Properties

Label 147.4.a
Level $147$
Weight $4$
Character orbit 147.a
Rep. character $\chi_{147}(1,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $13$
Sturm bound $74$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 147.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 13 \)
Sturm bound: \(74\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(147))\).

Total New Old
Modular forms 64 20 44
Cusp forms 48 20 28
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(17\)\(5\)\(12\)\(13\)\(5\)\(8\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(-\)\(15\)\(5\)\(10\)\(11\)\(5\)\(6\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(-\)\(15\)\(3\)\(12\)\(11\)\(3\)\(8\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(+\)\(17\)\(7\)\(10\)\(13\)\(7\)\(6\)\(4\)\(0\)\(4\)
Plus space\(+\)\(34\)\(12\)\(22\)\(26\)\(12\)\(14\)\(8\)\(0\)\(8\)
Minus space\(-\)\(30\)\(8\)\(22\)\(22\)\(8\)\(14\)\(8\)\(0\)\(8\)

Trace form

\( 20 q + 4 q^{2} + 60 q^{4} + 16 q^{5} + 12 q^{6} + 48 q^{8} + 180 q^{9} + 28 q^{10} - 40 q^{11} - 24 q^{12} + 80 q^{13} - 84 q^{15} + 332 q^{16} - 120 q^{17} + 36 q^{18} - 40 q^{19} - 172 q^{20} - 132 q^{22}+ \cdots - 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(147))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 7
147.4.a.a 147.a 1.a $1$ $8.673$ \(\Q\) None 21.4.e.a \(-3\) \(-3\) \(3\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{2}-3q^{3}+q^{4}+3q^{5}+9q^{6}+\cdots\)
147.4.a.b 147.a 1.a $1$ $8.673$ \(\Q\) None 21.4.e.a \(-3\) \(3\) \(-3\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3q^{2}+3q^{3}+q^{4}-3q^{5}-9q^{6}+\cdots\)
147.4.a.c 147.a 1.a $1$ $8.673$ \(\Q\) None 21.4.a.a \(-3\) \(3\) \(18\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{2}+3q^{3}+q^{4}+18q^{5}-9q^{6}+\cdots\)
147.4.a.d 147.a 1.a $1$ $8.673$ \(\Q\) None 147.4.a.d \(-1\) \(-3\) \(12\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-3q^{3}-7q^{4}+12q^{5}+3q^{6}+\cdots\)
147.4.a.e 147.a 1.a $1$ $8.673$ \(\Q\) None 147.4.a.d \(-1\) \(3\) \(-12\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+3q^{3}-7q^{4}-12q^{5}-3q^{6}+\cdots\)
147.4.a.f 147.a 1.a $1$ $8.673$ \(\Q\) None 147.4.a.f \(4\) \(-3\) \(-18\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}-3q^{3}+8q^{4}-18q^{5}-12q^{6}+\cdots\)
147.4.a.g 147.a 1.a $1$ $8.673$ \(\Q\) None 21.4.a.b \(4\) \(3\) \(4\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+3q^{3}+8q^{4}+4q^{5}+12q^{6}+\cdots\)
147.4.a.h 147.a 1.a $1$ $8.673$ \(\Q\) None 147.4.a.f \(4\) \(3\) \(18\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+3q^{3}+8q^{4}+18q^{5}+12q^{6}+\cdots\)
147.4.a.i 147.a 1.a $2$ $8.673$ \(\Q(\sqrt{57}) \) None 21.4.a.c \(-3\) \(-6\) \(-6\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{2}-3q^{3}+(7+3\beta )q^{4}+\cdots\)
147.4.a.j 147.a 1.a $2$ $8.673$ \(\Q(\sqrt{2}) \) None 147.4.a.j \(2\) \(-6\) \(20\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}-3q^{3}+(-5+2\beta )q^{4}+\cdots\)
147.4.a.k 147.a 1.a $2$ $8.673$ \(\Q(\sqrt{2}) \) None 147.4.a.j \(2\) \(6\) \(-20\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+3q^{3}+(-5+2\beta )q^{4}+\cdots\)
147.4.a.l 147.a 1.a $3$ $8.673$ 3.3.57516.1 None 21.4.e.b \(1\) \(-9\) \(11\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-3q^{3}+(8+\beta _{1}+\beta _{2})q^{4}+\cdots\)
147.4.a.m 147.a 1.a $3$ $8.673$ 3.3.57516.1 None 21.4.e.b \(1\) \(9\) \(-11\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+3q^{3}+(8+\beta _{1}+\beta _{2})q^{4}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(147))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(147)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 2}\)