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.91113 + 1.10339i 0.0607703 + 0.0350857i
\(990\) 0 0
\(991\) −8.30690 14.3880i −0.263877 0.457049i 0.703392 0.710803i \(-0.251668\pi\)
−0.967269 + 0.253754i \(0.918335\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.58512 + 0.915169i 0.0502517 + 0.0290128i
\(996\) 0 0
\(997\) −18.6045 10.7413i −0.589210 0.340181i 0.175575 0.984466i \(-0.443822\pi\)
−0.764785 + 0.644285i \(0.777155\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.bs.a.1097.1 48
3.2 odd 2 504.2.bs.a.257.23 48
4.3 odd 2 3024.2.ca.e.2609.1 48
7.3 odd 6 1512.2.cx.a.17.1 48
9.2 odd 6 1512.2.cx.a.89.1 48
9.7 even 3 504.2.cx.a.425.17 yes 48
12.11 even 2 1008.2.ca.e.257.2 48
21.17 even 6 504.2.cx.a.185.17 yes 48
28.3 even 6 3024.2.df.e.17.1 48
36.7 odd 6 1008.2.df.e.929.8 48
36.11 even 6 3024.2.df.e.1601.1 48
63.38 even 6 inner 1512.2.bs.a.521.1 48
63.52 odd 6 504.2.bs.a.353.23 yes 48
84.59 odd 6 1008.2.df.e.689.8 48
252.115 even 6 1008.2.ca.e.353.2 48
252.227 odd 6 3024.2.ca.e.2033.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.23 48 3.2 odd 2
504.2.bs.a.353.23 yes 48 63.52 odd 6
504.2.cx.a.185.17 yes 48 21.17 even 6
504.2.cx.a.425.17 yes 48 9.7 even 3
1008.2.ca.e.257.2 48 12.11 even 2
1008.2.ca.e.353.2 48 252.115 even 6
1008.2.df.e.689.8 48 84.59 odd 6
1008.2.df.e.929.8 48 36.7 odd 6
1512.2.bs.a.521.1 48 63.38 even 6 inner
1512.2.bs.a.1097.1 48 1.1 even 1 trivial
1512.2.cx.a.17.1 48 7.3 odd 6
1512.2.cx.a.89.1 48 9.2 odd 6
3024.2.ca.e.2033.1 48 252.227 odd 6
3024.2.ca.e.2609.1 48 4.3 odd 2
3024.2.df.e.17.1 48 28.3 even 6
3024.2.df.e.1601.1 48 36.11 even 6