L(s) = 1 | + (−2.05 − 3.56i)5-s + (1.89 − 1.85i)7-s + (5.04 + 2.91i)11-s + (2.52 + 1.45i)13-s + (1.58 + 2.73i)17-s + (0.722 + 0.417i)19-s + (6.14 − 3.54i)23-s + (−5.96 + 10.3i)25-s + (1.91 − 1.10i)29-s − 4.23i·31-s + (−10.4 − 2.92i)35-s + (1.82 − 3.16i)37-s + (2.04 − 3.54i)41-s + (0.155 + 0.269i)43-s − 1.00·47-s + ⋯ |
L(s) = 1 | + (−0.920 − 1.59i)5-s + (0.714 − 0.699i)7-s + (1.52 + 0.877i)11-s + (0.699 + 0.403i)13-s + (0.383 + 0.664i)17-s + (0.165 + 0.0956i)19-s + (1.28 − 0.739i)23-s + (−1.19 + 2.06i)25-s + (0.355 − 0.205i)29-s − 0.760i·31-s + (−1.77 − 0.495i)35-s + (0.300 − 0.519i)37-s + (0.319 − 0.554i)41-s + (0.0237 + 0.0410i)43-s − 0.146·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.354 + 0.935i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.354 + 0.935i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.801375080\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.801375080\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-1.89 + 1.85i)T \) |
good | 5 | \( 1 + (2.05 + 3.56i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-5.04 - 2.91i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.52 - 1.45i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.58 - 2.73i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.722 - 0.417i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-6.14 + 3.54i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.91 + 1.10i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 4.23iT - 31T^{2} \) |
| 37 | \( 1 + (-1.82 + 3.16i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.04 + 3.54i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.155 - 0.269i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 1.00T + 47T^{2} \) |
| 53 | \( 1 + (1.94 - 1.12i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 5.03T + 59T^{2} \) |
| 61 | \( 1 + 4.60iT - 61T^{2} \) |
| 67 | \( 1 + 9.99T + 67T^{2} \) |
| 71 | \( 1 - 11.4iT - 71T^{2} \) |
| 73 | \( 1 + (3.04 - 1.76i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + 1.15T + 79T^{2} \) |
| 83 | \( 1 + (7.57 + 13.1i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-4.82 + 8.35i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.06 - 2.92i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.016828060898251104333404889652, −8.675311943679662742171590217449, −7.76832273133376843073605650927, −7.10666744777224120857798838815, −6.01276185523201545566033455105, −4.79582023820765722135942460380, −4.31380355062441507576446227729, −3.70933648558761703523174806628, −1.62288021009467560385207119636, −0.923567500133072496051584176302,
1.25853817712769071984801757458, 2.97521152729115475915350490653, 3.33205330247084467197278450595, 4.46071168285469174216926473568, 5.68110889395561612841956215302, 6.48934560355964939778901952859, 7.16858651108193848010236312655, 8.008270458533918068358626024106, 8.741557538046184578701243655831, 9.544135603898308253497473546631