Properties

 Label 147.4.a.a Level $147$ Weight $4$ Character orbit 147.a Self dual yes Analytic conductor $8.673$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$147 = 3 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 147.a (trivial)

Newform invariants

 Self dual: yes Analytic conductor: $$8.67328077084$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 21) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

 $$f(q)$$ $$=$$ $$q - 3q^{2} - 3q^{3} + q^{4} + 3q^{5} + 9q^{6} + 21q^{8} + 9q^{9} + O(q^{10})$$ $$q - 3q^{2} - 3q^{3} + q^{4} + 3q^{5} + 9q^{6} + 21q^{8} + 9q^{9} - 9q^{10} - 15q^{11} - 3q^{12} + 64q^{13} - 9q^{15} - 71q^{16} - 84q^{17} - 27q^{18} + 16q^{19} + 3q^{20} + 45q^{22} - 84q^{23} - 63q^{24} - 116q^{25} - 192q^{26} - 27q^{27} - 297q^{29} + 27q^{30} + 253q^{31} + 45q^{32} + 45q^{33} + 252q^{34} + 9q^{36} - 316q^{37} - 48q^{38} - 192q^{39} + 63q^{40} - 360q^{41} + 26q^{43} - 15q^{44} + 27q^{45} + 252q^{46} + 30q^{47} + 213q^{48} + 348q^{50} + 252q^{51} + 64q^{52} + 363q^{53} + 81q^{54} - 45q^{55} - 48q^{57} + 891q^{58} + 15q^{59} - 9q^{60} + 118q^{61} - 759q^{62} + 433q^{64} + 192q^{65} - 135q^{66} - 370q^{67} - 84q^{68} + 252q^{69} - 342q^{71} + 189q^{72} - 362q^{73} + 948q^{74} + 348q^{75} + 16q^{76} + 576q^{78} + 467q^{79} - 213q^{80} + 81q^{81} + 1080q^{82} - 477q^{83} - 252q^{85} - 78q^{86} + 891q^{87} - 315q^{88} - 906q^{89} - 81q^{90} - 84q^{92} - 759q^{93} - 90q^{94} + 48q^{95} - 135q^{96} - 503q^{97} - 135q^{99} + O(q^{100})$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−3.00000 −3.00000 1.00000 3.00000 9.00000 0 21.0000 9.00000 −9.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$1$$
$$7$$ $$-1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 147.4.a.a 1
3.b odd 2 1 441.4.a.k 1
4.b odd 2 1 2352.4.a.bd 1
7.b odd 2 1 147.4.a.b 1
7.c even 3 2 147.4.e.h 2
7.d odd 6 2 21.4.e.a 2
21.c even 2 1 441.4.a.l 1
21.g even 6 2 63.4.e.a 2
21.h odd 6 2 441.4.e.c 2
28.d even 2 1 2352.4.a.i 1
28.f even 6 2 336.4.q.e 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.e.a 2 7.d odd 6 2
63.4.e.a 2 21.g even 6 2
147.4.a.a 1 1.a even 1 1 trivial
147.4.a.b 1 7.b odd 2 1
147.4.e.h 2 7.c even 3 2
336.4.q.e 2 28.f even 6 2
441.4.a.k 1 3.b odd 2 1
441.4.a.l 1 21.c even 2 1
441.4.e.c 2 21.h odd 6 2
2352.4.a.i 1 28.d even 2 1
2352.4.a.bd 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(147))$$:

 $$T_{2} + 3$$ $$T_{5} - 3$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$3 + T$$
$3$ $$3 + T$$
$5$ $$-3 + T$$
$7$ $$T$$
$11$ $$15 + T$$
$13$ $$-64 + T$$
$17$ $$84 + T$$
$19$ $$-16 + T$$
$23$ $$84 + T$$
$29$ $$297 + T$$
$31$ $$-253 + T$$
$37$ $$316 + T$$
$41$ $$360 + T$$
$43$ $$-26 + T$$
$47$ $$-30 + T$$
$53$ $$-363 + T$$
$59$ $$-15 + T$$
$61$ $$-118 + T$$
$67$ $$370 + T$$
$71$ $$342 + T$$
$73$ $$362 + T$$
$79$ $$-467 + T$$
$83$ $$477 + T$$
$89$ $$906 + T$$
$97$ $$503 + T$$